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Welcome to the Neural Frontier...
Neuralink’s Brain Chip Is
Running in a Human. Your Skull
Is Safe, for Now

It'll be a years before limited trials of a brain-machine
interface progress to broader medical use, much less to
Elon Musk's dream of a digital mind meld with Al.

& Stephen Shankland aminread />
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Is Elon’s “digital mind meld with Al” so far away?

ey

Neural
Sensor Data

That . Closed-loop &8
signal's Cognitive State Controller e & g
. from me! Estimator Yy
DBS N

o : | R | &
trying to isolate a neuron signal
from an electrode is like holding - Parkinson’s treatment
up a mic in a stadium to figure out - Seizure mitigation

. . - Memory enhancement
who is speaking

-etc....

A simplified view of Al-enabled Deep Brain Stimulation
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m Augmenting Deep Brain Stimulation with
Environmental Context

I Synchronizing the Human
I Experience Relative to Neuronal
Even

2@z
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Sensor Data
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—. — = - e == JAlignment between‘ReaI world Experiences with DBS
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Can we maintain explainability and intervenability of
Al-enabled Deep Brain Stimulation?

29

Blurry Neuroscientist/Programmer

Requirements:
- Safety guarantees

- Proficiency and understanding

- Monitoring and feedback
- Adapting to patient needs
- Patient-centered design

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH
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Blurry Patient Requirements:
(from Klein et. al 2016)

- Control over device function

- Meaningful consent

- Authentic self

- Relationship effects

- Safety/Security/Privacy



Outline for Today’s Talk

Al-Driven CPS Towards Complex
Challenges and Neurosymbolic

Opportunities

Actuation

Neurosymbolic Al ]
for Complex Event Complex Hum_an L
Processinc Activity Modeling

Neurosymbolic Sensor

Fusion for Complex
Human Activities




Explosion of 0T Devices in Our Environment




Explosion of 0T Devices in Our Environment

Ve N

loT Traditionally

& Low-dimensional structured
sensor data (e.g.,
temperature, humidity, etc.)

&3 Tasks requiring simple inferences

& Mechanistic or first-
principles models, and
simple data-driven
models

M. Srivastava, CPSWeek 23



Explosion of loT Devices in Our Environment

oy, N
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loT Traditionally o Al-enabled loT
& Low-dimensional structured & High-dimensional unstructured
sensor data (e.g., sensor data (e.g., image,
temperature, humidity, etc.) acoustic, lidar, etc.)
& Tasks requiring simple inferences &3 Tasks requiring complex inferences
& Mechanistic or first- 3 & Deep neural networks,
principles models, and and other large data-driven
simple data-driven { models
models

M. Srivastava, CPSWeek 23 10



A Nexus Driven by Technology Trends

Acoustic Array

Camera

mmWave Radar

)

UAVs

Rich Sensors & Actuators
M. Srivastava, CPSWeek ‘23

. ® Lion

Image labels

Sensor data :—. DNN Model Building —:t Activity Inference :
|
'
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o | i Riss
e » E E E VISUAL APPLETS
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Deep Learning Accelerators



Complex Inferences from Simple Sensors

-; [ Tracking

UUV, Underwater Robot:

Human activity & behavior recognition . . . .
Accurate estimation of 3D motion trajectory

M. Srivastava, CPSWeek 23 12



But many things are still missing...

M. Srivastava, CPSWeek 23



1

Domain Shift

M. Srivastava, CPSWeek ‘23

Sensing
Challenges in
Al-enabled
CPS

2

Embedded
Implementation

3

Combining Data
and Knowledge
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Combining Data

Domain Shift and Knowledge

2

Embedded
Implementation

M. Srivastava, CPSWeek ‘23



Many Forms of Domain Shifts in Al-enabled CPS

Person-to-person differences Different environments

Sensor Value

Reaches the Action Applied

by Actuator

rime \e -d lo
@ @ @ @ @ @ ] e, A =i R
[\~ o A 3
OOOOOO ° o o

Misaligned time Latency variations
M. Srivastava, CPSWeek 23

Compute Element

Command Sent by
the Compute Element
to the Actuator

Next Sensor

nsor
Measurement Measurement
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Combining Data

Domain Shift and Knowledge

2

Embedded
Implementation

M. Srivastava, CPSWeek ‘23



North (m)

