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Welcome to the Neural Frontier…
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Is Elon’s “digital mind meld with AI” so far away? 
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Closed-loop 
Controller

DBS

Cognitive State 
Estimator

Neural 
Sensor Data

A simplified view of AI-enabled Deep Brain Stimulation

- Parkinson’s treatment
- Seizure mitigation
- Memory enhancement
- etc…. 

That 
signal’s 

from me!

“trying to isolate a neuron signal 
from an electrode is like holding 
up a mic in a stadium to figure out 
who is speaking”
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Augmenting Deep Brain Stimulation with 
Environmental Context
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Closed-loop 
Controller

DBS

Cognitive State 
Estimator

Neural 
Sensor Data

A simplified view of AI-enabled Deep Brain Stimulation

Environmental Sensors

Synchronizing the Human 
Experience Relative to Neuronal 
Events 

Real-time Semantic 
Alignment between 
Human 
and IoT Perception

Enhancing Episodic Memories of 
Real-world Experiences with DBS
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Can we maintain explainability and intervenability of 
AI-enabled Deep Brain Stimulation?
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Blurry Neuroscientist/Programmer 
Requirements:
- Safety guarantees
- Proficiency and understanding
- Monitoring and feedback
- Adapting to patient needs
- Patient-centered design

Blurry Patient Requirements:
(from Klein et. al 2016)
- Control over device function
- Meaningful consent
- Authentic self
- Relationship effects
- Safety/Security/Privacy



Outline for Today’s Talk
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Explosion of IoT Devices in Our Environment
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Explosion of IoT Devices in Our Environment

9

IoT Traditionally

➡ Low-dimensional structured
sensor data (e.g.,
temperature, humidity, etc.)

➡ Tasks requiring simple inferences
➡ Mechanistic or first-

principles models, and
simple data-driven
models

M. Srivastava, CPSWeek ‘23
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IoT Traditionally

➡ Low-dimensional structured
sensor data (e.g.,
temperature, humidity, etc.)

➡ Tasks requiring simple inferences
➡ Mechanistic or first-

principles models, and
simple data-driven
models

AI-enabled IoT

➡ High-dimensional unstructured
sensor data (e.g., image,
acoustic, lidar, etc.)

➡ Tasks requiring complex inferences
➡ Deep neural networks,

and other large data-driven
models

M. Srivastava, CPSWeek ‘23



A Nexus Driven by Technology Trends
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Rich Sensors & Actuators Deep Learning Accelerators
M. Srivastava, CPSWeek ‘23



Complex Inferences from Simple Sensors
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Accurate estimation of 3D motion trajectoryHuman activity & behavior recognition

https://arxiv.org/pdf/1707.03502.pdf

4

Interacting with wearable devices via on-body tapping

M. Srivastava, CPSWeek ‘23



But many things are still missing…

M. Srivastava, CPSWeek ‘23



Sensing 
Challenges in 

AI-enabled
CPS

1
Domain Shift

2
Embedded 

Implementation

3
Combining Data 
and Knowledge
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M. Srivastava, CPSWeek ‘23
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M. Srivastava, CPSWeek ‘23



Many Forms of Domain Shifts in AI-enabled CPS

Person-to-person differences Different environments

Misaligned time Latency variations

Variations in sensors

10

M. Srivastava, CPSWeek ‘23
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M. Srivastava, CPSWeek ‘23



12

• Neural network models promise better performance for many IoT applications, but due 
to the IoT platform resource-constraints and diversity the promise remains unrealized

Example: Inertial Odometry on MCU-class Ultra Resource Constrained IoT

The curse of drift in inertial odomtery

Ultra Resource Constrained IoT platforms

Example: RoNIN TCN

Naive double integration
SRAM=1.2kB, Flash=28.1kB 
ATE=12398m, RTE=59.85m

Pedestrian Dead Reckoning
SRAM=10.8kB, Flash=49.6kB 
ATE=34.81m, RTE=23.62m

RoNIN TCN
SRAM=2046.3kB, Flash=2195.5kB 
ATE=4.73m, RTE=1.21m

The Challenge of Embedded Implementation

IMWUT ‘22
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M. Srivastava, CPSWeek ‘23



