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From fail-safe to fail-operational

TTTech fields of operation in CPS
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Levels of Driving Automation

Source:: https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic

With the transition from L2 to 

higher levels the aim is to 

transfer responsibility from the 

human to the machine.

3

https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic


• Hardware and software automotive platforms experience an increasing complexity.

• AI currently enables functionalities otherwise not possible (e.g. perception).

• However, integration of AI in a CPS is not trivial neither on the hardware nor software sides:

• The failure rate of a single AI subsystem is rather high.

• Besides functional correctness, the timeliness of the system operations is crucial to guarantee 

that the system remains fail-operational.

• Methods to achieve a sufficient validation of correctness and timeliness of AI-based systems are 

unclear.

• A strategy to address these challenges is to decompose the system into multiple independent 

subsystems, wherein ideally each subsystem forms a fault-containment unit (FCU).

Problem Statement
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A proposed Decomposition of an AD L4 System
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Problem Statement
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• Hardware and software automotive platforms experience an increasing complexity.

• AI currently enables functionalities otherwise not possible (e.g. perception).

• However, integration of AI in a CPS is not trivial neither on the hardware nor software sides:

• The failure rate of a single AI subsystem is rather high.

• Besides functional correctness, the timeliness of the system operations is crucial to 

guarantee that the system remains fail-operational.

• Methods to achieve a sufficient validation of correctness and timeliness of AI-based systems are 

unclear.

• A strategy to address these challenges is to decompose the system into multiple independent 

subsystems, wherein ideally each subsystem forms a fault-containment unit (FCU). 



Growing Complexity of Automotive Functions

February 3, 2024 7

=+

1

9

14

44

100

Boeing 787

IPhone App

Firefox

Office 2013

Car software

Increasing complexity 
of car software

Increasing complexity 
of timing requirements

Design-time guarantees

• Critical event/data-driven chains

• Hard real-time and determinism 

requirements

• Orchestration needs of 

heterogeneously distributed 

applications

• Mixed-criticality and Freedom 

From Interference requirements

• Complex task dependencies

• Non-determinism of AI/ML 

algorithms 

• Testing-based approaches are not sufficient anymore.

• Correct-by-design approach with mathematically-

proven guarantees are needed.

• This implies more knowledge (e.g., timing budgets) 

and solutions to complex planning problems.

Design-time guarantees require solving a system-wide planning problem.  

“Design approaches not based on mathematically 

proven real time scheduling properties are prone to 

missing deadlines during unusual operational 

conditions” UL4600 Standard for Safety for the 

Evaluation of Autonomous Products.

@Silviu Craciunas

(lines of code, millions)



Functional Complexity of Automotive Functions

❖ Event Chains (EC), or computation chains, define maximum end-to-end latency between sequences of distributed software components.

❖ EC are modelled as data flows through the system, i.e. distributed among multiple nodes.

❖ The local resource configurations are arranged to guarantee that EC always meet their required latency (i.e. worst-case).

❖ The use of AI increases even further the system complexity due to non-determinism of algorithms and performance-oriented hardware.

Event Chains Example
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…

End-to-end timing constraints



System Requirements

- System definition

- Functional constraints

- Temporal constraints

- Platform definition

System Model

- Hardware resources 

- Workload

- Communication

- Dependencies

- Low-level constraints

Global Configuration 

(Planning)

Visualization, Simulation

Validation & Verification

1
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4
• CPU Cores

• Hardware Accelerators

• Network

• Middleware stacks

• Hypervisors

• …

Global System Planning
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A complete system model is essential to provide 

design-time guarantees.

• Including functional dependencies and timing 

constraints.

Global planning requires configurability (i.e. control) 

of the artifacts, but…

• it is not always available “out-of-the-box” for AI 

hardware & software, due to e.g.

• the “black-box” nature of AI algorithms and the 

performance-oriented hardware management.
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A large number of software components of 

increasing code size deployed in a distributed 

multi-core/multi-SoC system with complex 

timing requirements.

