A Trip to the Neural Frontier: Neurosymbolic Sensor Fusion for Trustworthy CPS

Luis Garcia Assistant Professor Kahlert School of Computing University of Utah https://lagarcia.us

A Trip to the Neural Frontier: Neurosymbolic

EXPLAINABLE? LESS BLACK BOXY?

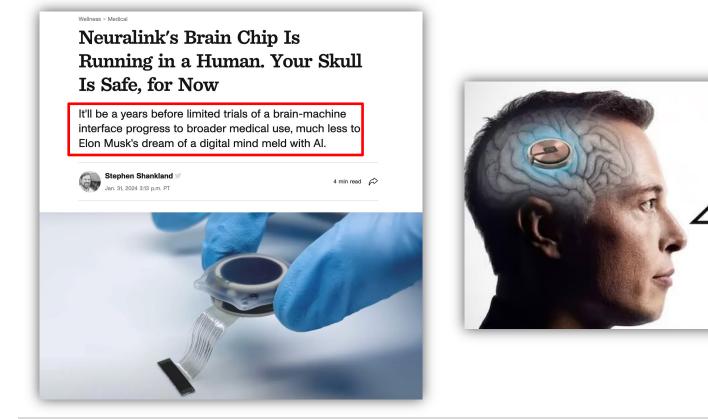
0⁰

0⁰

Luis Garcia

Assistant Professor Kahlert School of Computing University of Utah https://lagarcia.us

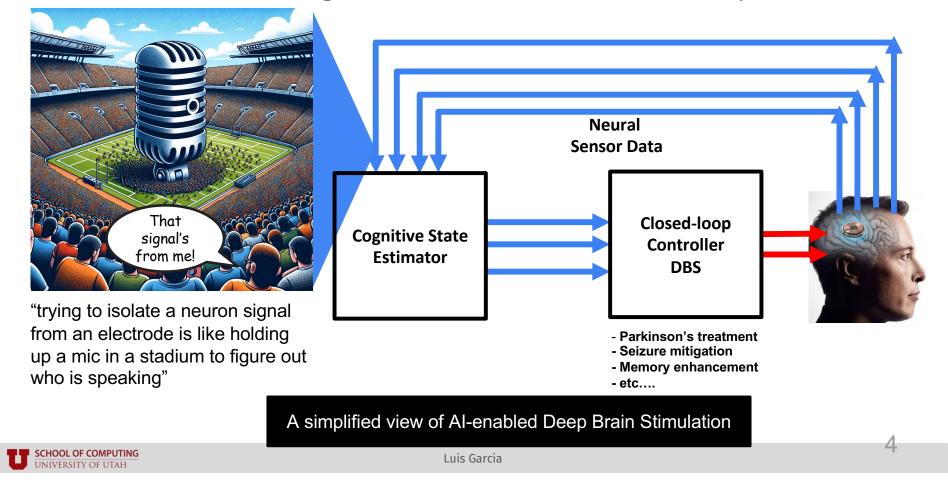
Welcome to the Neural Frontier...

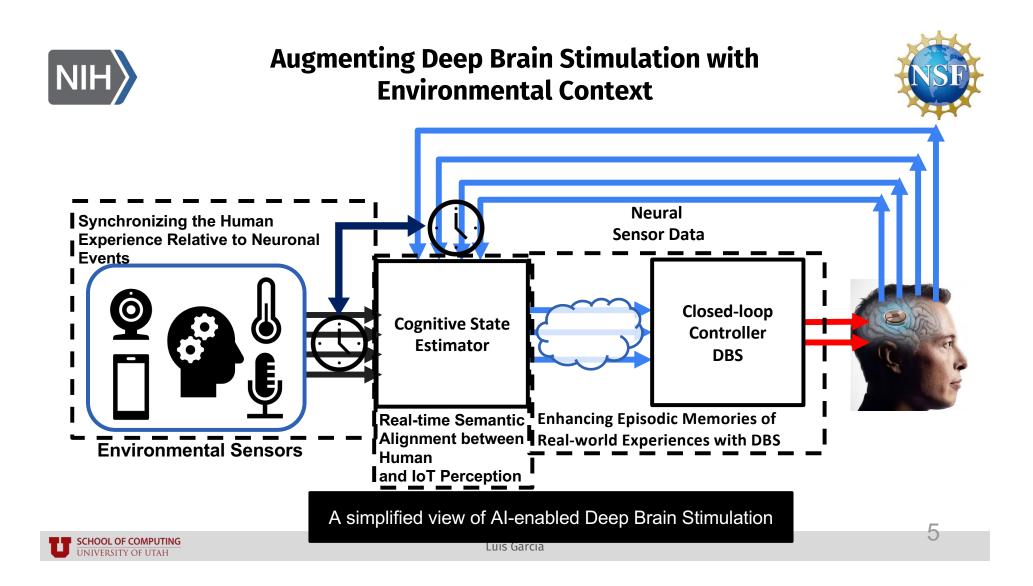


Luis Garcia

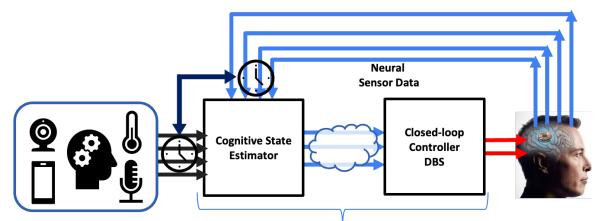
NEURALINK

Is Elon's "digital mind meld with AI" so far away?





Can we maintain *explainability* and *intervenability* of AI-enabled Deep Brain Stimulation?



Blurry Neuroscientist/Programmer Requirements:

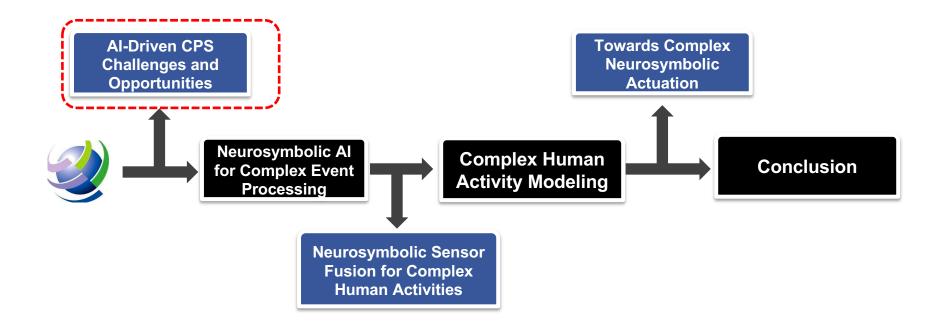
- Safety guarantees
- Proficiency and understanding
- Monitoring and feedback
- Adapting to patient needs
- Patient-centered design

Blurry Patient Requirements: (from Klein et. al 2016)

- Control over device function
- Meaningful consent
- Authentic self
- Relationship effects
- Safety/Security/Privacy

Luis Garcia

Outline for Today's Talk



Explosion of IoT Devices in Our Environment

Explosion of IoT Devices in Our Environment

IoT Traditionally Low-dimensional structured sensor data (e.g., temperature, humidity, etc.) Tasks requiring simple inferences Mechanistic or first-principles models, and simple data-driven models