Deep Learning for Perception

Audio Event Detection Activity Classification Visual Anomaly Detection

Deep Learning is faster, 
and more accurate than 

humans!
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Excellent at detecting and classifying simple events and activities

M. Srivastava, CPSWeek ‘23



Traditional Methods vs. DNN’s

21

Traditional Methods
• Required Domain Expertise
• Feature Extraction
• SVM/Decision Trees
• Not scalable

Deep Neural Networks (DNN)
• Less Domain Expertise
• Applied on raw sensor data
• High Performance
• Scalable

M. Srivastava, CPSWeek ‘23



Combining Data And Knowledge
Problem #1:Explainability andTellability

task, rules, norms, values, 
context, physics, 

background & new info…

explanations, 
provenance, assurances, 

forensics, audits …

All of the above challenging with data-driven models but much 
easier with traditional first principles (symbolic) models.

M. Srivastava, CPSWeek ‘23



A Sea of DNN Explanation Methods
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How should we explain DNNs?
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How should we explain DNNs?

25
Can we use post-hoc explanations for Sensor Data?

NeurIPS ‘20



Post-Hoc Methods Considered
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Perturbation 
Based Saliency Based

§ LIME
– Creates a local 

surrogate model

§ Anchor
– If-else rules

§ Gradients
§ GradCAM
§ SHAP

Explanation
by

Examples

• Lots of hyper-
parameters

• Inconsistent over 
multiple runs

Cons
• Mainly designed for 

images
• Same saliency 

regions

Cons

Provides a few key 
perceptually-relevant
items from the training 
dataset

• Requires Training 
data

• Privacy concerns

Cons



Post-hoc Explanations
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Identify the Human Preferred Explanation Method

Results

28

Explanation Method Image Study Text Study Audio Study ECG Study

LIME 47.7 ± 4.5% 70.4 ± 3.6% - -

Anchor 38.9 ± 4.3% 25.8 ± 3.5% - -

SHAP 33.7 ± 4.3% 59.9 ± 3.8% 34.7 ± 4.8% 32.8 ± 3.3%

Saliency Maps 39.4 ± 4.3% - 46.1 ± 5.1% 40.4 ± 3.5%

GradCAM++ 50.8 ± 4.5% - 48.1 ± 5.3% 42.0 ± 3.5%

Explanation by Examples 89.6 ± 2.6% 43.7 ± 3.9% 70.9 ± 4.7% 84.8 ± 2.5%

Results indicate the rate by which users selected a particular method when it is an available 
explanation, with 95% bootstrap confidence intervals



What did we learn from our study?
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• Most of these methods are designed for images and text
• The explanations are not reliable
• Although explanation by examples is preferred, it is not suitable for 

multivariate time-series data
• E.g., IMU data or videos

Predicted Activity: Using Restroom Predicted Activity: In Play



How should we explain DNNs?

30
Concept-based explanations



Concept-based Interpretable DNNs

31

Properties
• Stable
• Relative Faithfulness
• Easy to comprehend

Force the DNN to Learn Interpretable 
Representations at hidden layers

Concepts differ from traditional feature 
engineering:
• Concepts are high-level and are human 

understandable 
• Feature engineering constructs low-level 

features that can be computed by 
functions



Concept Bottleneck Model (CBM)
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Supervised Training :
• The Dataset has the concepts labeled
• Intermediate layer bottlenecks on human-

specified concepts
• Model first predicts the concepts, then uses only 

those predicted concepts to make a final 
prediction (x -> c -> y)

Pang et.al. “Concept-Bottleneck Models”, ICML 2020 



Limitations of CBM

33

• CBMs are designed for Image classification tasks
• Concepts are simple with the same level of abstraction, 

e.g., visual elements present in a single image.
• The concepts are assumed to be given a priori by a 

domain-expert in the dataset
– This may not result in a necessary and sufficient set of 

concepts
– Time consuming to annotate data with all the concepts

• For complex tasks like video activity classification, the 
concepts can represent relationships between objects 
spanning multiple frames 

• They don’t capture the temporal relationships between 
concepts 



Combining Data And Knowledge
Problem #2:Complex Events

• Connect the dots across atomic events
‣ At different locations, by different actors, across arbitrary intervals of time

• Require (i) Perception of atomic events from unstructured, high-dimensional, noisy, and 
possibly multimodal data, and (ii) High-level reasoning over the atomic events

Unsanitary Operation Unattended Bag Traffic Rule ViolationCoordinated Attack

16



Complex Activity Example

35

Using Restroom (Hygienic)

Using Restroom (Unhygienic)



Complex Events are challenging for Deep Learning models

A nurse forgets to wash their hands between processing different patients.

