
February 3, 2024 1

Challenges of Using AI in

Automotive CPS
85th Meeting IFIP WG 10.4 - February 2024 - Industrial Panel

Ramon Serna Oliver

Principal Scientist @ TTTech Labs

From fail-safe to fail-operational

TTTech fields of operation in CPS

February 3, 2024 2

Safety by design according to highest safety standards in multiple industries

ISO
13849

ISO

25119

ISO
19014

ISO
26262

IEC
61508

DO

178C/254

FULLY-

AUTONOMOUS

SEMI-

AUTONOMOUS

February 3, 2024

Levels of Driving Automation

Source:: https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic

With the transition from L2 to

higher levels the aim is to

transfer responsibility from the

human to the machine.

3

https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic

• Hardware and software automotive platforms experience an increasing complexity.

• AI currently enables functionalities otherwise not possible (e.g. perception).

• However, integration of AI in a CPS is not trivial neither on the hardware nor software sides:

• The failure rate of a single AI subsystem is rather high.

• Besides functional correctness, the timeliness of the system operations is crucial to guarantee

that the system remains fail-operational.

• Methods to achieve a sufficient validation of correctness and timeliness of AI-based systems are

unclear.

• A strategy to address these challenges is to decompose the system into multiple independent

subsystems, wherein ideally each subsystem forms a fault-containment unit (FCU).

Problem Statement

February 3, 2024 4

A proposed Decomposition of an AD L4 System

February 3, 2024 5

M-System

Monitor

System

L2*-System

for Nominal

Conditions

F-System

for Off-Nominal

Conditions

D-System

Decision System

Sensors of the M-SystemSensors of the L2*-System Sensors of the F-System

Fault-Tolerant

Actuator

SP

D-System is

fault tolerant

SA System

for

Safety Assurance

SP SP SP SP SP SP SP SPSP: Sensor

Preprocessing

@Hermann Kopetz
https://www.the-autonomous.com/news/an-architecture-for-driving-automation/

https://www.the-autonomous.com/news/an-architecture-for-driving-automation/

Problem Statement

February 3, 2024 6

• Hardware and software automotive platforms experience an increasing complexity.

• AI currently enables functionalities otherwise not possible (e.g. perception).

• However, integration of AI in a CPS is not trivial neither on the hardware nor software sides:

• The failure rate of a single AI subsystem is rather high.

• Besides functional correctness, the timeliness of the system operations is crucial to

guarantee that the system remains fail-operational.

• Methods to achieve a sufficient validation of correctness and timeliness of AI-based systems are

unclear.

• A strategy to address these challenges is to decompose the system into multiple independent

subsystems, wherein ideally each subsystem forms a fault-containment unit (FCU).

Growing Complexity of Automotive Functions

February 3, 2024 7

=+

1

9

14

44

100

Boeing 787

IPhone App

Firefox

Office 2013

Car software

Increasing complexity
of car software

Increasing complexity
of timing requirements

Design-time guarantees

• Critical event/data-driven chains

• Hard real-time and determinism

requirements

• Orchestration needs of

heterogeneously distributed

applications

• Mixed-criticality and Freedom

From Interference requirements

• Complex task dependencies

• Non-determinism of AI/ML

algorithms

• Testing-based approaches are not sufficient anymore.

• Correct-by-design approach with mathematically-

proven guarantees are needed.

• This implies more knowledge (e.g., timing budgets)

and solutions to complex planning problems.

Design-time guarantees require solving a system-wide planning problem.

“Design approaches not based on mathematically

proven real time scheduling properties are prone to

missing deadlines during unusual operational

conditions” UL4600 Standard for Safety for the

Evaluation of Autonomous Products.

@Silviu Craciunas

(lines of code, millions)

Functional Complexity of Automotive Functions

❖ Event Chains (EC), or computation chains, define maximum end-to-end latency between sequences of distributed software components.

❖ EC are modelled as data flows through the system, i.e. distributed among multiple nodes.

❖ The local resource configurations are arranged to guarantee that EC always meet their required latency (i.e. worst-case).

❖ The use of AI increases even further the system complexity due to non-determinism of algorithms and performance-oriented hardware.

Event Chains Example

Event Chains

1 2 3 i N OUTIN
Camera

Radar

Lidar

EGO /

GPS position

Actuation

Powertrain

Brake

Steering

Gear box

Suspension

Cluster

Processing Tasks

Safety Host

Vehicle Network

Signal Input

AI Task

Performance Host 1

Processing Task

Performance Host i

Processing Task

Safety Host

Vehicle Network

Signal Output

Sensors

83 February 2024

…

End-to-end timing constraints

System Requirements

- System definition

- Functional constraints

- Temporal constraints

- Platform definition

System Model

- Hardware resources

- Workload

- Communication

- Dependencies

- Low-level constraints

Global Configuration

(Planning)

Visualization, Simulation

Validation & Verification

1
2

3

4
• CPU Cores

• Hardware Accelerators

• Network

• Middleware stacks

• Hypervisors

• …

Global System Planning

5

A complete system model is essential to provide

design-time guarantees.