Explosion of IoT Devices in Our Environment

A Nexus Driven by Technology Trends

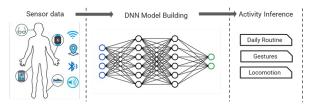
Acoustic Array

Camera

mmWave Radar

LIDAR

Image Liabels



Rich Sensors & Actuators M. Srivastava, CPSWeek '23

Deep Learning

Accelerators

 $\sqrt{}$

VISUAL APPLETS

11

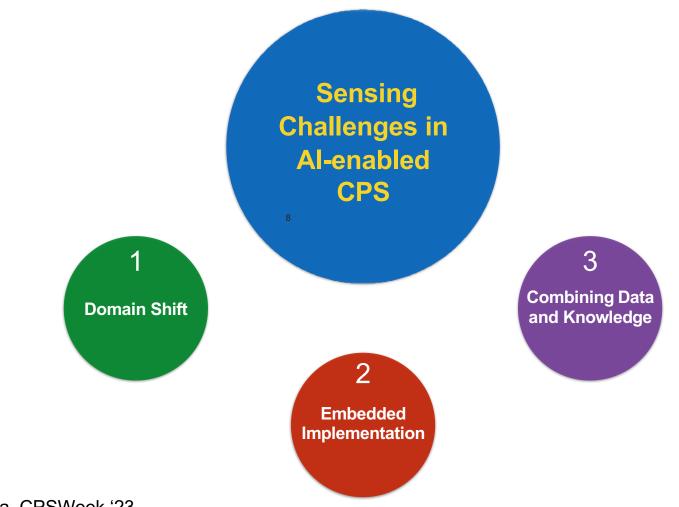
Complex Inferences from Simple Sensors

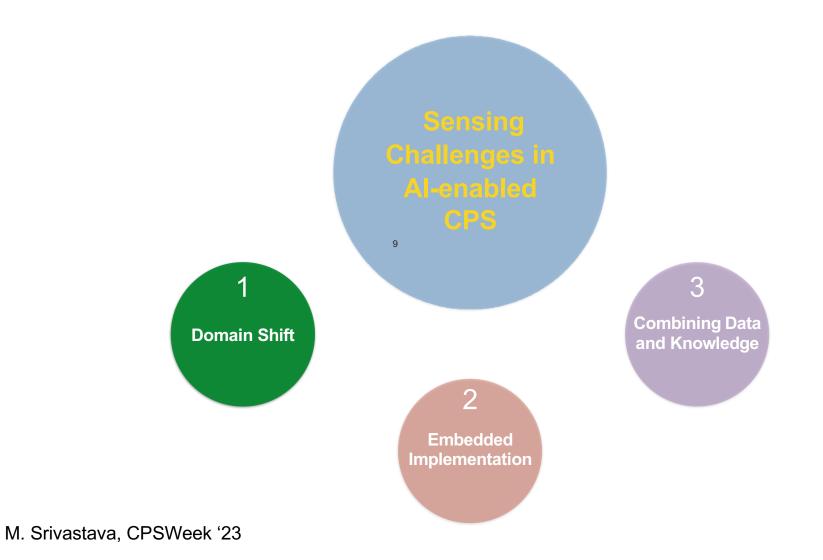
Human activity & behavior recognition

Interacting with wearable devices via on-body tapping

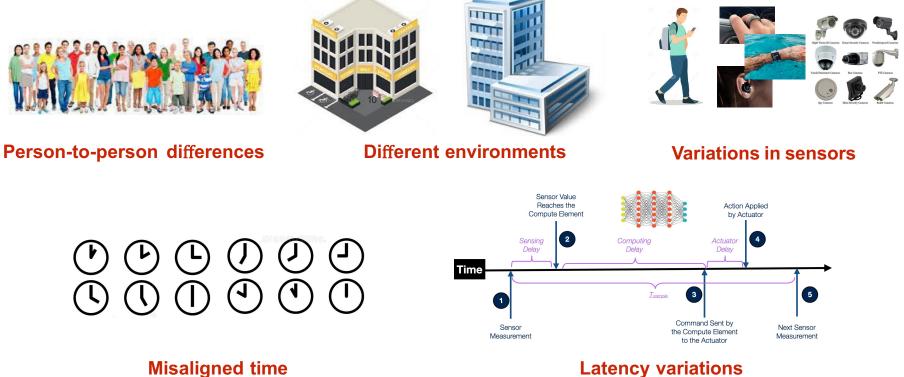
Accurate estimation of 3D motion trajectory

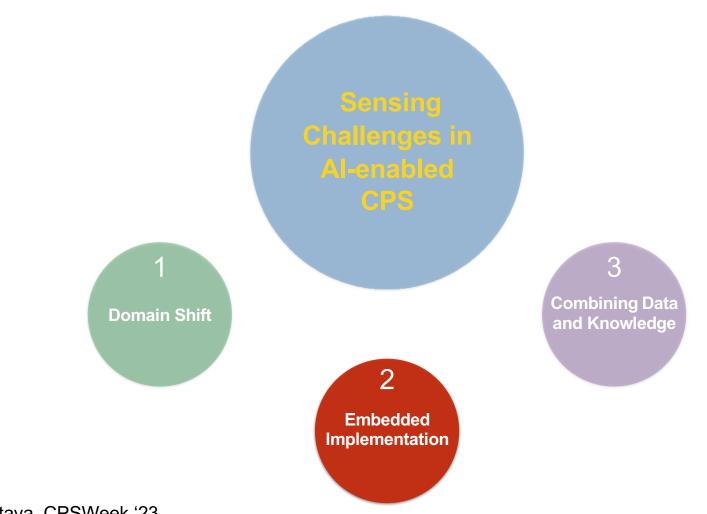
But many things are still missing...





Many Forms of Domain Shifts in Al-enabled CPS

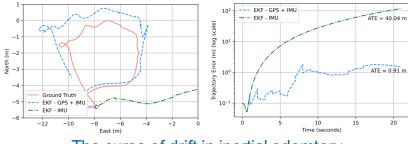




The Challenge of Embedded Implementation

• Neural network models promise better performance for many IoT applications, but due to the IoT platform resource-constraints and diversity the promise remains unrealized

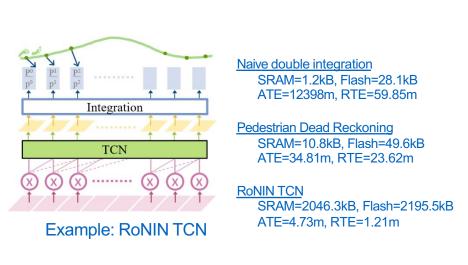
Example: Inertial Odometry on MCU-class Ultra Resource Constrained IoT



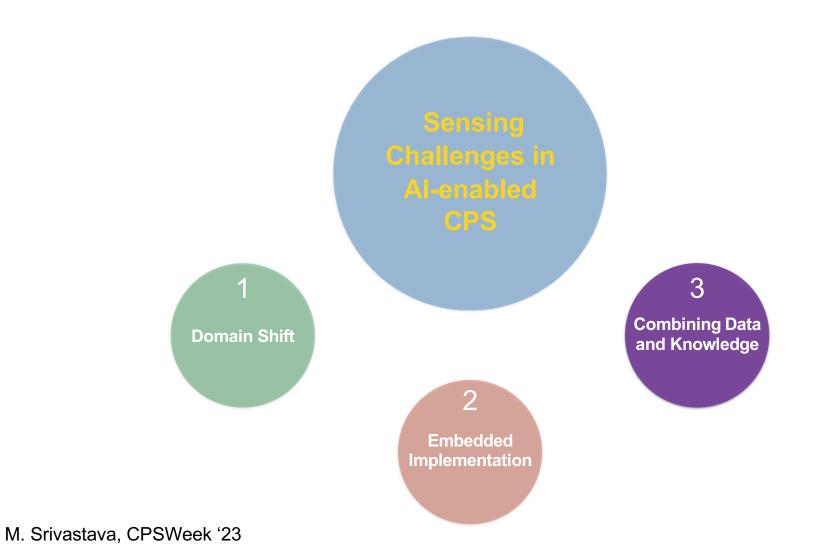
The curse of drift in inertial odomtery

Hardware	SRAM (kB)	Flash (kB)
Qualcomm CSR8670 (eSense platform)	128	16000
STM32F446RE	128	512
STM32F407VET6	192	512
STM32L476RG	128	1024
STM32F746ZG	320	1024

Ultra Resource Constrained IoT platforms

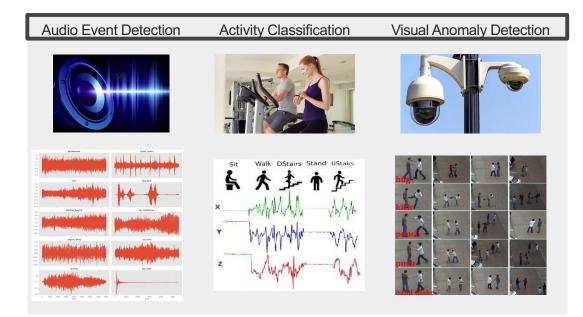


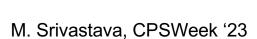
IMWUT '22 ¹²

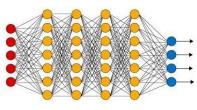


Deep Learning for Perception

Excellent at detecting and classifying simple events and activities







Deep Learning is faster, and more accurate than humans!