The Challenge of Embedded Implementation

* Neural network models promise better performance for many loT applications, but due
to the loT platform resource-constraints and diversity the promise remains unrealized

! | |
& wooN

—-= EKF - IMU

Trajectory Error (m) (log scale)

~— Ground Truth . =
777 EKF-GPS+IMU o A R -

.
S

-
=

-
3

o
<

2 —-- EKF-GPS + IMU
—-- EKF-IMU

-

__________

-

ATE = 40,%4 m

ATE =0.91m

Example: Inertial Odometry on MCU-class Ultra Resource Constrained loT

Naive double integration

The curse of drift in inertial odomtery

Hardware SRAM (kB) | Flash (kB)
Qualcomm CSR8670 (eSense platform) 128 16000
STM32F446RE 128 512
STM32F407VET6 192 512
STM32L476RG 128 1024
STM32F746ZG 320 1024

Ultra Resource Constrained loT platforms

Example: RoNIN TCN

SRAM=1.2kB, Flash=28.1kB
ATE=12398m, RTE=59.85m

Pedestrian Dead Reckoning

SRAM=10.8kB, Flash=49.6kB
ATE=34.81m, RTE=23.62m

RoNIN TCN

SRAM=2046.3kB, Flash=2195.5kB
ATE=4.73m, RTE=1.21m

IMWUT 22
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Combining Data

Domain Shift and Knowledge

2

Embedded
Implementation

M. Srivastava, CPSWeek ‘23



Deep Learning for Perception

Excellent at detecting and classifying simple events and activities

| Audio Event Detection Activity Classification

Visual Anomalx Detection l

Sit Walk DStairs Stand UStairs

Deep Learning is faster, W W K A1+ 5

and more accurate than s

humans! m M v ‘_l"“"”W‘"'v’ ¢ r,v-W
. T ‘
‘W .M z [~,U /AW\HMVQ’ /a*- s ﬂV\jﬁj“t

NEE W
“““““““ % )3 1 ') (lv" l‘..' Y "s“ U .‘f‘.\,‘) '];,"5

M. Srivastava, CPSWeek ‘23



Traditional Methods vs. DNN's

 Not scalable

e e | . 1 L \ o

Trad|t|0na| MethOdS Sensor data —Ib Feature Extraction '—) Model Training -:-} Activity Inference
[} ” 1 \

° Reql.“red Doma|n EXpertlse = iw - E ( Logistic Regression ) i Daly Routine

¢ Naive Bayes

Feature Extraction -1 | | C = ) i —

e« SVM/Decision Trees B [ easeney o | (pecisionTrees ) | __
ool Locomotion
' ' C KNN ) ! I_ |
I 1 \
} 1 |
I 1 \
} 1 !

Deep Neural Networks (DNN)

* Less Domain Expertise

DNN Model Building ™) Activity Inference

Daily Routine

» Applied on raw sensor data

Gestures

* High Performance

Locomotion

 Scalable

M. Srivastava, CPSWeek 23



Combining Data And Knowledge
Problem #1:Explainability and Tellability

w
o ?TE?[\II\EE"S' ) task, rules, norms, values,
g & wd context, physics,

® o F background & new info...

explanations,
provenance, assurances,
forensics, audits ...

All of the above challenging with data-driven models but much
easier with traditional first principles (symbolic) models.

M. Srivastava, CPSWeek 23



A Sea of DNN Explanation Methods

Symonian '13
Gradient

Landecker '13
Contrib Prop

Brazen '13
Taylor

Zeiler '14
Deconv

Springenberg
14
Guided BP

Zeiler'14
Occlusions

Haufe’'15
Pattern

Bach '15
LRP

Caruana '15
Fitted Additive

Zhou '16
GAP

Zhang '16
Excitation BP

Ribeiro’16
LIME

Shrikumar 17
DeepLIFT

Lundberg 17
Shapley

Fong '17
M Perturb

Zintgraf'17
Pred Diff

Montavon 17
Deep Taylor

Selvaraju 17
Grad-CAM

Kindermans '17
PatternNet

Sundarajan’17
Int Grad

Zhang'18
Explanatory
Graph

Ye'18
CNN Framelets

Yang'18
Recursive
Partitioning

Vaughan'18
Additive Index

Caicedo '19
ISeeU

Ancona’19
Polynomial
SHAP

Goyal'19
Counterfactual

Kuo'19
Interpretable
CNN

Liantao’20
AdaCare

Jianbo'20
LS Tree

23



How should we explain DNNs?

