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The robots are here

• Search and Rescue
• Precision Agriculture
• Warehouse Automation
• Environmental Monitoring
• Manufacturing and Assembly
• Exploration of Unknown Environments
• Surveillance and Security
• Medical Applications
• Traffic Management
• Collaborative Mapping
• Entertainment and Education
• Aerial Swarm Applications
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Mul.-robot systems

Centralized architecture
• A single entity makes decisions for all 

robots in the system
• Gathers information from each robot, 

processes it, and issues commands 
• Simplifies coordination, but the central

entity is a single point of failure

Distributed architecture
• Robots collaborate to make 

collec@ve decisions
• Robots communicate to share 

informa@on
• No single point of failure, but 

coordina@on is more complex
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Multiple robots collaborate and communicate to achieve common goals



Vulnerable to cyber a5acks

• Such attacks can result in:
• Unauthorized access
• Compromising confidentiality 
• Degradation of task reliability and accuracy
• Destruction through unintended collision 
• Safety of surrounding environment 
• Safety for humans working in proximity
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Mul@-robot systems rely on communica@on networks and soBware 
systems, thus they are suscep@ble to cyber aDacks



Byzantine adversaries

• Coopera@ve applica@ons are suscep@ble to 
compromised on malfunc@oning devices
• Robots can get compromised or malfunc@on

• Byzan@ne adversaries models compromised or 
malfunc@oning par@es
• Takes the form of lying, two-face behavior, 

dropping (not providing) informa@on, colluding 
for stronger aDack and avoiding detec@on
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Challenges for dealing with Byzantine 
adversaries

Can not be trusted to correctly 
generate data (i.e. lie): 

• Solu%on difficult to construct when
• Many insider nodes collude
• Not enough history is available
• Single source of informaDon
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Can not be trusted to correctly 
deliver data: 

• Solution difficult to construct when
• Not enough adversary-free paths  
• Not enough redundancy 
• Correlated failures

An insider can not be trusted to cooperate



Opportunities in multi-robot systems

• Cyber-physical enabled, mobile devices 
• Cyber-channels can be leveraged
• Physics-based invariants 
• Adjust to provide needed redundancy 

• Task specific predefined physical invariants 
• E.g. obstacles at certain loca@ons

• In centralized architectures:
• There is a point of trust and aggrega@on
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In this talk

Consider two applica@ons in two different scenarios
• Mul3-agent pathfinding in a centralized seLng
• Consensus in a decentralized seLng (and  applica@ons based 

on it, tracking and localiza@on)

Answer the following ques@ons?
• What are relevant Byzan@ne aDacks and what is their impact?
• How to design defenses (with provable security and scalable)?
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Multi-agent pathfinding (MAPF)
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• Automated planner that generates mul@-robot plans  
• Genera@ng these mul--agent mo-on plans is known as mul@-agent 

pathfinding (MAPF):
• Structured or unstructured environments 
• Con@nuous or discrete robot dynamics
• Under temporal specifica@ons 
• Coordinated mo@ons 
• Centralized or distributed decision making 



Automated
warehouse 
• Applica@on generates requests 

for items to be fetched
• Mo@on plans consist of 

movement around and 
manipula@on of different shelves 
for delivering the items to the 
target des@na@ons. 
• Map
• Obstacles
• Forbidden areas
• Central en@ty (CE)
• Robots report their loca/on 

periodically
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Fig. 1: A diagram of a Warehouse system model. The Central
Entity coordinates the robots in order to service tasks arriving
from the application. Unserviced tasks and the current system
state – robot positions, assigned tasks, forbidden regions
(marked in red), obstacles (marked in black) – are sent as
inputs to the MAPF solver in order to compute a motion
plan for the robots. In the post-processing phase, a sequence
of announcements is generated that incrementally releases
planning information to the robots while satisfying commu-
nication constraints and considerations for potential faults.
Robots execute actions received from the CE (solid paths,
numbers indicate the timestep) and send self-reports to the CE.
The CE uses localization self-reports to monitor for correct
execution of the motion plan.

The CE accepts as input a queue of application tasks that are
to be carried out by the robots in the environment. The CE
maps the application tasks to multi-robot motion plans that
carry out the application tasks, and then sends motion plans
to the robots. Note that the motion plans typically include
safety constraints in the form of locations in the environment
that are marked as out-of-bounds to the robots. These could
be due to a variety of reasons, e.g. temporary obstructions or
people on the warehouse floor.