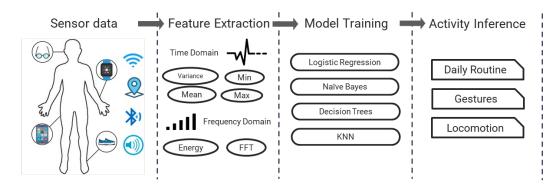
Traditional Methods vs. DNN's

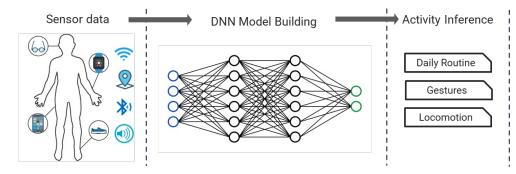
Traditional Methods

- Required Domain Expertise
- Feature Extraction
- SVM/Decision Trees
- Not scalable

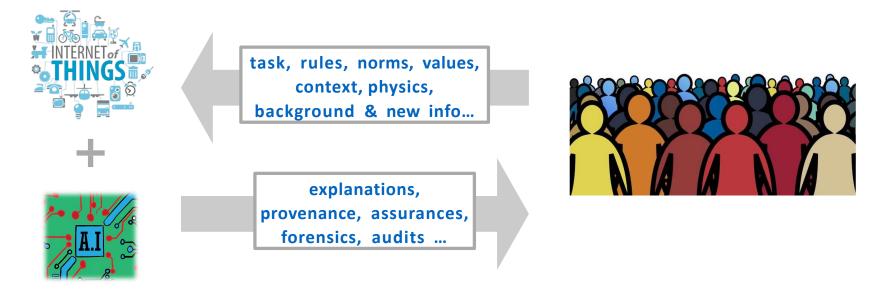
Deep Neural Networks (DNN)

- Less Domain Expertise
- Applied on raw sensor data
- High Performance
- Scalable





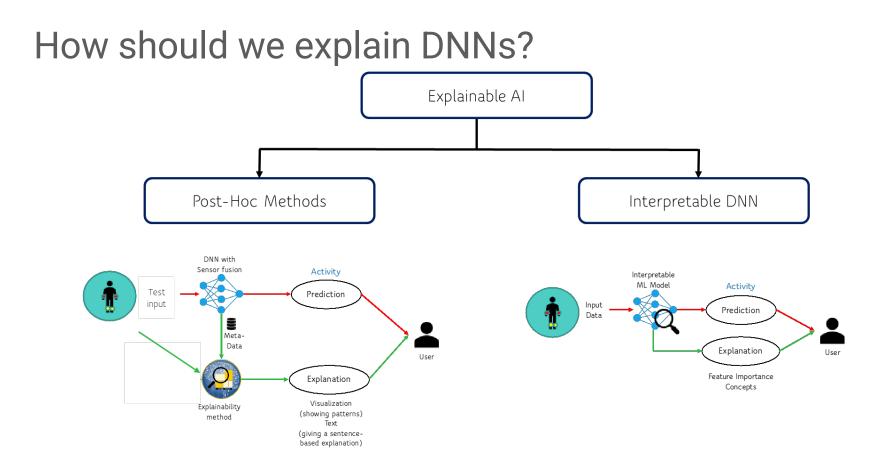
Combining Data And Knowledge Problem #1: *Explainability* and *Tellability*

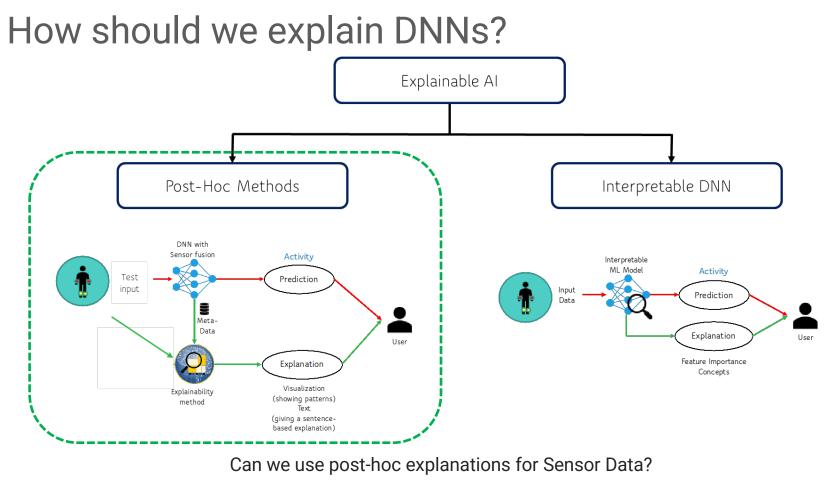


All of the above challenging with data-driven models but much easier with traditional first principles (symbolic) models.

A Sea of DNN Explanation Methods

Symonian '13 Gradient	Zeiler'14 Occlusions	Zhang '16 Excitation BP	Zintgraf'17 Pred Diff	Zhang'18 Explanatory Graph	Ancona'19 Polynomial SHAP
Landecker '13 Contrib Prop	Haufe'15 Pattern	Ribeiro'16 LIME	Montavon '17 Deep Taylor	Ye'18 CNN Framelets	Goyal'19 Counterfactual
Brazen '13 Taylor	Bach '15 LRP	Shrikumar '17 DeepLIFT	Selvaraju '17 Grad-CAM	Yang'18 Recursive Partitioning	Kuo'19 Interpretable CNN
Zeiler '14 Deconv	Caruana '15 Fitted Additive	Lundberg '17 Shapley	Kindermans '17 PatternNet	Vaughan'18 Additive Index	Liantao'20 AdaCare
Springenberg '14 Guided BP	Zhou '16 GAP	Fong '17 M Perturb	Sundarajan'17 Int Grad	Caicedo '19 ISeeU	Jianbo'20 LS Tree





NeurIPS '20

25

Post-Hoc Methods Considered

Perturbation Based

- LIME
 - Creates a local surrogate model
- Anchor
 - If-else rules

Cons

- Lots of hyperparameters
- Inconsistent over multiple runs

Saliency Based

- Gradients
- GradCAM
- SHAP

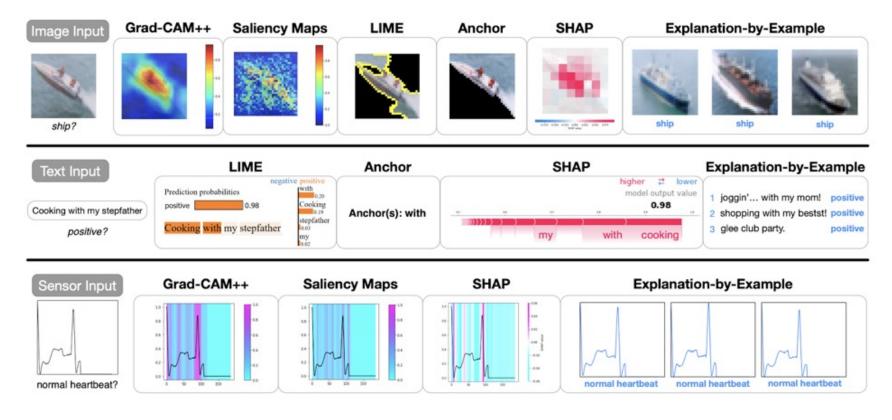
Cons

- Mainly designed for images
- Same saliency regions

Provides a few key perceptually-relevant items from the training dataset

Cons Requires Training data Privacy concerns

Post-hoc Explanations



Results

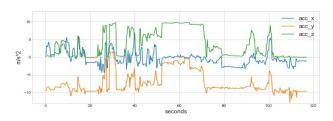
Identify the Human Preferred Explanation Method

Explanation Method	Image Study	Text Study	Audio Study	ECG Study
LIME	47.7 ± 4.5%	70.4 ± 3.6%	-	-
Anchor	38.9 ± 4.3%	25.8 ± 3.5%	-	-
SHAP	33.7 ± 4.3%	59.9 ± 3.8%	34.7 ± 4.8%	32.8 ± 3.3%
Saliency Maps	39.4 ± 4.3%	-	46.1 ± 5.1%	40.4 ± 3.5%
GradCAM++	50.8 ± 4.5%	-	48.1 ± 5.3%	42.0 ± 3.5%
Explanation by Examples	89.6 ± 2.6%	43.7 ± 3.9%	70.9 ± 4.7%	84.8 ± 2.5%

Results indicate the rate by which users selected a particular method when it is an available explanation, with 95% bootstrap confidence intervals

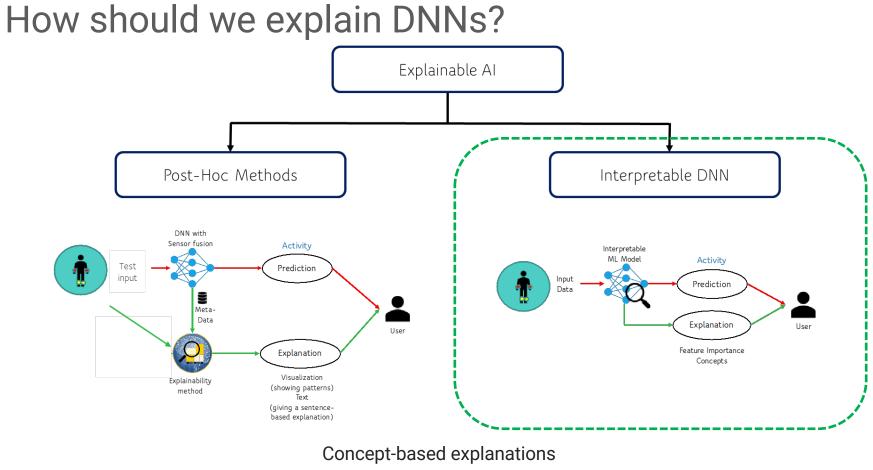
What did we learn from our study?