• Including functional dependencies and timing

constraints.

Global planning requires configurability (i.e. control)

of the artifacts, but…

• it is not always available “out-of-the-box” for AI

hardware & software, due to e.g.

• the “black-box” nature of AI algorithms and the

performance-oriented hardware management.

93 February 2024

A large number of software components of

increasing code size deployed in a distributed

multi-core/multi-SoC system with complex

timing requirements.

Configuration Challenge in Numbers

February 3, 2024 10

S
o
ft
w

a
re

 d
e
m

a
n
d
s

400

Functions

100

Tasks

S
y
s
te

m

c
o
n
s
tr

a
in

ts

Time, latency, precedence

constraints, etc.

100+ +

105000

105

Atoms in

the

universe

1080

S
o
lu

ti
o
n
 s

p
a
c
e

Theoretical vs Valid configurations

Possible

configurations

Correct configurations

C
o
m

p
u
ta

ti
o
n
 u

n
it
 r

e
s
o
u

rc
e
s CPU cores46

Hardware

accelerators6

2 TSN switches

1024 Streams

With growing system size, it becomes a challenge to

plan when and where these software components

are executed, and message are transmitted.

@Silviu Craciunas

Safety

Host

Performance

Host 1

Performance

Host n

Communication

Backbone

Vehicle Interface

Direct Sensor Input

Global Planning with Time-Triggered Architecture

11

Software components are executed based on computed

timetables with correct-by-design properties, e.g.:

• Complex timing requirements: cause-effect chains, jitter;

• Temporal isolation: no starvation possible, temporal isolation

between all tasks, freedom-from-interference (FFI);

• Determinism: increased stability and testability, no unwanted

run-time effects;

• Re-simulation: equivalent behaviour between cloud and

embedded targets;

• Synchronization to communication: stable real-time

behaviour of cause-effect chains;

• Compositionality: incrementally adding or modifying tasks;

• Predictability: many system properties become predictable,

e.g., locks, task pre-emption;

• Integration: simplifies integration of functions from different

suppliers;

• Stability: fewer system states, less testing / higher stability;

• Schedulability: more correct configurations can be realized.

3 February 2024

Challenges Integrating AI Accelerators

Fact

• AI algorithms require complex computations exceeding CPU capabilities.

• GPUs and other AI-accelerators are used to leverage workload.

• The global planning of system resources allow correct-by-design guarantees.

Problem

• Accelerators are engineered to deliver high-throughput (best-effort performance), often
working behind proprietary APIs.

• Freedom-from-interference (FFI) and real-time guarantees are not in scope.

• The integration of accelerators without harming timeliness of the system is not trivial.

Solution

• Overrule the native (proprietary) management of accelerators to enable launching jobs
according to a global system planning.

• Ensure safety is preserved by maintaining end-to-end timeliness properties and enforce
run-time compliance to the computed schedule.

123 February 2024

Simplified Sequence Diagram

SWC A SWC B
Accelerator

Manager

HW

Accelerator

K1

K2

K3

Request K1

Request K2

Request K3

Launch K1

Launch K2

Launch K3

133 February 2024

The default direct access of software

components to hardware accelerators

delegates the control flow to the

vendor.

Accelerators are typically engineered

to deliver performance and throughput

but may not behave in a deterministic /

predictable manner, wrt. e.g.:

• choice of parallelization,

• re-ordering of queued jobs,

• trading run-time vs throughput

Adding an accelerator manager acting

as a broker allows fine-level control of

the jobs executed by the hardware.

Concept Overview

Runtime

Handle multiple context per accelerator Enforce timeliness properties

Abstraction

API providing hardware access
abstraction

Independent of vendor
Agnostic of hardware platform

language (CUDA, TensorRT, OpenCL)

Centralized Management

Handling launch of jobs (kernels) to AI
accelerators

Enabling monitoring and inspection
Enforce freedom-from-interference via

dispatch policy (planning)

143 February 2024

Example Accelerator Manager

• Accelerator Manager provides SWC the

functionality of requesting the execution of kernels in

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is

handled by the vendor runtime via the vendor

abstraction API. A
c
c
e

le
ra

to
r

M
a

n
a

g
e

r

Vendor RuntimeVendor Runtime

RTE

Software

Component

Software

Component

Software

Component

Processing Queues

Queue #1

Queue #2

Queue #n

Dispatcher

Vendor Abstraction (API)