• Needle in the haystack problem
‣ Pattern in atomic events taking place over long spans of time
‣ Involve atomic events from many different sensors

• The effective context size is limited in deep neural networks for purposes of complex 
event sensing (high rate, long time spans), even with new transformer architectures

18



Modeling Long-term Dependencies Requires Memory

37M. Srivastava, CPSWeek ‘23



Bridging Deep Learning and Symbolic Models in AI-Driven CPS

Deep Learning Models

‣ Accelerator-friendly computation
‣ Excel at extracting complex short 

timescale events from unstructured, 
high-dimensional, sensory data

‣ Data-hungry
‣ Lack transparency and interpretability
‣ Poor at incorporating domain 

knowledge

Symbolic Models

‣ Work well at reasoning with structured 
data in human understandable ways

‣ Represent complex spatial & temporal 
dependencies efficiently and effectively

‣ Assured performance while 
incorporating domain
knowledge

‣ Not accelerator friendly
‣ Can’t handle unstructured & noisy data

21M. Srivastava, CPSWeek ‘23



Bridging Deep Learningand Symbolic Models in AI-Driven CPS

Deep Learning Models

‣ Accelerator-friendly computation
‣ Excel at extracting complex short 

timescale events from unstructured, 
high-dimensional, sensory data

‣ Data-hungry and poor at capturing Css
‣ Lack transparency and interpretability
‣ Poor at incorporating domain 

knowledge

Symbolic Models

‣ Work well at reasoning with structured 
data in human understandable ways

‣ Represent complex spatial & temporal 
dependencies efficiently and effectively

‣ Assured performance while 
incorporating domain
knowledge

‣ Not accelerator friendly
‣ Can’t handle unstructured & noisy data

Perception
(System 1)

Reasoning
(System 2)

A hybrid “Neurosymbolic” approach?
●Inspired by how human process CE
●Combine the power of the DL & Logic approaches.

21M. Srivastava, CPSWeek ‘23
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Neuroplex: Learning to Detect 
Complex Events in Sensor Networks 

Through Knowledge Injection

SenSys ‘20
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Complex Event Detection

42

Simple Events compose Complex Events
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Neuroplex Inference: Deep Learning Perception + Logical Reasoning

43

CE definition from User

NFA model creation
Selector model creation

Receiving Events
from Devices

Complex Event
with Uncertainty

CE knowledge

Events coming from distributed edge devices
Uncertainty-Robust CEP 

Engine Deep Data Abstractors

Sequence Detection

Sequence Selection

Raw data from sensor

Deep Learning 
inference

Primitive Event 
Generation

Device:    i

Raw data from sensor

Deep Learning 
inference

Primitive Event 
Generation

Device:   n

Events with 
uncertainties

DeepCEP SMARTCOMP ‘19
NeuroPlex SenSys ‘20 

DL Model
Perception

Logic Model
Reasoning

Complex 
Event
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Neuroplex Inference: Deep Learning Perception + Logical Reasoning

44

CE definition from User

NFA model creation
Selector model creation

Receiving Events
from Devices

Complex Event
with Uncertainty

CE knowledge

Events coming from distributed edge devices
Uncertainty-Robust CEP 

Engine Deep Data Abstractors

Sequence Detection

Sequence Selection

Raw data from sensor

Deep Learning 
inference

Primitive Event 
Generation

Device:    i

Raw data from sensor

Deep Learning 
inference

Primitive Event 
Generation

Device:   n

Events with 
uncertainties

DeepCEP SMARTCOMP ‘19
NeuroPlex SenSys ‘20 

Complex 
Event

Leverage the Power of Deep Learning + Logic for Complex Event Reasoning
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Neuroplex: Training
Reasoning
(Frozen!)