- Most of these methods are designed for images and text
- The explanations are not reliable
- Although explanation by examples is preferred, it is not suitable for multivariate time-series data
 - E.g., IMU data or videos



Predicted Activity: Using Restroom

Predicted Activity: In Play



Concept-based Interpretable DNNs

Force the DNN to Learn Interpretable Representations at hidden layers

Concepts differ from traditional feature engineering:

- Concepts are high-level and are human understandable
- Feature engineering constructs low-level features that can be computed by functions

Properties

- Stable
- Relative Faithfulness
- Easy to comprehend

Concept Bottleneck Model (CBM)

Supervised Training :

- The Dataset has the concepts labeled
- Intermediate layer bottlenecks on humanspecified concepts
- Model first predicts the concepts, then uses only those predicted concepts to make a final prediction (x -> c -> y)

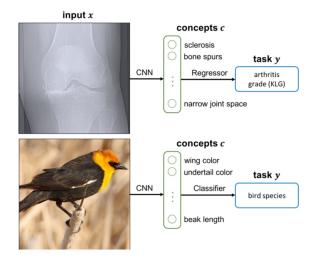


Figure 1. We study concept bottleneck models that first predict an intermediate set of human-specified concepts c, then use c to predict the final output y. We illustrate the two applications we consider: knee x-ray grading and bird identification.

Pang et.al. "Concept-Bottleneck Models", ICML 2020

Limitations of CBM

- CBMs are designed for Image classification tasks
- Concepts are simple with the same level of abstraction, e.g., visual elements present in a single image.
- The concepts are assumed to be given a priori by a domain-expert in the dataset
 - This may not result in a necessary and sufficient set of concepts
 - Time consuming to annotate data with all the concepts
- For complex tasks like video activity classification, the concepts can represent relationships between objects spanning multiple frames
- They don't capture the temporal relationships between concepts

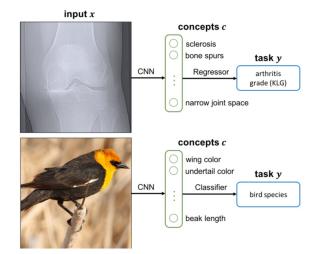


Figure 1. We study concept bottleneck models that first predict an intermediate set of human-specified concepts c, then use c to predict the final output y. We illustrate the two applications we consider: knee x-ray grading and bird identification.

Combining Data And Knowledge Problem #2:Complex Events

Unsanitary Operation

Coordinated Attack

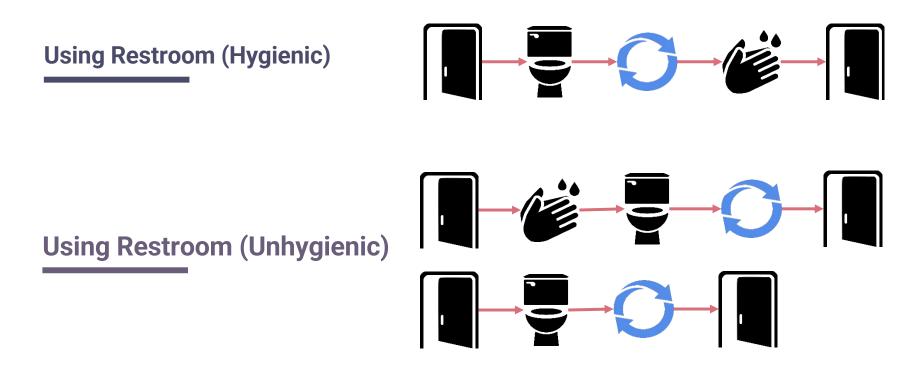
Unattended Bag

Traffic Rule Violation

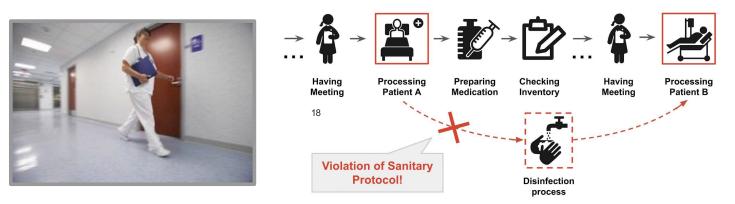
Connect the dots across atomic events

- · At different locations, by different actors, across arbitrary intervals of time
- Require (i) **Perception of atomic events** from unstructured, high-dimensional, noisy, and possibly multimodal data, and (ii) **High-level reasoning** over the atomic events

Complex Activity Example



Complex Events are challenging for Deep Learning models



A nurse forgets to wash their hands between processing different patients.

- Needle in the haystack problem
 - ▶ Pattern in atomic events taking place over long spans of time
 - Involve atomic events from many different sensors
- The *effective context size* is limited in deep neural networks for purposes of complex event sensing (high rate, long time spans), even with new transformer architectures

Modeling Long-term Dependencies Requires Memory

Models	Related Work	Effective Context Size		
RNN / LSTM and Variants	Bi-LSTM [Singh et al. CVPR'16] CRNN [Cakir et al.]	Around 200-400 time steps with large LSTM model A few seconds (4-10) on visual & audio analytics tasks		
Convolution Based	TCN [Lea et al. ECCV'16]	A larger receptive field of about 10s on video-based action classification		
Transformer/Attention	TransformerXL [Dai et al. Arxiv'19], BERT, GPT model, Informer [Zhou et al. AAAI'21]	Time-series forecasting on hundreds to 1K of steps. NLP: sentence \rightarrow paragraph \rightarrow article		

Detecting complex events with sampling rates of typical sensors require vastly larger context sizes

M. Srivastava, CPSWeek '23

Bridging Deep Learning and Symbolic Models in Al-Driven CPS

Deep Learning Models

- Accelerator-friendly computation
- Excel at extracting complex short timescale events from unstructured, high-dimensional, sensory data
- Data-hungry
- Lack transparency and interpretability
- Poor at incorporating domain knowledge

Symbolic Models

- Work well at reasoning with structured data in human understandable ways
- Represent complex spatial & temporal dependencies efficiently and effectively
- Assured performance while incorporating domain knowledge
- Not accelerator friendly
- Can't handle unstructured & noisy data

M. Srivastava, CPSWeek '23

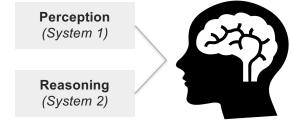
Bridging Deep Learning and Symbolic Models in Al-Driven CPS

Deep Learning Models

- Accelerator-friendly computation
- Excel at extracting complex short timescale events from unstructured, high-dimensional, sensory data
- Data-hungry and poor at capturing Css
- Lack transparency and interpretability
- Poor at incorporating domain knowledge

Symbolic Models

- Work well at reasoning with structured data in human understandable ways Represent complex spatial & temporal dependencies efficiently and effectively
- Assured performance while incorporating domain knowledge
- Not accelerator friendly
- Can't handle unstructured & noisy data

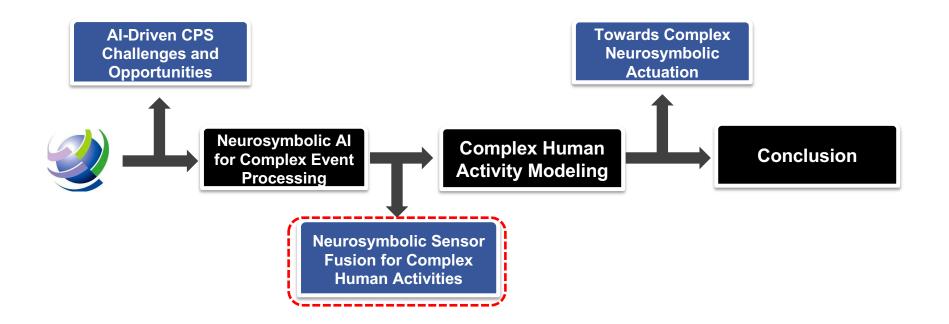


M. Srivastava, CPSWeek '23

A hybrid "Neurosymbolic" approach?