Configuration Challenge in Numbers
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1024 Streams

With growing system size, it becomes a challenge to 

plan when and where these software components 

are executed, and message are transmitted.
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Software components are executed based on computed

timetables with correct-by-design properties, e.g.:

• Complex timing requirements: cause-effect chains, jitter;

• Temporal isolation: no starvation possible, temporal isolation 

between all tasks, freedom-from-interference (FFI);

• Determinism: increased stability and testability, no unwanted 

run-time effects;

• Re-simulation: equivalent behaviour between cloud and 

embedded targets;

• Synchronization to communication: stable real-time 

behaviour of cause-effect chains;

• Compositionality: incrementally adding or modifying tasks;

• Predictability: many system properties become predictable, 

e.g., locks, task pre-emption;

• Integration: simplifies integration of functions from different 

suppliers;

• Stability: fewer system states, less testing / higher stability;

• Schedulability: more correct configurations can be realized.
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Challenges Integrating AI Accelerators

Fact

• AI algorithms require complex computations exceeding CPU capabilities.

• GPUs and other AI-accelerators are used to leverage workload.

• The global planning of system resources allow correct-by-design guarantees.

Problem

• Accelerators are engineered to deliver high-throughput (best-effort performance), often 
working behind proprietary APIs.

• Freedom-from-interference (FFI) and real-time guarantees are not in scope.

• The integration of accelerators without harming timeliness of the system is not trivial.

Solution

• Overrule the native (proprietary) management of accelerators to enable launching jobs 
according to a global system planning.

• Ensure safety is preserved by maintaining end-to-end timeliness properties and enforce 
run-time compliance to the computed schedule.

123 February 2024



Simplified Sequence Diagram
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The default direct access of software 

components to hardware accelerators 

delegates the control flow to the 

vendor.

Accelerators are typically engineered 

to deliver performance and throughput 

but may not behave in a deterministic / 

predictable manner, wrt. e.g.:

• choice of parallelization,

• re-ordering of queued jobs,

• trading run-time vs throughput

Adding an accelerator manager acting 

as a broker allows fine-level control of 

the jobs executed by the hardware. 



Concept Overview

Runtime

Handle multiple context per accelerator Enforce timeliness properties

Abstraction

API providing hardware access 
abstraction

Independent of vendor
Agnostic of hardware platform 

language (CUDA, TensorRT, OpenCL)

Centralized Management

Handling launch of jobs (kernels) to AI 
accelerators

Enabling monitoring and inspection
Enforce freedom-from-interference via 

dispatch policy (planning)
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Example Accelerator Manager

• Accelerator Manager provides SWC the 

functionality of requesting the execution of kernels in 

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of 

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the 

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is 

handled by the vendor runtime via the vendor 

abstraction API. A
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Example Accelerator Manager

• Accelerator Manager provides SWC the 

functionality of requesting the execution of kernels in 

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of 

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the 

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is 

handled by the vendor runtime via the vendor 

abstraction API. A
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Vendor Abstraction (API)Software components request kernel execution, declare kernel 

properties, data transfers, etc…

The kernel is coded in the native hardware model language of the 

accelerator (e.g. CUDA, OpenCL, TensorRT).
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Example Accelerator Manager

• Accelerator Manager provides SWC the 

functionality of requesting the execution of kernels in 

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of 

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the 

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is 

handled by the vendor runtime via the vendor 

abstraction API. A
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Vendor Abstraction (API)At runtime, kernels are launched at their planned time. The 

global planning of resources guarantees that the required 

accelerators are available.

The accelerator manager monitors the progression.
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Example Accelerator Manager

• Accelerator Manager provides SWC the 

functionality of requesting the execution of kernels in 

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of 

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the 

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is 

handled by the vendor runtime via the vendor 

abstraction API. A
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Vendor Abstraction (API)Upon being launched, the execution of kernels is handled 

by the vendor stack.

Drivers, API, documentation, etc… remain as provided by vendors.
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Example Comparative Traces

Without Accelerator Manager

• Vendor supplied drivers favor high-throughput against FFI. Interference is out of control and depends on runtime conditions.

With Accelerator Manager
• Accelerator Manager guarantees FFI by organizing the launch of kernels in non-interfering manner.
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• Automotive systems CPS are growing in complexity.

• AI enables functionalities otherwise not possible (e.g. perception).

• AI hardware & software are crucial for L3+ autonomous driving.

• COTS components focus on performance not dependability.

• AI components operate as self-managed “black box(es)”.

• High failure-rate of AI requires additional considerations.

• A system architecture that decomposes the system in nearly-

independent subsystems each forming FCUs is necessary.

• Timeliness is a crucial factor to guarantee the system remains fail-

operational.

• The integration of AI components “out-of-the-box” is not suited for 

real-time.

• Global system planning and management of accelerators help 

reduce uncertainty and increase time predictability.

Take Aways
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