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Bot/Fraud Lifecycle

Credentials Stolen Credential Accounts are Leading to
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Over 1 Million stolen
credentials are reported every The black market has

Aut " lici bot ATO is the most concerning
utomation, malicious bots, fraud scheme*; ATO fraud
and manual attacks expose

. industrialized cyber crimes : :
day; users reuse credentials : resulted in over $11B in losses
users and businesses to fraud

. and fraudulent activities
across applications

in the U.S. alone in 2021**

I*SMG 2021 Faces of Fraud Survey; ** Javelin Strategy & Research, 2021




Bot vs Fraud
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Impact of Bot/Fraud
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25% $362B $260B

Of the 100 worst financial loss Cumulative online payment fraud losses Lost orders per year attributed to
incidents in past 5 years, the leading forecast $362B (2023 — 2028 period) excessive checkout friction
cause was credential attacks

https://www.f5.com/labs/articles/threat-intelligence/the-state-of-the-state-of-application-exploits-in-security-incidents

https://baymard.com/lists/cart-abandonment-rate

https://www.juniperresearch.com/whitepapers/fighting-online-payment-fraud-in-2022-beyond @
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Agenda

3. Model maintenance - Distribution drift detection
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1. Auto JavaScript implantation with Web Autopilot
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Frontend Code Implantation

Website navigation
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Page understanding _6 Code generation JS
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Customer’s Website Classified endpoint pages Configuring signal collection Signal collection JS

www . customer.com/shop/UserRegistrationForm "selector”: ”input[type='text'].input:not (.add-bottom-margin)”
DOM tree
"selector”: "#userid”
Account
www.customer.com/auth/login/present ”inputName”: “username”
HAR IOg ”“inputName”: “value (user id)”
”inputName”: ”“USERID”

www.customer.com/order/checkout
www .customer.com/order/build/iteml




Automated Code Implantation

Customer’s Website

Auto website navigation and URL classification

S

Website navigation

Classified endpoint pages

Page understanding
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Configuring signal collection

Signal name localization and extraction

¢ Code generation

JS

Signal collection IS

‘get the username selector

[
-_Analyze

() show Hidden Elements

Show DOM Preview

Processed Data:

"Field Name": "j_username",

"Description": "A text input field for the
username.",

"Query Selector":

LLM serving layer

"document.querySelector('#userid')"
h

"Field Name": "j_password",
"Description": "A text input field for the
password.",

\/ Standardize workflow across customers

\/Speed up customer enrollment

"Query Selector":
"document.querySelector('#password')"

{
"Field Name": "saveusername",
"Description": "A checkbox to save the
username.",
"Query Selector":
"document.qylervSelector('#saveusername’)"

Reduce maintenance cost @



Backend
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Al Engine Architecture

/ Real time, <= 20 ms latency

3406

Al Engine

Offline, through threat intelligence
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Signal Collection

%)

Network Signals

IP Intelligence
Bots

Location

OS, Browser
Hosting

VPN Usage

Digital Identity

Device Identity
Time Zone
Browser fingerprint
User Agent
Emulated device

Environment spoofing
indicators

Behavior Biometrics

» Keyboard shortcuts

» Copy paste

* Mouse movements
» Touch input events
+ Use of autofill

» Screen utilization

Behavior Profiling

+ Device Activity
» User journey profiling

» User Signals (username,
payee id, account id, etc.)



Real-time ML

Feature extraction mmm)  Feature Selection —> Model
-« #of distinct
login attempts
Aggregation — * #of orders
 # of paste With ground truth:
s ... * XGBoost
— Domain expert e (CatBoost
* Device age Statistical measures i :
« keyboard/mouse Without ground truth:
movements * Isolation Forest

Transaction — .
* Screen utilization

pattern




GNN

Graph Schema:

GNN

* Parametric aggregation that
can be trained

* Can propagate to multi-hop
neighborhood

Cookie
IP
L[ Deviceid

@]‘ Transaction

@ Account

’\‘ Phone

ML features

*  Simple way to aggregate neighbor info
*  count/sum
*  Only Consider 1-hop neighbors

A part of the graph loaded in Neo4j:

* traffic from 5 customers of financial institutions and retailers
* 153 million requests

* Maintain 3 months of data
* 67 million of nodes/ 85 million of edges

®



GNN

Propagation model:

Transaction - Cookie
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Output embedding h

Treating each relation separately
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Use cases:

Detecting fraudulent transactions

& —

Detecting Bot/fraud Campaign

Devices/Identities Reputation

Gl



Customer’s Website/App
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Distribution Drift

A

Benign user behavior change

What causes distribution drift?
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Attacker retooling

i

Economic and Social Changes

login frequency/location
key/mouse movements
screen utilization

environment spoofing
Network manipulation
Identity manipulation

order placing frequency/amount
Money transfer frequency/amount

®



Detecting Distribution Drift

Challenges Solution

Autoencoder
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Correlation between features ‘
Non-linearity of the feature space

Input features Reconstructed features

l

Measuring drift: Reconstruction error




Demonstration

Model trained in 08/2022 using 3 months of traffic Random Events

Data reconstruction drift

20

15
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:

PN /

Aug 2022

Sep 2022 Oct 2022 Nov 2022 Dec 2022 Jan 2023 Feb 2023

Time

Reconstruction Error of a financial customer over a few month

Measured drift reached threshold, need to retrain

—— Metric (reference)
—— Metric (analysis)

¢ Alert



Future work

Better Identity/Device Fingerprinting

* Some identity/device fingerprints are easy to be spoofed,
* Event the fingerprints of the same identity/device can keep changing
* More reliable fingerprinting techniques/signals, linking algorithms help better tracking the bad actors down

Protecting against informed attackers

* Advanced bad actors can use adversarial example techniques to bypass detectors?!
* Defending against such attacks with adversarial training, defensive model distillation etc.

1. Lunghi, Daniele, et al. "Adversarial Learning in Real-World Fraud Detection: Challenges and Perspectives." Proceedings of the Second ACM Data Economy Workshop. 2023. @
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