- Inspired by how human process CE
- Combine the power of the DL & Logic approaches.

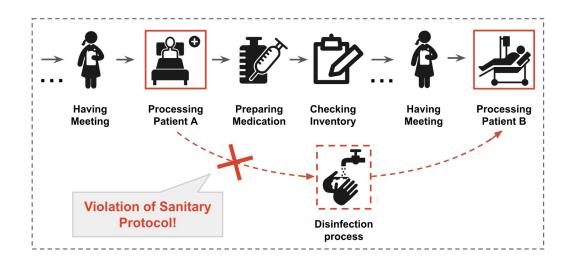
Outline for Today's Talk



Neuroplex: Learning to Detect Complex Events in Sensor Networks Through Knowledge Injection

<u>SenSys '20</u>

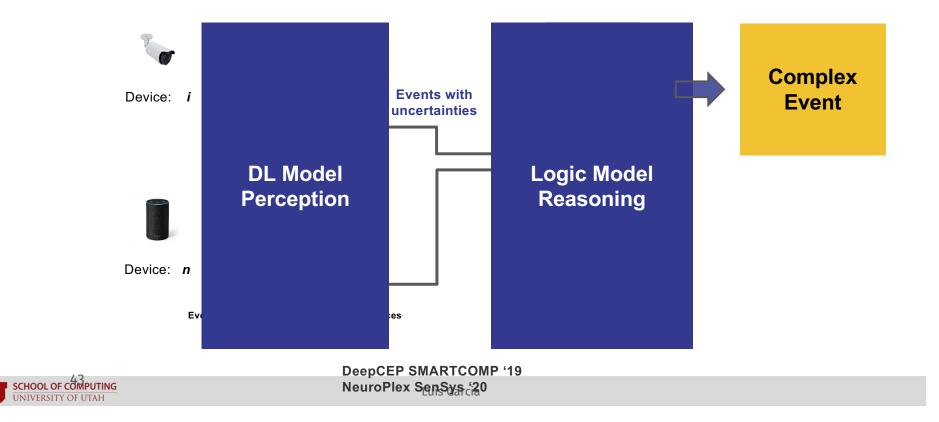
Complex Event Detection



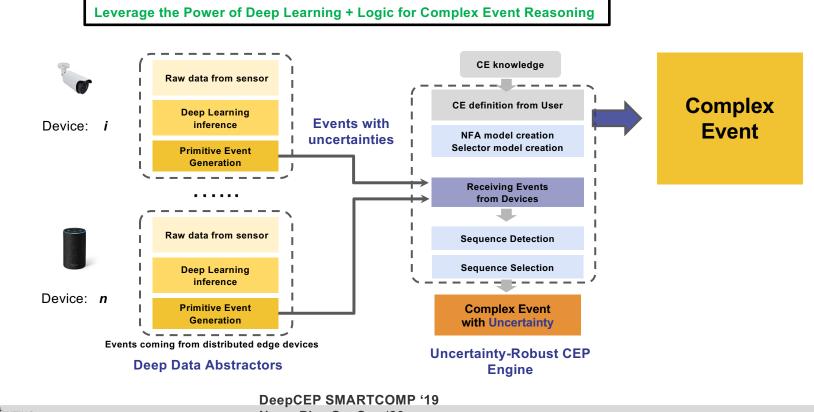
Simple Events compose Complex Events

Luis Garcia

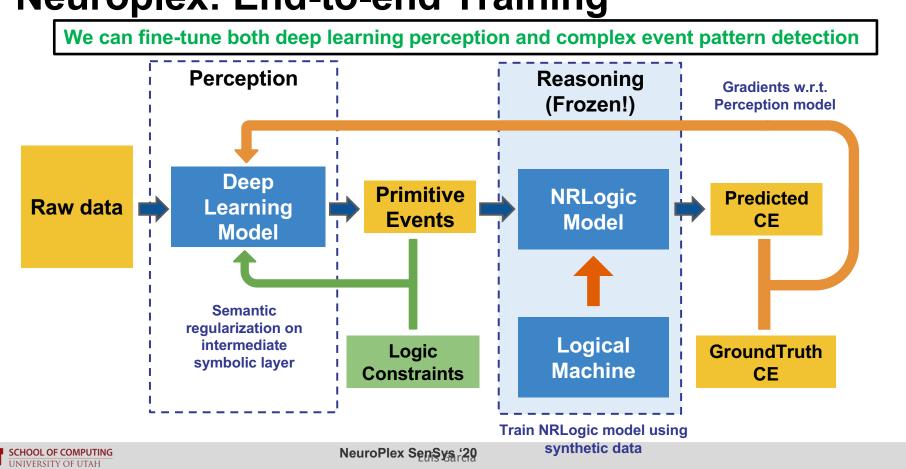
Neuroplex Inference: Deep Learning Perception + Logical Reasoning



Neuroplex Inference: Deep Learning Perception + Logical Reasoning



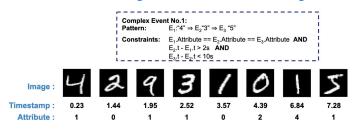
NeuroPlex Sen Sys 20



Neuroplex: End-to-end Training

Neuroplex: Performance

CE over irregular time series of images



CE over nurse activities (IMU)

CE on audio stream

	Complex Nursing	Complex Nursing		Event types	Length	Num	
	Event Name	Event logic	OF 1	1	0	1010	
Complex Event	Physiological	Vital sign \Rightarrow	CE 1	$\operatorname{cooking} \Rightarrow \operatorname{eating} \Rightarrow \operatorname{dishwashing}$	3	1213	
	Measurement	blood glucose measure \Rightarrow	CE 2	social activity \Rightarrow cooking \Rightarrow eating	3	1198	
	wicasurement	blood collection	011	boolding doubled by a cooling a cooling		1100	
Event	Indwelling Drip	Vital sign \Rightarrow	CE 3	working \Rightarrow other	2	2898	
	indweining Drip	Indwelling drip					
	Patient Cleaning	$Oral care \Rightarrow$	CE 4	watching_tv \Rightarrow vacuum_cleaner	2	2904	
	Fatient Cleaning	Diaper exchange	CE 5	$absence \Rightarrow eating$	2	2844	
	Unsanitary Operation	Diaper exchange \Rightarrow	OE 5	absence \rightarrow eating	2	2044	
Protocol	No.1	blood collection	CE 6 dishwashing \Rightarrow cooking		2	2888	
Violation	Unsanitary Operation	Area cleaning \Rightarrow					
	No.2	blood glucose measure	CE 7	$absence \Rightarrow social_activity$	2	2919	
	Unsanitary Operation	Diaper exchange \Rightarrow					
	No.3	indwelling drip Event types: 9 . Avg length: 2.29. Dataset size: 16162					

SCHOOL OF COMPUTING UNIVERSITY OF UTAH

Luis Garcia

Performs much better than DL-only baselines

	Oracle	NEUROPLEX	NEUROPLEX (W/O)	CRNN	C3D
Perception Acc	99.19%	98.87%	70.55%	10.09%	NA
Validation MAE	0.002	0.013	0.065	0.523	0.176
Converted Acc	99.85	99.39%	96.02%	69.98%	88.47%

CE over images

	NEUROPLEX	ConvLSTM	ConvLSTM-2	LSTM-Attention
Perception Acc	77.59%	1.72%	NA	NA
Validation MAE	0.0027	0.1430	0.1860	0.6245
R-Square	1.000	0.882	0.807	0.002
Converted Acc	100%	93.67%	89.28%	78.81%