Explainable Al

3

y

Post-Hoc

Methods

DNN with
Sensor fusion

Test —
input

t‘.‘l\
o\,

Meta-
Data

Explainability
method

Activity

User

|——————> Explanation

Visualization
(showing patterns)
Text
(giving a sentence-
based explanation)

4

Interpretable DNN

Input
Data

Interpretable
ML Model Activity

Explanation

Feature Importance
Concepts

24



How should we explain DNNs?

o T N N -

[ Explainable Al ]
S 1 o e - ~ Jr
N\
\\
Post-Hoc Methods \ Interpretable DNN
1
1
1
1
DNN with 1
Senso o Activity : Interpretable
i S : Input
Data
@ : [ J
! Explanati
User 1 xplanation User
1
Explanation 1 Feature Importance
1 Concepts
o B 1
Explainability Vlsvuallzatlon 1
method (showing patterns) I
Text /
(giving a sentence- /
based explanation) V2
N- ------------------------------ - "

Can we use post-hoc explanations for Sensor Data?

NeurlPS 20

25



Post-Hoc Methods Considered

Perturbation
Based

Saliency Based

= LIME

— Creates a local
surrogate model

= Anchor

— If-else rules

Cons

= Gradients
= GradCAM
= SHAP

Cons

Explanation

by
Examples

Provides a few key
perceptually-relevant
items from the training
dataset

Cons




Post-hoc Explanations

SHAP Explanation-by-Example
I“ T ship ship ship
Text Input LIME SHAP Explanation-by-Example
Prediction probabilitics s ’gh v.‘.' t " 1 joggin'... with my mom! positive
Cooking with my stepfather postive [N 0.5 S 2 shopping with my bestst! positive
DD D B D B I ey e
positive? COOKing With my stepfather my with  cooking 2 glee club party. positive
Sensor Input Grad-CAM++ Saliency Maps SHAP Explanation-by-Example
5 I ! ! [ , | | |
normal heartbeat? E L » W om 2 E " ’

normal heartbeat normal heartbeat normal heartbeat

27



Results

Identify the Human Preferred Explanation Method

Explanation Method Image Study Text Study Audio Study ECG Study

LIME 47.7 + 4.5% 70.4 + 3.6%
Anchor 38.9+4.3% 25.8 +3.5% - -
SHAP 33.7+4.3% 59.9+3.8% 34.7 +4.8% 32.8+3.3%
Saliency Maps 39.4+4.3% - 46.1 £ 5.1% 40.4 £ 3.5%
GradCAM++ 50.8 + 4.5% - 48.1 £ 5.3% 42.0 £ 3.5%

Explanation by Examples 89.6 +2.6% 43.7 £ 3.9% 709 +4.7% 84.8+2.5%

Results indicate the rate by which users selected a particular method when it is an available
explanation, with 95% bootstrap confidence intervals

28



What did we learn from our study?

* Most of these methods are designed for images and text

» The explanations are not reliable
« Although explanation by examples is preferred, it is not suitable for
multivariate time-series data
* E.g., IMU data or videos

Predicted Activity: Using Restroom Predicted Activity: In Play

29



How should we explain DNNs?

Explainable Al

op = T T e

47 Ce 47 \\

’
/ \
[ Post-Hoc Methods ] ! [ Interpretable DNN ]

DNN with

Sensor fusion Activity Interpretable

ML Model Activity

Input
Data

Explanation
User
Feature Importance
Concepts

|——————> Explanation

Visualization
(showing patterns)
Text

(giving a sentence- \
based explanation) \\

N-------------------------------—’

Explainability
method

o T ———————— - —
Rl ———

N

' d

Concept-based explanations
30



Concept-based Interpretable DNNs

Force the DNN to Learn Interpretable
Representations at hidden layers

Concepts differ from traditional feature

engineering:

Properties

- Concepts are high-level and are human - Stable

understandable

e Relative Faithfulness

- Feature engineering constructs low-level - Easy to comprehend
features that can be computed by

functions

31




Concept Bottleneck Model (CBM)

Supervised Training :

+ The Dataset has the concepts labeled

* Intermediate layer bottlenecks on human-
specified concepts

« Model first predicts the concepts, then uses only
those predicted concepts to make a final
prediction (x -> ¢ ->y)

O

CNN

concepts ¢
~
() | sclerosis

bone spurs task y

'
P

O
()

CNN

Regressor arthritis
grade (KLG)

narrow joint space

concepts ¢

) | wing color

undertail color task y

Classifier
bird species

(O

beak length

Figure 1. We study concept bottleneck models that first predict
an intermediate set of human-specified concepts c, then use c to
predict the final output y. We illustrate the two applications we
consider: knee x-ray grading and bird identification.