Since the CE can maintain in memory the motion plan for
the robots only over a finite future time horizon H , and since
new application tasks are always arriving, the CE occasionally
needs to compute new motion plans [41] that are incrementally
sent to the robots, henceforth referred to as announcements.
The announcements are broadcast, such that each robot can
read all of the announced information to anticipate and better
cope with a potential collision with another robot as they

get close. The robots, on their part, are expected to await
instructions from the CE, perform the assigned motions, and
send reports back to the CE including completed actions and
other status messages. All communications are assumed to be
reliable, i.e. robots do not miss any announcements made by
the CE and the CE receives all self-reported information from
the robots.

B. Warehouse MAPF Model
The CE models the environment as a graph G “ pV,Eq

where V are the locations that the robots can occupy and E
represents actions that allow the robots to move between
locations. At every discrete time instant, each robot occupies
a unique location in V , yielding multi-robot configurations
in V R. The current presumed configuration of the robots at a
time t is maintained by the CE as a tuple xt P V R.

The robots make discrete, synchronized movements to new
configurations by following edges in E. MAPF plans in the
Warehouse MAPF model are formally defined as follows [13].

Definition 1 (MAPF plan). A multi-robot path-finding plan
for robots R in the environment G “ pV,Eq is a finite se-
quence txtu with elements xt P V R, where the sequence xi “
txi

tu is the single-robot plan for robot i P R, and that satisfies
the following constraints for all t and for all i, j P R, :

1) Continuity: Each xi is a walk on G.
2) Vertex constraints: robots do not occupy the same loca-

tion simultaneously, i.e., xi
t ‰ xj

t .
3) Edge constraints: robots do not traverse the same edge

simultaneously, i.e., pi ‰ j^xi
t`1 “ xj

t q ñ pxj
t`1 ‰ xi

tq.

The CE maintains future motion plans from xt, which we
call continuations and denote as xptq. The CE then makes
wireless announcements at time t to the robots containing
portions of the plan, denoted ↵ptq. Note that there may be
time steps where the CE does not need to make announce-
ments (↵ptq “ ↵pt ` 1q), and hence no wireless communica-
tions are needed.

Formally, the announcements are MAPF prefixes,
i.e. ↵ptq ® xptq, as defined as follows.

Definition 2 (MAPF prefixes and continuations). Let x and y
be two MAPF plans. We say that y is a MAPF prefix of x
and equivalently that x is a MAPF continuation of y, denoted
as y ® x if yi is a prefix for xi for all i P R.

We assume that ↵ptq contains at least enough information
for each robot to know where to go in the next time step,
i.e. xt`1 P ↵ptq. Def. 2 defines a partial ordering in the space
of all plans (z ® y, y ® x implies z ® x). In a typical
Warehouse system, there are incentives for the CE to announce
as much of the MAPF plan as safely possible, e.g. due to
considerations for network contention or robustness to network
and motion faults [42].

The robots are assumed to be time-synchronized with
the CE and have perfect self-localization information, i.e. each
robot has knowledge of G and knows exactly its location
in V at every time step. Additionally, the robots are assumed



Plan-deviation attacks against MAPF

• Plan devia%on: 
• Not follow the plan from the CE

• Forbidden plan devia%on:
• Get into forbidden areas

• Robots lie about their loca%on
• Cau%ous a@acker (wants to stay 

undetected)
• Bold a@acker (does not care to 

stay undetected)
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Fig. 2: The compromised robot i has computed a forbidden
MAPF deviation x̃ (red paths) on timesteps p1, 5q. A cautious
attacker, however, realizes that there is possible continuation
(shaded blue region) from the announced portion of the CE’s
MAPF plan (blue paths) that would result in a co-observation-
based detection by the CE: if robot j goes north at time step 3,
then j would observe i at a location where i is not supposed to
be. As a result, the cautious attacker chooses not to perform
the plan-deviation attack. If i were compromised by a bold
attacker, then the plan-deviation attack may be performed even
with the risk of detection.

becomes aware of the fault the moment the robot self-reports
the fault.

Malicious deviations from the nominal plan conducted by a
compromised robot are not easily detectable by the CE, since
the compromised robot can lie in its self-reports to the CE. We
refer to such malicious deviations as plan-deviation attacks,
and to deviations that in addition seek to move the robot into
one of the forbidden areas in Vforbiddenptq as forbidden plan-
deviation attacks. We formalize these threats below.

Definition 4 (Plan-Deviation Attack). Let x be a MAPF plan
for set of robots R on map G “ pV,Eq. We say that x̃ is a
MAPF deviation for robot i P R on timesteps ps, vq from x if
x̃ satisfies p@j, tqpxj

t ‰ x̃j
t ô pj “ i, s † t † vqq.

Definition 5 (Forbidden Plan-Deviation Attack). A MAPF
deviation x̃ for robot i on ps, vq is a forbidden deviation, in
short �px̃, x, i, s, vq, if pDt P ps, vqq s.t. px̃i

t P Vforbiddenq.