CE over IMU

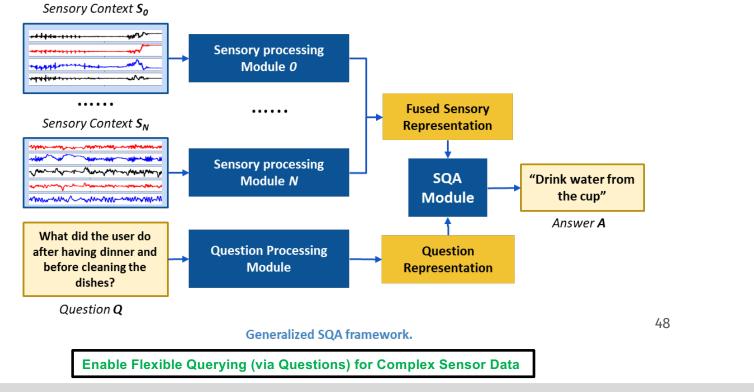
Scales with context length

Methods	Sim 1	Sim 2	Sim 3	Sim 4	Sim 5	Sim 6	
Time window (minutes)	10	20	30	40	50	60	
R-square							
Neuroplex	1.00	0.99	1.00	0.90	0.88	0.85	
ConvLSTM	0.88	0.90	0.66	0.32	0.33	0.35	
ConvLSTM-2	0.81	0.76	0.80	0.76	0.75	0.70	
AttentionNet	0.02	0	0	0	-0.01	-0.02	
Converted Accuracy							
Neuroplex	100%	98.90%	100%	83.59%	79.00%	79.63%	
ConvLSTM	93.67%	83.29%	67.75%	40.79%	39.03%	37.47%	
ConvLSTM-2	89.28%	80.08%	75.70%	60.30%	45.83%	39.48%	
AttentionNet	78.81%	2.60%	0.62%	0.50%	0.11%	0.02%	

46

Neuroplex: End-to-end Training We can fine-tune both deep learning perception and complex event pattern detection **Perception** Reasoning Gradients w.r.t. (Frozen!) **Key Takeaways** redicted **Raw data** 1. Neurosymbolic models allow incorporating human knowledge CE 2. Help with learning efficiency and long context length 3. Also help with domain shift, explainability, constraints, etc. 4. Open issues relating to training, efficiency, and robustness oundTruth CE Train NRLogic model using NeuroPlex SenSys 20 UNIVERSITY OF UTAH

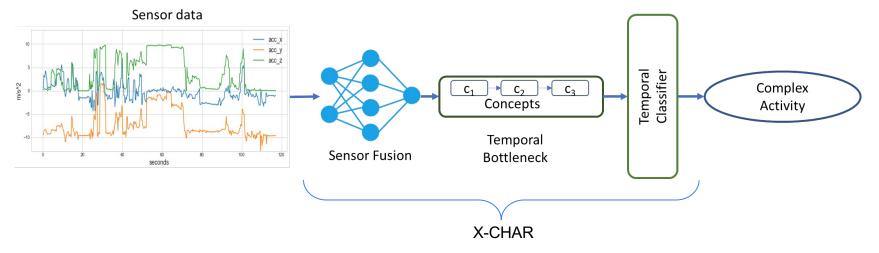
Follow-up: DeepSQA: Generalized Sensor Question Answering (SQA) Framework



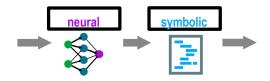
SCHOOL OF COMPLETING UNIVERSITY OF UTAH

Follow-up: Explainable Complex Human Activity Recognition (XCHAR)

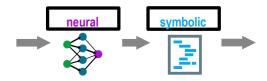
- X-CHAR: an Interpretable DNN architecture for Complex activity recognition
- X-CHAR has a Temporal Concept Bottleneck layer
 - Use Connectionist Temporal Classification (CTC) loss to learn the concepts
- Use a classification model after the temporal bottleneck to get the complex activity



IMWUT '23

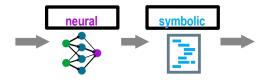


Symbolic-after-Neural e.g., structured reasoning over natural sensor inputs



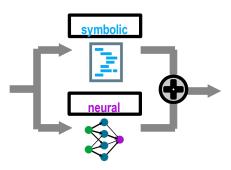
Symbolic-after-Neural e.g., structured reasoning over natural sensor inputs

Neural-after-Symbolic e.g., deep learning over pre-processed inputs

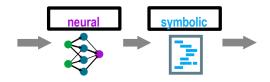


Symbolic-after-Neural e.g., structured reasoning over natural sensor inputs

Neural-after-Symbolic e.g., deep learning over pre-processed inputs



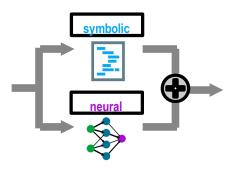
Aggregate / Fuse e.g., DNN models errors in symbolic, symbolic polices DNN



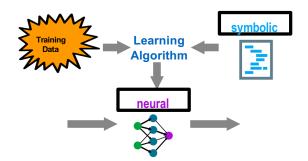
Symbolic-after-Neural e.g., structured reasoning over natural sensor inputs



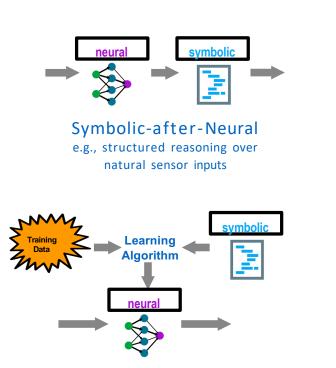
Neural-after-Symbolic e.g., deep learning over pre-processed inputs



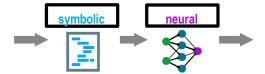
Aggregate / Fuse e.g., DNN models errors in symbolic, symbolic polices DNN



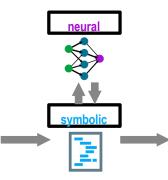
Symbolically-constrained Neural e.g., DNN trained to follow constraints, norms and rules



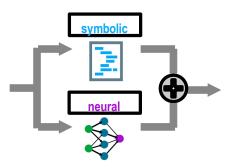
Symbolically-constrained Neural e.g., DNN trained to follow constraints, norms and rules



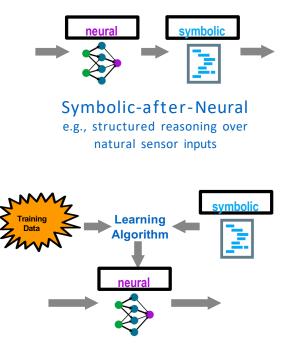
Neural-after-Symbolic e.g., deep learning over pre-processed inputs



Neurally-accelerated Symbolic e.g., neural network models errors in symbolic model

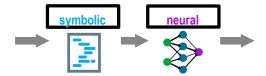


Aggregate / Fuse e.g., DNN models errors in symbolic, symbolic polices DNN

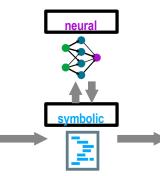


Symbolically-constrained Neural e.g., DNN trained to follow

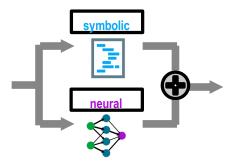
constraints, norms and rules



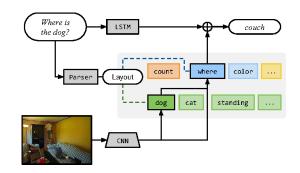
Neural-after-Symbolic e.g., deep learning over pre-processed inputs



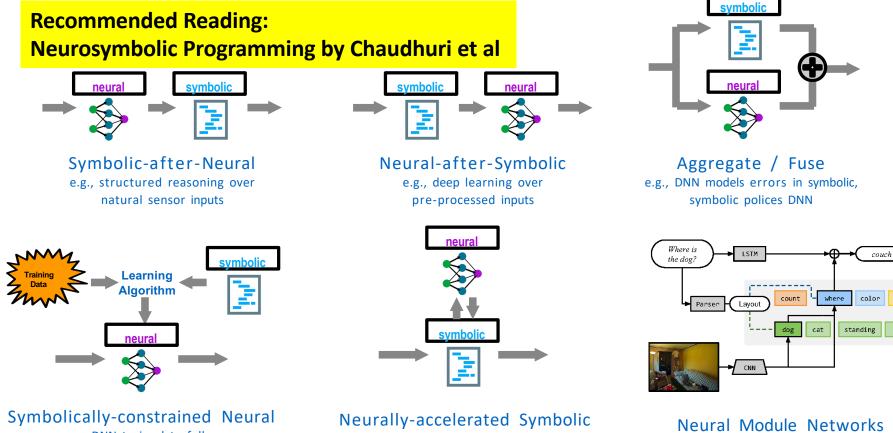
Neurally-accelerated Symbolic e.g., neural network models errors in symbolic model