Pang et.al. “Concept-Bottleneck Models”, ICML 2020
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Limitations of CBM

input x

concepts ¢
A
(| sclerosis
() | bone spurs task y

CNN . Regressor arthritis
: grade (KLG)

() | narrow joint space
—/

« CBMs are designed for Image classification tasks

« Concepts are simple with the same level of abstraction,
e.g., visual elements present in a single image.

« The concepts are assumed to be given a priori by a
domain-expert in the dataset

— This may not result in a necessary and sufficient set of
concepts

— Time consuming to annotate data with all the concepts
« For complex tasks like video activity classification, the  rigure 1. We study concept bottteneck models that first predict

an intermediate set of human-specified concepts ¢, then use c to

concepts can represent relationships between objects it the fina output 5. We illusirate the two applications we
Spa nn | n g mu |t| p I e fl’ ames consider: knee x-ray grading and bird identification.

« They don't capture the temporal relationships between
concepts

concepts ¢

) | wing color

() | undertail color task y

CNN . Classifier
: bird species

beak length

33



Combining Data And Knowledge
Problem #2:Complex Events

Unsanitary Operation Coordinated Attack Unattended Bag Traffic Rule Violation

« Connect the dots across atomic events
> At different locations, by different actors, across arbitrary intervals of time

» Require (i) Perception of atomic events from unstructured, high-dimensional, noisy, and
possibly multimodal data, and (ii) High-level reasoning over the atomic events



Complex Activity Example

Using Restroom (Hygienic) ‘ I

Using Restroom (Unhygienic)

35



Complex Events are challenging for Deep Learning models

-g- & -F-2- 44

Having Processing Preparing Checking Having Processing
Meeting Patient A Medication Inventory Meeting Patient B

