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Motivation

* Growing use of Al/ML technologies in
safety-critical CPS

* Design-time verification is not sufficient for
safety guarantees

* Need runtime techniques
* Predictive monitoring
 Safety shielding

Images generated by Al (OpenAl's DALL-E)
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Predictive monitoring for Bayesian RNNs

* Predictive monitoring enhances CPS decision-making support
e Adapt traffic signals in response to predicted congestion from accidents
* Lower insulin dosage automatically on predicting hypoglycemia risk

* Existing work mostly focus on monitoring individual predictions

* Our work monitors generated from
that can capture the inherent in CPS

“Predictive monitoring with logic-calibrated uncertainty for cyber-physical systems”.
M Ma, J Stankovic, E Bartocci, L Feng. EMSOFT 2021.



Insights from real-world CPS datasets

* Uncertainty in CPS data

- Sensing noise
- Environment

Air quality

437 stations

- Human behavior Traffic volume 1,490 streets
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Example scenario

.~ | Requirement:

% =

g:% The air quality index (AQl)
%9 should never exceed 100.




Uncertainty in deep learning
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STL-U: Signal Temporal Logic with Uncertainty
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Predictive monitoring with uncertainty

pain pm STL-U Strong/weak satisfied
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Historical ; ; ; ; ; Predicted Monitor Confidence = 95%
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Prediction Model Monitoring results

Cljo,41 AQI: —s5, < 100

With 95% confidence level, the
predicated air quality index in the next

* A Novel Specification Logic: STL-U 4 hours should always be below 100

e Strong/Weak Semantics
e Confidence Calculation

What is the confidence level that
guarantees the predicated air quality
index in the next 4 hours always be
below 100




Logic-calibrated uncertainty estimation
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Evaluation

Number of Violation undetected

Air Quality Index 67.91 57.22 43.65 23.7%
Noise (db) 73.32 49.27 48.21

Emergency Waiting Time (s) 20.32 14.87 10.65 28.3%
Vehicle Waiting Number 22 18 15

Pedestrian Waiting Time (s) 190.2 148.9 121.1

Vehicle Waiting Time (s) 112.12 89.77 80.31

@ City safety & performance§



Outline

Safety shielding for

\ multi-agent RL /




Safety shielding for multi-agent RL (MARL)

* MARL has been used in many CPS applications

* Traditional MARL methods focus on optimizing
returns and do not prevent unsafe actions

* Our methods provide safety guarantees during
learning and execution

“Safe multi-agent reinforcement learning via shielding”.
| EISayed-Aly, S Bharadwaj, C Amato, R Ehlers, U Topcu, L Feng. AAMAS 2021.




Safety shielding for multi-agent RL (MARL)

Centralized Shielding

MARL Agents action, state :m

punishment, safe action

state
reward

safe
action

“Safe multi-agent reinforcement learning via shielding”.

Factored Shielding
*Facong W Sricaz M= Gooranaton.
action .

o Shieldm g

punishment, safe action safe

] action

| EISayed-Aly, S Bharadwaj, C Amato, R Ehlers, U Topcu, L Feng. AAMAS 2021



Safety shielding for multi-agent RL (MARL)

 Safety specification in Linear Temporal Logic

* Synthesizing shields by solving two-player safety games
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Evaluation on discrete environments

1e3 MIT
8 0.0 7 ° 0.0
‘;" —05 - g -0.5
= & —770) 4
2707 — Noshield | £-1s —— No shield
§ -1.5 1 —— Centralized § -0 —— Centralized
= —— Factored = —— Factored
ol M -2.0 1 _ . . ' -2.5 1 ' ' ' '
0.00 025 050 075 1.00 0.00 025 050 075 1.00
Episodes le3 Episodes le3
ISR MIT le3 Pentagon le3 SUNY
wi B0 @ 00 -
2 g 05 S _os
O m £ 10 €
= E: < _15 4 —— No shield < —— No shield
[— ® § —— Centralized §_1'5 —— Centralized
= -20 —— Factored Z 5o —— Factored
PENTAGON SUNY N S e B e
0.00 025 050 075 1.00 0.00 025 050 075 1.00
Episodes le3 Episodes le3
IQL CQ CQ with centralized shield | CQ with factored shield
Maps |Optimal Steps |Steps Reward Collisions|Steps Reward Collisions | Steps Reward Collisions |Steps Reward Collisions
ISR 5 30.35 -10.20 20.30 8.66 89.53 0.40 7.03 93.85 0.00 7.31 93.74 0.00
Pentagon 10 46.58 -19.17 11.60 [10.96 88.96 0.20 12.08 88.44 0.00 13.20 84.88 0.00
MIT 18 20.84 77.33 0.00 4293 30.38 0.90 28.38 73.94 0.00 29.96 37.96 0.00
SUNY 10 34.80 -160.175 72.60 [13.97 84.78 0.30 11.97 88.44 0.00 14.02 83.77 0.00




Evaluation on continuous environments
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Safe POMDP online planning via shielding

* POMDP provides a general modeling
framework for decision-making under
uncertainty

* POMDP online planning

* Policy computation and execution are
interleaved

* Can scale up to solve very large POMDPs
than offline planning

“Safe POMDP online planning via shielding”. S Sheng, D Parker, L Feng. ICRA 2024,



Safe POMDP online planning via shielding

* Existing methods consider various safety
requirements

. 1 2 3 4 5 6
* Cost-constrained [& i‘}
* Chance-constrained ~
. . LR I
* Our work focuses on stricter safety requirements 3 S
(i-e-’ the T T T

probability of reaching goal states while avoiding

unsafe states is 1) 5 1 [V
* Shield synthesis via computing maximal winning 6 .‘}

regions with a SAT-based method (Junges et al. 2021)
e Centralized shield vs. factored shields

“Safe POMDP online planning via shielding”. S Sheng, D Parker, L Feng. ICRA 2024,



Partially observable monte-carlo planning

* A widely used POMDP online planning algorithm (Silver et al. 2008)

Policy Construction | Execution & Update @ Policy Construction = Execution & Update @ Policy Construction | Execution & Update

Selection Expansion Simulation Backpropagation
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Prior pruning

* At each time step t, before the POMCP algorithm iterations, find all
actions disallowed by the shield and prune the corresponding tree
branches from the
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On-the-fly backtracking

* During the POMCP simulation phase, check if
is contained in the shield’s winning region. If not,
prune the tree branch.
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Legend:

® Ground-truth state
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Accounting for pedestrians (ongoing work)

* Predict pedestrians’ future trajectories using
trained LSTM models and quantify prediction
uncertainty with adaptive conformal prediction

* Online computation of winning regions
* Shielding POMCP based on winning regions
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Conclusion

» Safe Al-enabled CPS necessitate runtime techniques
like predictive monitoring and safety shielding

 Various Al methods require different safety guarantees
* Bayesian RNNs
* Multi-agent RL
* POMDPs

* Many interesting open research questions ...
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