Aggregate / Fuse e.g., DNN models errors in symbolic, symbolic polices DNN



Neural Module Networks e.g., dynamically synthesized compositions of modular neural networks

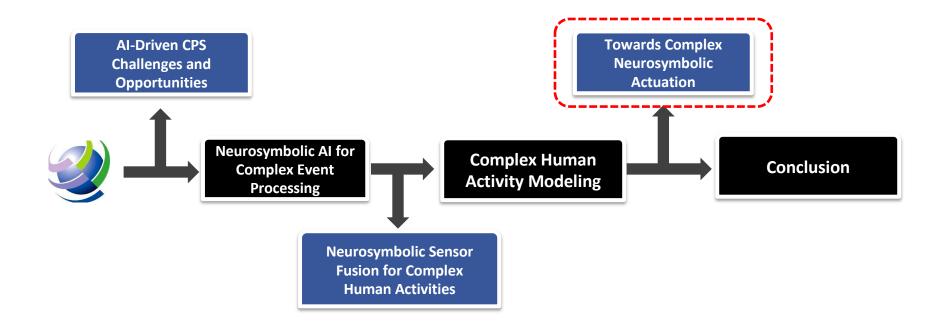


e.g., DNN trained to follow constraints, norms and rules

Neurally-accelerated Symbolic e.g., neural network models errors in symbolic model

e.g., dynamically synthesized compositions of modular neural networks

Outline for Today's Talk

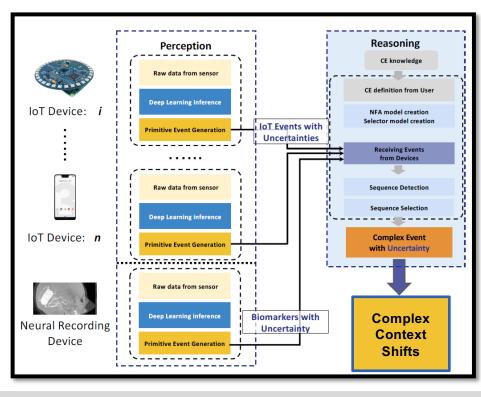


Back to the Neural Frontier: Recording and stimulation in the wild

THE UNIVERSITY OF UTAH College of Social and Behavioral Science

IoT-in-the-loop Neuroscience

N

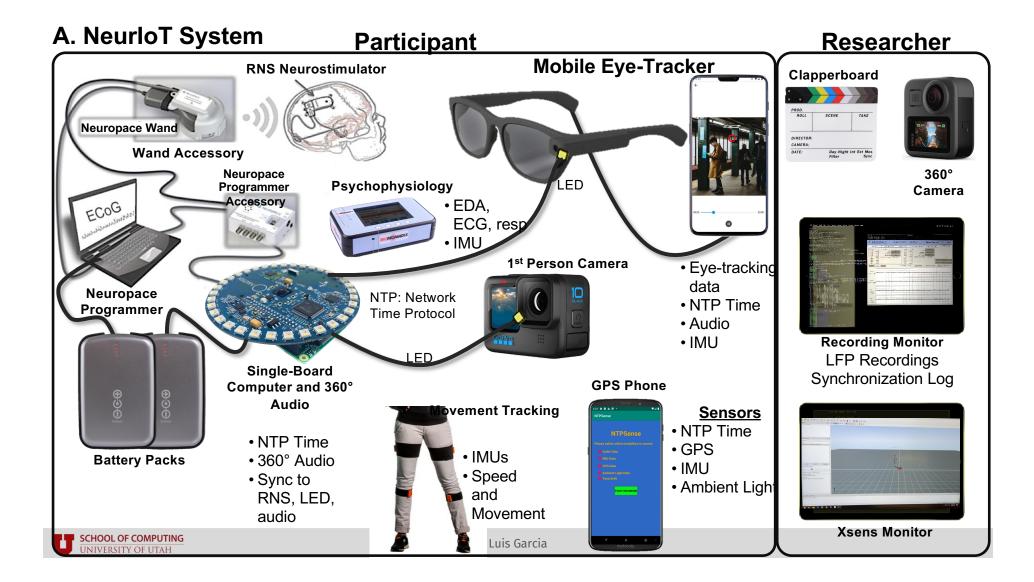




SCHOOL OF COMPUTING UNIVERSITY OF UTAH

NSF NCS #2124252

Luis Garcia



Initial Goal: Decode How Humans Encode Memories

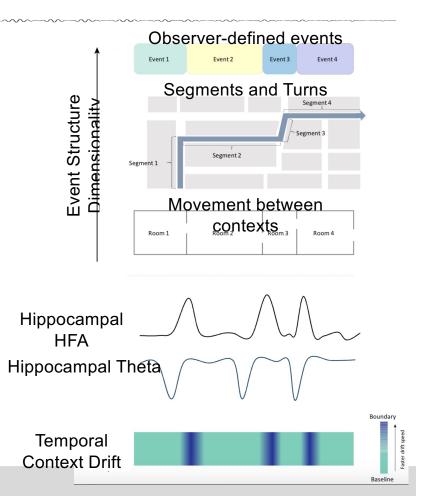
Luis Garcia

- "Episodic Memory" model
 - Memory traces are linked by representation of context
 - Drifts slowly over time
 - Reflected in hippocampal activity
- Construct navigational tasks that will have major experiential "context shifts"
 - Inside versus outside

SCHOOL OF COMPUTING

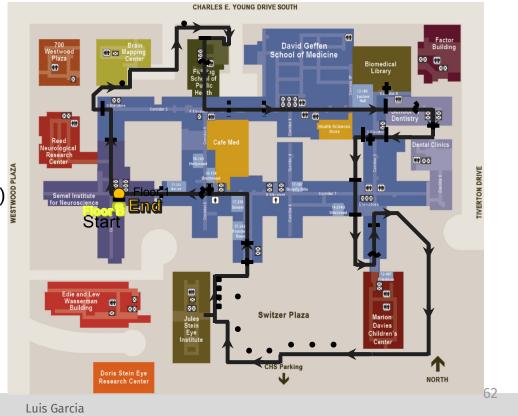
NIVERSITY OF UTAH

- Passing through doorways
- Encountering prominent landmarks



Route Characteristics

- UCLA Center for Health Sciences
- Spatial boundaries:
 - Doorways (17)
 - Closed Doorways (14)
 - Open Doorways (3)
 - Indoors/Outdoors (11)
 - Turns (25)
 - Transitions between buildings (10)
- Duration = 17 25 min
- Distance = ~0.75 miles
- 8 Walks (4 per day)
 - \circ 1 Encoding
 - 7 Navigation