18 S~
————— -
~
Swg 1 ! T
~~~~~ Sl
et oo

Violation of Sanitary | = --=--

Protocol! Disinfection
process

A nurse forgets to wash their hands between processing different patients.

* Needle in the haystack problem
» Pattern in atomic events taking place over long spans of time
> Involve atomic events from many different sensors

» The effective context size is limited in deep neural networks for purposes of complex
event sensing (high rate, long time spans), even with new transformer architectures



Modeling Long-term Dependencies Requires Memory

m Related Work Effective Context Size

RNN /LSTM and Bi-LSTM [Singh et al. CVPR’16] Around 200-400 time steps with large LSTM model
Variants CRNN [Cakir et al.] Afew seconds (4-10) on visual & audio analytics tasks

Convolution Based TCN [Lea et al. ECCV'16] {:C';;%e&;z‘;?f?gg’t‘?oﬂe'd of about 10s on video-based

TransformerXL [Dai et al. Arxiv’19], , .
Transformer/Attention BERT, GPT model, Einlf_'zz:ﬁ:n?ée_c)asgpg cr): 2”2?;3;;0 1K of steps.
Informer [Zhou et al. AAAI'21] : paragrap

Detecting complex events with sampling rates of typical
sensors require vastly larger context sizes

M. Srivastava, CPSWeek ‘23 37



Bridging Deep Learning and Symbolic Modelsin Al-Driven CPS

Deep Learning Models

» Accelerator-friendly computation

» Excel at extracting complex short
timescale events from unstructured,
high-dimensional, sensory data

» Data-hungry

» Lack transparency and interpretability

» Poor at incorporating domain
knowledge

M. Srivastava, CPSWeek 23

Symbolic Models

Work well at reasoning with structured
data in human understandable ways
Represent complex spatial & temporal
dependencies efficiently and effectively
Assured performance while
incorporating domain

knowledge

Not accelerator friendly

Can’t handle unstructured & noisy data

21



Bridging Deep Learning and Symbolic Models in Al-Driven CPS

Deep Learning Models

» Accelerator-friendly computation

» Excel at extracting complex short
timescale events from unstructured,
high-dimensional, sensory data

» Data-hungry and poor at capturing Css

» Lack transparency and interpretability

» Poor at incorporating domain
knowledge

Perception
(System 1)

Reasoning
(System 2)

M. Srivastava, CPSWeek 23

Symbolic Models

» Work well at reasoning with structured
data in human understandable ways

» Represent complex spatial & temporal
dependencies efficiently and effectively

» Assured performance while
incorporating domain
knowledge

» Not accelerator friendly

» Can’t handle unstructured & noisy data

A hybrid “Neurosymbolic” approach?

e Inspired by how human process CE
e Combine the power of the DL & Logic approaches.

21



Outline for Today’s Talk

Al-Driven CPS
Challenges and
Opportunities
./ Neurosymbolic Al
for Complex Event
> Processing

Neurosymbolic Sensor
Fusion for Complex

Human Activities

Towards Complex
Neurosymbolic

Actuation

Complex Human L Conclusion
Activity Modeling

| Yp———

\

40



Neuroplex: Learning to Detect
Complex Events in Sensor Networks
Through Knowledge Injection

SenSys ‘20

UCLA [pEvcom




Complex Event Detection

Having Processing Preparing Checking Having Processing
Meeting Patient A Medication Inventory Meeting Patient B

Violation of Sanitary & - --

Protocol! Disinfection
process

Simple Events compose Complex Events

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Luis Garcia



Neuroplex Inference: Deep Learning Perception + Logical Reasoning

Complex
Event

Events with
uncertainties

Device: i

DL Model Logic Model

Perception Reasoning

Device: n

Ev

DeepCEP SMARTCOMP ‘19
u SCHOOL OF cé‘;lPUTmG NeuroPlex SgnSys 20

UNIVERSITY OF UTAH



Neuroplex Inference: Deep Learning Perception + Logical Reasoning

Leverage the Power of Deep Learning + Logic for Complex Event Reasoning

- CE knowledge

Deep Learning

I'4
[ CE definition from User Complex
. |
Device: i inference Events with I
uncertainties I NFA model creatlop I Event
Primitive Event N I | Selector model creation I
Generation 1 I
D S —— - I I
—> Receiving Events
e p—— from Devices I
__________ N I |
{ | | |
[ Raw data from sensor I I Sequence Detection |
| I l |
I Deep Learning | | Sequence Selection 1
1 inference I N e e e e e ————— /
Device: n ! I
| Primitive Event ] Complex Event