C. Plan-Deviation Attacks by Cautious and Bold Attackers
Based on their decisions to deviate from the plan, we

introduce two types of attackers, which we refer to as cautious
and bold. A cautious attacker decides to move with some
constraints, whereas a bold attacker does not. Within the
context of a particular run of a Warehouse system, the set of
possible behaviors of the robots compromised by a cautious
attacker is contained in the set of behaviors of the robots
compromised by a bold attacker. Thus, a bold attacker is
stronger than a cautious attacker, see Fig. 2. We give formal
definition for these attackers in the following.

Undetected plan-deviations. Assume that, up to time t, no
plan deviation attack has been attempted, and so the true sys-
tem state x̃t matches the CE’s expectation xt. A compromised
robot a P A may choose to deviate from the plan by picking
a different action pxa

t , x̃
a
t`1q P E s.t. x̃a

t`1 ‰ xa
t`1. In order to

hide that the deviation has occurred, the compromised robot
would falsify its self-report and attest that it has moved into
the nominal location, i.e. �̃ptqa “ tx̃a

t`1 “ xa
t`1u. Provided

that a has neither collided with a non-compromised robot,
i.e. x̃ is still a MAPF plan, and that a has not caused a
non-compromised robot i ‰ a to be unable to perform an
action, i.e. that x̃ is a MAPF deviation for i from x, then it
is easy to see that none of the self-reports from the robots
will have changed and that �ptq “ �̃ptq, and no localization-
based detection will occur. Such plan deviations are called
undetected plan deviations:

Definition 6 (Undetected Plan-Deviation Attack). Let x be
an MAPF plan and x̃ a MAPF deviation for robot i on ps, vq.
Assuming that i falsifies its reports on ps, vq so that @t P ps, vq,
�̃ptqi “ �ptqi, then x̃ is an undetected plan-deviation attack
on x if the reports from the other j P Rztiu are the same for
x̃ as for x, i.e. that @t P ps, vq, �̃ptqRztiu “ �ptqRztiu.

Cautious attacker. This type of attacker uses its knowledge
of the currently announced MAPF prefix ↵ptq to determine
whether there exists a MAPF plan x̃ that is guaranteed to be a
forbidden undetected deviation from the true plan x, x © ↵ptq.
Specifically, a cautious attacker needs to ensure not only that
�̃ “ �, but also that there is a MAPF continuation x̃ from
x̃t s.t. x̃ is a forbidden MAPF deviation from x on pt, vq
and that �̃ptq, . . . , �̃pvq “ �ptq, . . . ,�pvq, ensuring x̃ is also
undetected. In practice, the attacker can easily verify this if
it has enough information about x; if the announcement ↵ptq
reveals a large horizon of the plan, the cautious attacker a can
solve a single-robot planning problem [43] using ↵ptq to avoid
conflicts with the other robots i ‰ a.

Definition 7 (Cautious Attacker). Assume that at time t
the true configuration of the robots x̃t matches the CE’s
expectation xt, and that a P A is compromised. Suppose the
currently announced prefix is ↵ptq ® x and the expected self-
reports are �. Then a is a cautious attacker if it chooses to
deviate from ↵ptq on pt, vq with deviation x̃ if and only if
Ey, y © ↵ptq s.t. �̃y ‰ �̃x̃. If a deviates, then it lies about its
self-reports by sending t�̃puqauuPpt,vq “ t�puqauuPpt,vq.

Bold attacker. This type of attacker decides to deviate from
the nominal plan without any constraint, e.g. it may choose to
move randomly or in the direction of a forbidden location in
Vforbidden without consideration of the announcements ↵ptq.

Definition 8 (Bold Attacker). Let x̃t be the true configuration
of the robots at time t, and that a P A is compromised. Then
a is a bold attacker if it may choose to perform any action in
tpx̃a

t , qq : q P NGpxa
t qu and any self-report �̃ptqa for the CE.