153 February 2024

Example Accelerator Manager

• Accelerator Manager provides SWC the

functionality of requesting the execution of kernels in

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is

handled by the vendor runtime via the vendor

abstraction API. A
c
c
e

le
ra

to
r

M
a

n
a

g
e

r

Vendor RuntimeVendor Runtime

RTE

Software

Component

Software

Component

Software

Component

Processing Queues

Queue #1

Queue #2

Queue #n

Dispatcher

Vendor Abstraction (API)Software components request kernel execution, declare kernel

properties, data transfers, etc…

The kernel is coded in the native hardware model language of the

accelerator (e.g. CUDA, OpenCL, TensorRT).

163 February 2024

Example Accelerator Manager

• Accelerator Manager provides SWC the

functionality of requesting the execution of kernels in

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is

handled by the vendor runtime via the vendor

abstraction API. A
c
c
e

le
ra

to
r

M
a

n
a

g
e

r

Vendor RuntimeVendor Runtime

RTE

Software

Component

Software

Component

Software

Component

Processing Queues

Queue #1

Queue #2

Queue #n

Dispatcher

Vendor Abstraction (API)At runtime, kernels are launched at their planned time. The

global planning of resources guarantees that the required

accelerators are available.

The accelerator manager monitors the progression.

173 February 2024

Example Accelerator Manager

• Accelerator Manager provides SWC the

functionality of requesting the execution of kernels in

accelerators (e.g. GPU, DLA, …).

• Dispatcher selects jobs (kernels) from the queue of

requests and launches them in the accelerators.

• Vendor Abstraction (device specific) abstracts the

vendor runtime (drivers) to interact with the silicon.

• Accelerator control (requests and notifications) is

handled by the vendor runtime via the vendor

abstraction API. A
c
c
e

le
ra

to
r

M
a

n
a

g
e

r

Vendor RuntimeVendor Runtime

RTE

Software

Component

Software

Component

Software

Component

Processing Queues

Queue #1

Queue #2

Queue #n

Dispatcher

Vendor Abstraction (API)Upon being launched, the execution of kernels is handled

by the vendor stack.

Drivers, API, documentation, etc… remain as provided by vendors.

183 February 2024

Example Comparative Traces

Without Accelerator Manager

• Vendor supplied drivers favor high-throughput against FFI. Interference is out of control and depends on runtime conditions.

With Accelerator Manager
• Accelerator Manager guarantees FFI by organizing the launch of kernels in non-interfering manner.

193 February 2024

February 3, 2024 20

• Automotive systems CPS are growing in complexity.

• AI enables functionalities otherwise not possible (e.g. perception).

• AI hardware & software are crucial for L3+ autonomous driving.

• COTS components focus on performance not dependability.

• AI components operate as self-managed “black box(es)”.

• High failure-rate of AI requires additional considerations.

• A system architecture that decomposes the system in nearly-

independent subsystems each forming FCUs is necessary.

• Timeliness is a crucial factor to guarantee the system remains fail-

operational.

• The integration of AI components “out-of-the-box” is not suited for

real-time.

• Global system planning and management of accelerators help

reduce uncertainty and increase time predictability.

Take Aways

Thank you.

Ramon Serna Oliver
Principal Scientist

ramon.serna.oliver@tttech.com

Follow us on

labs.tttech.com

LinkedIn

mailto:ramon.serna.oliver@tttech.com
https://labs.tttech.com/
https://www.linkedin.com/company/tttech
https://www.linkedin.com/company/tttech-labs/

	Title
	Slide 1: Challenges of Using AI in Automotive CPS
	Slide 2: TTTech fields of operation in CPS
	Slide 3: Levels of Driving Automation
	Slide 4: Problem Statement
	Slide 5: A proposed Decomposition of an AD L4 System
	Slide 6: Problem Statement
	Slide 7: Growing Complexity of Automotive Functions
	Slide 8: Functional Complexity of Automotive Functions
	Slide 9: Global System Planning
	Slide 10: Configuration Challenge in Numbers
	Slide 11: Global Planning with Time-Triggered Architecture
	Slide 12: Challenges Integrating AI Accelerators
	Slide 13: Simplified Sequence Diagram
	Slide 14: Concept Overview
	Slide 15: Example Accelerator Manager
	Slide 16: Example Accelerator Manager
	Slide 17: Example Accelerator Manager
	Slide 18: Example Accelerator Manager
	Slide 19: Example Comparative Traces
	Slide 20
	Slide 21
	Slide 22
	Slide 23