| S [ with Uncertainty
D T —— -

Events coming from distributed edge devices

Uncertainty-Robust CEP
Deep Data Abstractors Engine

DeepCEP SMARTCOMP ‘19
u SCHOOL OF cé“léfPUTlNG NeuroPlex SgnSys 20

UNIVERSITY OF UTAH



Neuroplex: End-to-end Training

We can fine-tune both deep learning perception and complex event pattern detection

Gradients w.r.t.

. Reasoning
: Perception model

Primitive
Events

Predicted
CE

Learning
Model

regularization on

1

1

1

1

1

: Semantic
1

! intermediate Logical GroundTruth
: symbolic layer Machine CE

1

Train NRLogic model using
SCHOOL OF COMPUTING NeuroPlex SepSys, 29 synthetic data

UNIVERSITY OF UTAH




Neuroplex: Performance

CE over irregular time series of images

! Complex Event No.1:

: Pattern: E‘4" = Ey3" =2 E; "5

I Constraints: E, Attribute == E, Attribute == E; Attribute AND
! E,t-E.t>2s AND

leeeo o ButBtst0s 1
Timestamp : 0.23 1.44 1.95 2.52 3.57 4.39 6.84 7.28
Attribute : 1 L] 1 1 0 2 4 1

CE over nurse activities (IMU) CE on audio stream

Performs much better than DL-only baselines

Oracle NeurorLEx NEUROPLEX (W/0) CRNN  C3D

Perception Acc | 99.19% 98.87% 70.55% 10.09% NA
Validation MAE | 0.002 0.013 0.065 0.523 0.176
Converted Acc 99.85 99.39% 96.02% 69.98% 88.47%

CE over images

NeurorLEX ConvLSTM ConvLSTM-2 LSTM-Attention

Complex Nursing Complex Nursing Event types Length Num
Event Name Event logic
Vital sign = CE 1 | cooking = eating = dishwashing 3 1213
Physiological Llsedial
Complex Measurement 00C SICOsE MHEasUIe =z CE 2 | social _activity = cooking = eating 3 1198
Event blood collection
Indwelling Drip Vital sign = CE 3 | working = other 2 2898
Indwelling drip
Oral care = CE 4 | watching tv = vacuum_ cleaner 2 2904
Patient Cleaning Diaper exchange
Unsanitary Operation | Diaper exchange = CE 5 | absence = eating 2 2844
Protocol No.1 blood collection CE 6 | dishwashing = cooking 2 2888
Violation | Unsanitary Operation | Area cleaning =
No.2 blood glucose measure CE 7 | absence = social activity 2 2919
U itary Operati Di h: =
nsant a;ly;jpera ton mﬁzlie:; d?ilpge Event types: 9 . Avg length: 2.29. Dataset size: 16162
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Luis Garcia

Perception Acc 77.59% 1.72% NA NA
Validation MAE 0.0027 0.1430 0.1860 0.6245
R-Square 1.000 0.882 0.807 0.002
Converted Acc 100% 93.67% 89.28% 78.81%
CE over IMU
Scales with context length
Methods Sim 1 Sim2 Sim3 Sim4 Sim 5 Sim 6
fimewindew | 20 30 40 50 60
(minutes)
R-square
Neuroplex 1.00 0.99 1.00 0.90 0.88 0.85
ConvLSTM 0.88 0.90 0.66 0.32 0.33 0.35
ConvLSTM-2 0.81 0.76 0.80 0.76 0.75 0.70
AttentionNet 0.02 0 0 0 -0.01 -0.02
Converted Accuracy
Neuroplex 100% 98.90% 100% 83.59% 79.00% 79.63%
ConvLSTM 93.67% 83.29% 67.75% 40.79% 39.03% 37.47%
ConvLSTM-2 | 89.28% 80.08% 75.70% 60.30% 45.83% 39.48%
AttentionNet | 78.81% 2.60% 0.62% 0.50% 0.11% 0.02%

46



Neuroplex: End-to-end Training

I
I Gradients w.r.t.
1 Perception model

redicted

Raw data CE

Train NRLogic model using

SCHOOL OF COMPUTING synthetic data

NeuroPlex Sep:



Follow-up:
DeepSQA: Generalized Sensor Question Answering (SQA) Framework

Sensory Context S,

+ - ,.-—:‘V"_
- o~/ Sensory processing
T P et S i U Module 0
A RAl AN
[, Fused Sensory
Sensory Context Sy Representation
B !
A TN T i .
e Sensory processing
R ———— Module N SQA . Drink wate’r’from
AN A R WA Module the cup
? Answer A
What did the user do
after having dinner and Question Processing Question
before cleaning the Module Representation
dishes?
Question Q

48

Generalized SQA framework.

Enable Flexible Querying (via Questions) for Complex Sensor Data

u SCHOOL OF COMAYHEEpSQA: Understanding Sensor Data via QuestioniA@swering.” IoTDI ‘21

UNIVERSITY OF UT.



Follow-up: Explainable Complex Human Activity
Recognition (XCHAR)

« X-CHAR: an Interpretable DNN architecture for Complex activity recognition

« X-CHAR has a Temporal Concept Bottleneck layer
— Use Connectionist Temporal Classification (CTC) loss to learn the concepts

« Use a classification model after the temporal bottleneck to get the complex activity

Sensor data —

T
g Lo Jle Jlea] S & Complex
Concepts €3 Activity
. ‘. ® O
e , Temporal
. ® G ® Sensor Fusion Bottleneck
\_ J
X-CHAR

IMWUT ‘23
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A Rich NeurosymbolicLandscape