Landmarks

Luis Garcia

63

Scenes

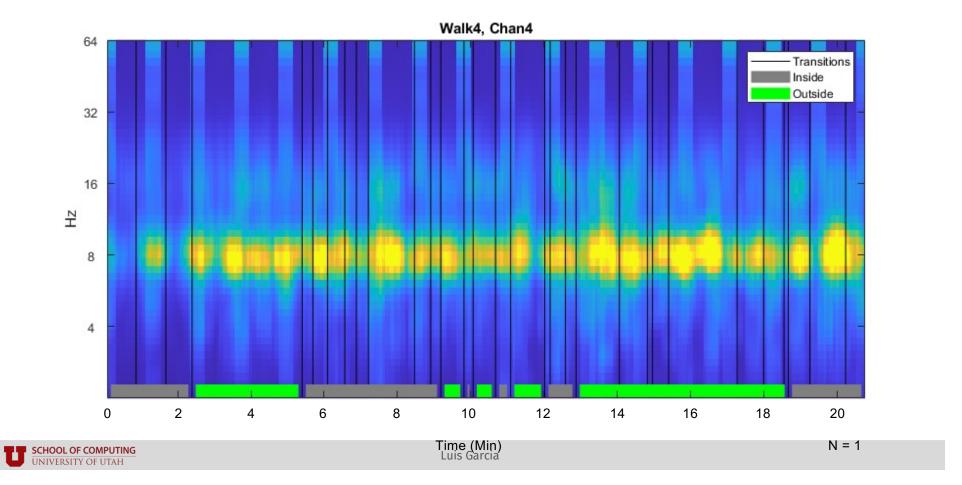
50 "segments" identified

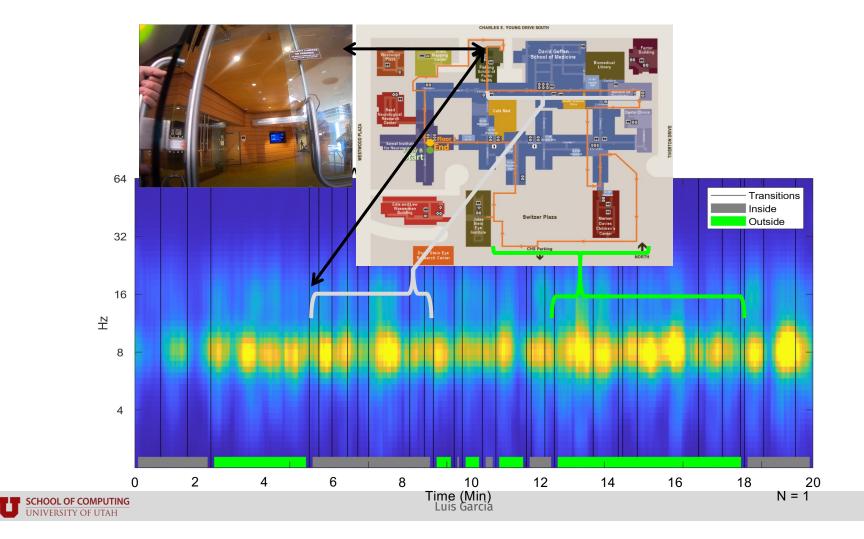
Landmark Recognition Tasks

• Patient will draw route on map after the last walk

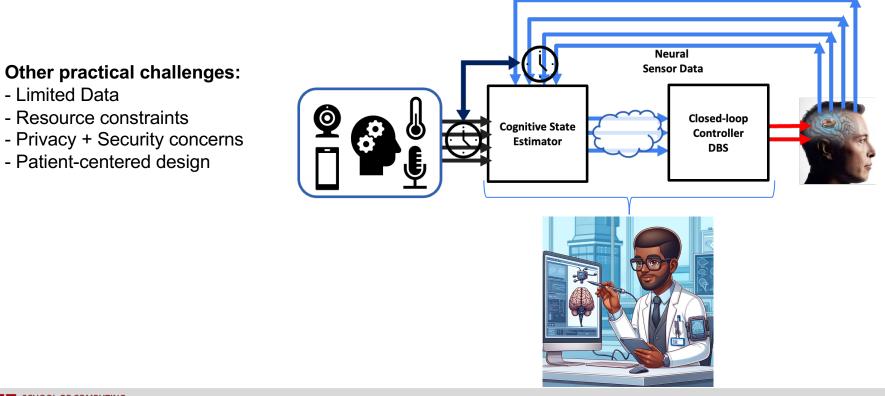
Luis Garcia

Hippocampal theta activity during real-world spatial navigation





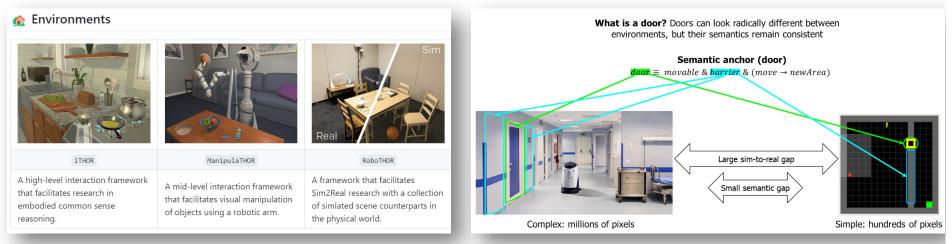
But will more robust neurosymbolic perception enable safe actuation with blurry requirements?



Luis Garcia

Some preliminary exploration: Robustifying Neurosymbolic Perception Models in Simulation

Can we leverage cross-domain simulators or datasets for more robust perception?



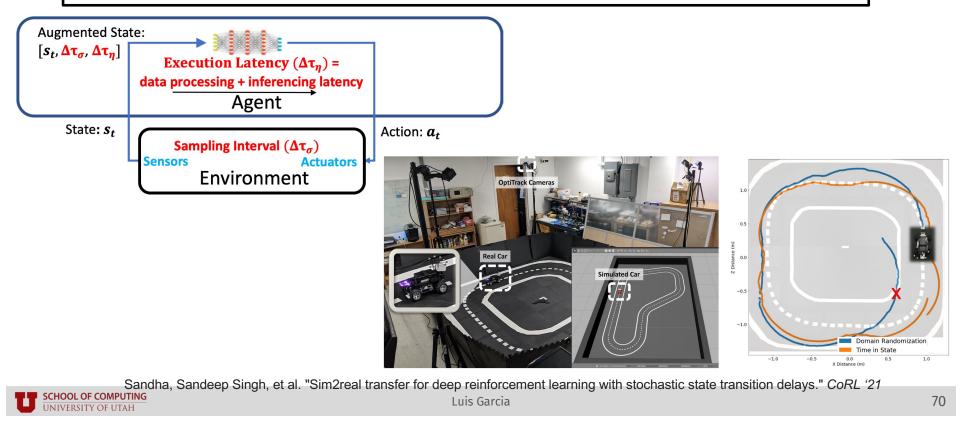
Emergent Embodied AI Simulators

From DARPA's Transfer from Imprecise and Abstract Models to Autonomous Technologies (TIAMAT)

Luis Garcia

Some preliminary exploration: Robustifying Neurosymbolic Perception Models in Simulation

Introducing consistently measurable symbols in state enhances Sim2Real Transfer

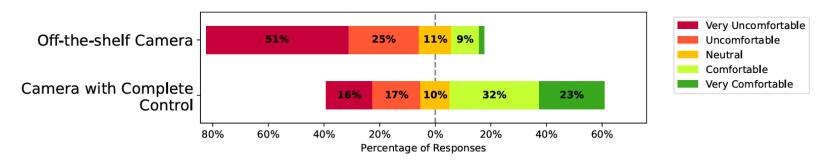


Some preliminary exploration: Managing Requirement Specifications

Even if model is explainable, interfaces still require cross-domain expertise for safety, security, and privacy

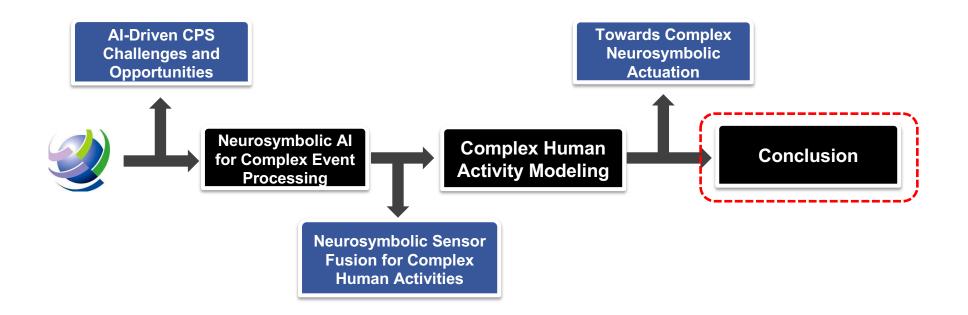
User study question: Would you be willing to put a device in your bedroom if

- (a) it was an off-the-shelf camera?
- (b) You had complete control over the camera's software/hardware?



Singh, Akash Deep, Brian Wang, Luis Garcia, Xiang Chen, and Mani Srivastava. "Understanding factors behind IoT privacy--A user's perspective on RF sensors." *arXiv preprint arXiv:2401.08037* (2024).

Outline for Today's Talk



Concluding Thoughts

- Neurosymbolic models can at least bridge the gap for limitations in DNNonly or symbolic-only sensor fusion models for perception
- We need better mechanisms to bootstrap semantic grounding at different symbolic layers across sensing modalities
 - Fusion at symbolic layers: Label space, semantic loss, concept bottlenecks, etc.
 - Better semantic oracles: existing knowledge graphs and LLMs have shown to be useful
- Better mechanisms for interfacing both domain experts and end-users with neurosymbolic models (maybe LLMs?)
- We need to take a holistic approach to closing-the-loop when modeling neurosymbolic safety-critical applications
 Luis Garcia

<u>la.garcia@utah.edu</u> https://lagarcia.us

Luis Garcia

Thank You!



Luis Garcia la.garcia@utah.edu https://lagarcia.us

SCHOOL OF COMPUTING UNIVERSITY OF UTAH

Luis Garcia