Raw data
Deep 

Learning
Model

Logical 
Machine

Primitive 
Events

NRLogic
Model

Predicted 
CE

GroundTruth
CE

Logic 
Constraints

Gradients w.r.t. 
Perception model

Train NRLogic model using 
synthetic data

Perception

Semantic 
regularization on 

intermediate 
symbolic layer

Neuroplex: End-to-end Training
We can fine-tune both deep learning perception and complex event pattern detection

NeuroPlex SenSys ‘20 
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Neuroplex: Performance
CE over irregular time series of images

CE over nurse activities (IMU) CE on audio stream

Performs much better than DL-only baselines

CE over images

CE over IMU

Scales with context length

46
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Neuroplex: Training
Reasoning
(Frozen!)

Raw data
Deep 

Learning
Model

Logical 
Machine

Primitive 
Events

NRLogic
Model

Predicted 
CE

GroundTruth
CE

Logic 
Constraints

Gradients w.r.t. 
Perception model

Train NRLogic model using 
synthetic data

Perception

Semantic 
regularization on 

intermediate 
symbolic layer

Neuroplex: End-to-end Training
We can fine-tune both deep learning perception and complex event pattern detection

NeuroPlex SenSys ‘20 

Key Takeaways

1. Neurosymbolic models allow incorporating human knowledge

2. Help with learning efficiency and long context length

3. Also help with domain shift, explainability, constraints, etc.

4. Open issues relating to training, efficiency, and robustness
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Follow-up: 
DeepSQA: Generalized Sensor Question Answering (SQA) Framework

48

"DeepSQA: Understanding Sensor Data via Question Answering.” IoTDI ‘21

Enable Flexible Querying (via Questions) for Complex Sensor Data



Follow-up: Explainable Complex Human Activity 
Recognition (XCHAR)

49

• X-CHAR: an Interpretable DNN architecture for Complex activity recognition
• X-CHAR has a Temporal Concept Bottleneck layer

– Use Connectionist Temporal Classification (CTC) loss to learn the concepts 

• Use a classification model after the temporal bottleneck to get the complex activity

X-CHAR

IMWUT ‘23



Symbolic-after-Neural
e.g., structured reasoning over 

natural sensor inputs

neural symbolic

A Rich NeurosymbolicLandscape

43



neuralsymbolic

Neural-after-Symbolic
e.g., deep learning over 

pre-processed inputs

Symbolic-after-Neural
e.g., structured reasoning over 

natural sensor inputs

neural symbolic

A Rich NeurosymbolicLandscape
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Symbolic-after-Neural
e.g., structured reasoning over 

natural sensor inputs

neural symbolic neural

symbolic

Aggregate / Fuse
e.g., DNN models errors in symbolic, 

symbolic polices DNN
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e.g., deep learning over 
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neuralsymbolic

Neural-after-Symbolic
e.g., deep learning over 

pre-processed inputs

Neural Module Networks
e.g., dynamically synthesized compositions 

of modular neural networks

Symbolic-after-Neural
e.g., structured reasoning over 

natural sensor inputs

neural symbolic

Neurally-accelerated Symbolic
e.g., neural network models 

errors in symbolic model

neural

symbolicneural

symbolic

Symbolically-constrained Neural
e.g., DNN trained to follow 

constraints, norms and rules

Training 
Data

Learning 
Algorithm

neural

symbolic

Aggregate / Fuse
e.g., DNN models errors in symbolic, 

symbolic polices DNN

A Rich NeurosymbolicLandscape
Recommended Reading: 
Neurosymbolic Programming by Chaudhuri et al
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Back to the Neural Frontier:
Recording and stimulation in the wild
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Neuroplex: Training
IoT-in-the-loop Neuroscience  

B C

D E

A

NSF NCS #2124252

Complex 
Context 
Shifts
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NTP: Network 
Time Protocol

Researcher

Sensors
• NTP Time
• GPS
• IMU
• Ambient Light

Battery Packs

Single-Board 
Computer and 360°

Audio

Mobile Eye-Tracker

GPS Phone

LED

LED

• NTP Time
• 360° Audio
• Sync to 

RNS, LED, 
audio

Participant

Recording Monitor
LFP Recordings

Synchronization Log

• Eye-tracking 
data

• NTP Time
• Audio
• IMU

Neuropace
Programmer

Wand Accessory

Neuropace Wand

RNS Neurostimulator

Neuropace
Programmer

Accessory

Movement Tracking

• IMUs
• Speed 

and 
Movement

Xsens Monitor

Clapperboard

Psychophysiology
• EDA, 

ECG, resp
• IMU

360°
Camera

1st Person Camera

A. NeurIoT System
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￭ “Episodic Memory” model
○ Memory traces are linked by 

representation of context
○ Drifts slowly over time
○ Reflected in hippocampal activity