L__neural I symbolic

>-C

—)>

Symbolic-after-Neural
e.g., structured reasoning over

natural sensor inputs

43



A Rich NeurosymbolicLandscape

neural I

symbolic

@»

—)>

Symbolic-after-Neural
e.g., structured reasoning over
natural sensor inputs

—)>

L_symbolic_]

—

neural I

$—>

Neural-after-Symbolic

e.g., deep learning over

pre-processed inputs



A Rich NeurosymbolicLandscape

symbolic

L__neural I symbolic L_symbolic_] neural I L__neural I

Symbolic-after-Neural Neural-after-Symbolic Aggregate / Fuse
e.g., structured reasoning over e.g., deep learning over e.g., DNN models errors in symbolic,
natural sensor inputs pre-processed inputs symbolic polices DNN

43



A Rich NeurosymbolicLandscape

L_symbolic

L__neural I symbolic L_symbolic_] neural I L__neural I
$ mpy [= ) mp [=

Symbolic-after-Neural

Neural-after-Symbolic
e.g., structured reasoning over e.g., deep learning over
natural sensor inputs

pre-processed inputs
L_symbolic_J
Learning - —
Algorithm

Aggregate / Fuse
e.g., DNN models errors in symbolic,
symbolic polices DNN

— $ ——
Symbolically-constrained Neural
e.g., DNN trained to follow

constraints, norms and rules
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A Rich NeurosymbolicLandscape

symbolic

L__neural I symbolic L_symbolic_] neural I L__neural I

Symbolic-after-Neural Neural-after-Symbolic Aggregate / Fuse
e.g., structured reasoning over e.g., deep learning over e.g., DNN models errors in symbolic,
natural sensor inputs pre-processed inputs symbolic polices DNN

L__neural I

L_symbolic_J @
Learning —
»Algorithm <= "

L_symbolic_J
— $ — ) [ —)
Symbolically-constrained Neural Neurally-accelerated Symbolic
e.g., DNN trained to follow e.g., neural network models

constraints, norms and rules errors in symbolic model 43



A Rich NeurosymbolicLandscape

symbolic

L__neural I symbolic L_symbolic_] neural I L__neural I

Symbolic-after-Neural Neural-after-Symbolic Aggregate / Fuse
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A Rich NeurosymbolicLandscape

Recommended Reading:

Neurosymbolic Programming by Chaudhuri et al
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Back to the Neural Frontier:
Recording and stimulation in the wild

Luis Garcia

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH



U loT-in-the-loop Neuroscience

THE UNIVERSITY OF UTAH

College of Social and
Behavioral Science
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g

Participant

Neuropace Wan

Wand Accessory

Neuropace
Programmer

Neuropace
Programmer

Single-Board
Computer and 360°
Audio

*NTP Time

* 360° Audio

* Sync to
RNS, LED,
audio

Battery Packs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

RNS Neurostimulator

Psychophysiology

Researcher

* EDA,
i ECG, resp
* IMU

NTP: Network

-
Time Protocol S

ED

vement Tracking

Luis Garcia

Mobile Eye-Tracker

1st Person Camera

NTPSense

T ke

a1t
s

 Eye-trackin
data

*NTP Time

* Audio

* IMU

GPS Phone
|
\
|

Sensors
| « NTP Time

o - GPS

| - IMU
| « Ambient Ligh

Cla

uuuuu

pperboard

360°
Camera

Recording Monitor
LFP Recordings

Synchronization Log

Xsens Monitor




Initial Goal: Decode How Humans Encode Memories

Observer-defined events
= “Episodic Memory” model Segments and Tumns
o Memory traces are linked by
representation of context
o Drifts slowly over time -

o Reflected in hippocampal activity me—iﬂm@ﬁﬂﬁ
w | GONtEXES,

= Construct navigational tasks that will ‘
have major experiential “context

Shifts" Al ——/\/\//\//\/v
ippocampal
HFA

o Inside versus outside

o Passing through doorways Hippocampal Thw

o Encountering prominent landmarks

Temporal I I I
Context Drift

R e~ e

—Segment 3

T
Segment 2

Event Structure

SCHOOL OF COMPUTING . .
UNIVERSITY OF UTAH Luis Garcia



Route Characteristics

CHARLES E. YOUNG DRIVE SOUTH

m  UCLA Center for Health Sciences

. . T  Brain . David Geffen
= Spatial boundaries: y =k s SR
o Doorways (17) |
= Closed Doorways (14) [ —

= Open Doorways (3)
= |ndoors/Outdoors (11)

o Turns (2s) ]
o Transitions between buildings (10) ¢

= Duration =17 - 25 min

= Distance = ~0.75 miles

= 8 Walks (4 per day) .
o 1Encoding e cf ¢ =
o 7 Navigation E oo

g
SCHOOL OF COMPUTING Luis Garcia

UNIVERSITY OF UTAH

NORTH

TIVERTON DRIVE
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Scenes

50 “segments” identified
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Landmark Recognition Tasks

Map Drawing Task

Patient will draw route on
map after the last walk

Landmark Placement Task

Luis Garcia

Scene Placement Task

the beginning of the scene

65



Hlppocampal theta act|V|ty during real-world spatlal nawgatlon
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But will more robust neurosymbolic perception enable
safe actuation with blurry requirements?

Neural
Other practical challenges: w Sensor Data
- Limited Data

\
- Rgsource constralnts Q g D Cognitive state cém‘:ou;:rp
- Privacy + Security concerns [ C Pl  Estimator DBS
D E )
Y,

- Patient-centered design
\

SCHOOL OF COMPUTING . .
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Some preliminary exploration:
Robustifying Neurosymbolic Perception Models in Simulation

Can we leverage cross-domain simulators or datasets for more robust perception?

@ Environments What is a door? Doors can look radically different between
environments, but their semantics remain consistent

Semantic anchor (door)
= movable & barrier & (move - newArea)

\

Large sim-to-real gap >
Small semantic gap

iTHOR ManipulaTHOR RoboTHOR

A high-level interaction framework X . X A framework that facilitates

s . A mid-level interaction framework 5 . ,
that facilitates research in o X X : Sim2Real research with a collection
A that facilitates visual manipulation ) )
embodied common sense X X X of simlated scene counterparts in
of objects using a robotic arm.

reasoning. the physical world.

Complex: millions of pixels

Simple: hundreds of pixels

Emergent Embodied Al Simulators From DARPA'’s Transfer from Imprecise and Abstract Models

to Autonomous Technologies (TIAMAT)

SCHOOL OF COMPUTING . .
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Some preliminary exploration:
Robustifying Neurosymbolic Perception Models in Simulation

Introducing consistently measurable symbols in state enhances Sim2Real Transfer

Augmented State:
[se, AT,, ATy

-
-

((13)) ]
({403))]

Execution Litency (ATy) =
data processing + inferencing latency

Agent
State: s, Action: a,
Sampling Interval (At,)
Sensors Actuators “ ! » R / [ g —u
Environment — —_—" 1 | . I

B Domain Randomization
s Time in State

istance (m)

Sandha, Sandeep Singh, et al. "Sim2real transfer for deep reinforcement learning with stochastic state transition delays." CoRL 21
SCHOOL OF COMPUTING q q
UNIVERSITY OF UTAH Luis Garcia 70



Some preliminary exploration:
Managing Requirement Specifications

Even if model is explainable, interfaces still require cross-domain expertise for safety,
security, and privacy

User study question: Would you be willing to put a device in your bedroom if
(a) it was an off-the-shelf camera?
(b) You had complete control over the camera’s software/hardware?

Il Very Uncomfortable

Comfortable

- I Very Comfortable
10% 32%

80% 60% 40% 20% 0% 20% 40% 60%
Percentage of Responses

|
1
1 Neutral
|
1

Camera with Complete |
Control

Singh, Akash Deep, Brian Wang, Luis Garcia, Xiang Chen, and Mani Srivastava. "Understanding factors behind loT privacy--A user's perspective on RF
sensors." arXiv preprint arXiv:2401.08037 (2024).
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Outline for Today’s Talk

Al-Driven CPS Towards Complex
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Concluding Thoughts

= Neurosymbolic models can at least bridge the gap for limitations in DNN-
only or symbolic-only sensor fusion models for perception

= We need better mechanisms to bootstrap semantic grounding at different

symbolic layers across sensing modalities

o Fusion at symbolic layers: Label space, semantic loss, concept bottlenecks, etc.
o Better semantic oracles: existing knowledge graphs and LLMs have shown to be useful

= Better mechanisms for interfacing both domain experts and end-users with
neurosymbolic models (maybe LLMs?)

= We need to take a holistic approach to closing-the-loop when modeling
neurosymbolic safety-critical applications Luis Garcia

la.qarcia@utah.edu
https://lagarcia.us
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Thank You!

Luis Garcia

la.garcia@utah.edu
https://lagarcia.us
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