￭ Construct navigational tasks that will 
have major experiential “context 
shifts”

○ Inside versus outside
○ Passing through doorways
○ Encountering prominent landmarks

Initial Goal: Decode How Humans Encode Memories

61

Hippocampal 
HFA

Hippocampal Theta

Temporal 
Context Drift

E
ve

nt
 S

tru
ct

ur
e 

D
im

en
si

on
al

ity

Observer-defined events

Segments and Turns

Movement between 
contexts
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￭ UCLA Center for Health Sciences
￭ Spatial boundaries: 

○ Doorways (17)
￭ Closed Doorways (14)
￭ Open Doorways (3)
￭ Indoors/Outdoors (11) 

○ Turns (25)
○ Transitions between buildings (10)

￭ Duration = 17 – 25 min
￭ Distance = ~0.75 miles
￭ 8 Walks (4 per day)

○ 1 Encoding
○ 7 Navigation

Route Characteristics

62

Start

Floor 1
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Landmarks

63
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Scenes

64

50 “segments” identified
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Landmark Recognition Tasks

65

Did you see this landmark?

• Patient will draw route on 
map after the last walk

Map Drawing Task Landmark Placement Task

Please click on the 
location of the landmark 

above

Scene Placement Task

Please click on the location of 
the beginning of the scene 

above

Start
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Hippocampal theta activity during real-world spatial navigation 

N = 1Time (Min)

0 202 4 6 8 10 12 14 16 18
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N = 1Time (Min)

0 202 4 6 8 10 12 14 16 18
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But will more robust neurosymbolic perception enable 
safe actuation with blurry requirements?

68

Other practical challenges:
- Limited Data 
- Resource constraints
- Privacy + Security concerns
- Patient-centered design
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Some preliminary exploration: 
Robustifying Neurosymbolic Perception Models in Simulation

69

Emergent Embodied AI Simulators

Can we leverage cross-domain simulators or datasets for more robust perception?

From DARPA’s Transfer from Imprecise and Abstract Models 
to Autonomous Technologies (TIAMAT) 
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Some preliminary exploration: 
Robustifying Neurosymbolic Perception Models in Simulation

70
Sandha, Sandeep Singh, et al. "Sim2real transfer for deep reinforcement learning with stochastic state transition delays." CoRL ‘21

Introducing consistently measurable symbols in state enhances Sim2Real Transfer 
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Some preliminary exploration: 
Managing Requirement Specifications

71

Even if model is explainable, interfaces still require cross-domain expertise for safety, 
security, and privacy

Singh, Akash Deep, Brian Wang, Luis Garcia, Xiang Chen, and Mani Srivastava. "Understanding factors behind IoT privacy--A user's perspective on RF 
sensors." arXiv preprint arXiv:2401.08037 (2024).

User study question: Would you be willing to put a device in your bedroom if 
(a) it was an off-the-shelf camera?
(b) You had complete control over the camera’s software/hardware?
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￭ Neurosymbolic models can at least bridge the gap for limitations in DNN-
only or symbolic-only sensor fusion models for perception

￭ We need better mechanisms to bootstrap semantic grounding at different 
symbolic layers across sensing modalities

○ Fusion at symbolic layers: Label space, semantic loss, concept bottlenecks, etc.
○ Better semantic oracles: existing knowledge graphs and LLMs have shown to be useful

￭ Better mechanisms for interfacing both domain experts and end-users with 
neurosymbolic models (maybe LLMs?)

￭ We need to take a holistic approach to closing-the-loop when modeling 
neurosymbolic safety-critical applications

Concluding Thoughts

73

Luis Garcia
la.garcia@utah.edu
https://lagarcia.us
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Thank You!

Luis Garcia
la.garcia@utah.edu
https://lagarcia.us