Balanced bold attacker. A bold attacker has many attack
strategy choices. We define an attack strategy that we believe is



Solution overview

A"acker
• Moving toward the forbidden zone 

by leveraging the mo%on plan 
informa%on received from the CE

• Trying to remain undetected by the 
CE by lying about its loca%on 

Defense
• Use robots to monitor other robots

• CE computes co-observation 
schedules about the presence or 
absence of robots in certain locations 
at certain times

• CE compares the reports from robots 
with the co-observations schedules to 
detect  scenarios when compromised 
robots lied about their location

• Limit how much motion planning 
information the CE announces to 
the robots  at any given time 
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Co-observa.on based detec.on 
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• For certain inputs, it is possible to compute the motion plan of the 
robots such that the resulting co-observation schedule has 
monitoring guarantees for plan-deviation attacks
• Monotonicity of robot co-observations: Co-observations increase the 

set of possible plan deviations that the CE can detect with respect to 
localization-based detection alone
• Attack-Proof MAPF Plan: Any forbidden deviation implies a change in 

the nominal observation schedule



Limita.ons of co-observa.on based detec.on

• Existence of an attack-proof plan 
• There is no guarantee that attack-proof MAPF plans exist for all 

MAPF instances
• Cost of the attack-proof plan 
• Makespan: time required for all robots to reach their respective 

goal locations (cost metric in MAPF planning)
• When attack-proof MAPF plans exist, there is a trade-off between 

optimal-makespan MAPF plans and optimal-makespan attack-
proof plans
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Horizon-Limi.ng MAPF Announcements 
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• A CE that only makes horizon-limiting MAPF announcements maintains the 
security from cautious attackers that results from robot co-observations, 
but this time without the burden of computing attack-proof MAPF plans

• For bold attackers, no formal guarantee, we show experimentally, that bold 
attackers will have greater difficulty performing forbidden and undetected 
deviations as the information contained in the announcements decreases

Horizon limi@ng-announcements do not reveal enough informa@on for the aRacker 
to be certain that a given forbidden devia@on will be undetected by the CE



In this talk

Consider two applica@ons in two different scenarios
• Mul3-agent pathfinding in a centralized seLng
• Consensus in a decentralized seLng (and  applica@ons based on it, 

tracking and localiza@on)

Answer the following ques@ons?
• What are relevant Byzan@ne aDacks and what is their impact?
• How to design defenses (with provable security and scalable)?
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Consensus for MSR

• Linear Consensus Protocol: the state of each agent is updated based 
on a linear combina@on of its own state and the states of its neighbors
• Weighted-Mean Subsequence Reduced Algorithm
• Designed to tolerate F byzan@ne robots
• Discards the F highest and F lowest values, then use LCP
• To converge requires the connec@vity graph of the robots to be at least (2F 

+1)-vertex-connected. Difficult to achieve in prac@ce.
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Decentralized Blocklist Protocol PREPRINT

shape formation, and collective transport) are typically not amenable to centralized approaches due to communica-
tion constraints [Gielis et al.(2022)]. Decentralized methods to mitigate the negative impact of faulty and/or mali-
cious robots in unstructured environments have therefore attracted much research attention, especially since a wide
range of attacks have been shown to disrupt MRS function and safety, e.g. sensor perturbation and denial-of-service
(DoS) [Djouadi et al.(2015), Zhou et al.(2020), Liu et al.(2021)], actuator jamming [Guo et al.(2018)], networking
DoS [Yaacoub et al.(2022)], or Sybil/fraudulent identity attacks [Gil et al.(2017), Mallmann-Trenn et al.(2021)].
Given the multitude of possible attacks, it is important to understand the resilience of the MRS from Byzantine at-
tackers – that is if an unknown subset of the robots is allowed to have arbitrarily different behaviors relative to the
cooperative robots in terms of physical actions and communication.

Byzantine-unaware MRS implementations are often highly vulnerable, and break completely, when even one robot
has been comprised. In our case studies for example, Byzantine robots may cause robots within a swarm to follow
a false target, or have arbitrarily large errors in time synchronization or localization. The main approach proposed
for Byzantine-resilient MRS is the Weighted-Mean Subsequence Reduced (W-MSR) algorithm [LeBlanc et al.(2013),
Saulnier et al.(2017), Mitra et al.(2019)]. W-MSR is easy to implement and has well-understood theoretical guaran-
tees. However, W-MSR can only be used for MRS applications that are implemented via Linear Consensus Protocol
(LCP), performance does not scale with the number of robots in the system, and the number of Byzantine robots to
tolerate, F , is a parameter that must be known a priori. Suppose that LCP is the means by which the robots reach
a collective decision about a physical property of the environment. The choice of F in W-MSR dictates how many
outliers robots should discard in each update of linear consensus; each robot needs at minimum 2F + 1 neighbors in
order to update their local consensus variable and at minimum F + 1 cooperative robots must independently make
direct measurement of the underlying physical quantity. If F is chosen smaller than the number of Byzantine robots,
then the mitigation provided by W-MSR is forfeit. For large F , the network connectivity requirement and the logistics
of maintaining F + 1 cooperative observers renders W-MSR impractical.

In this work we propose Decentralized Blocklist Protocol (DBP), an approach to Byzantine resilience inspired by P2P
networks, based on inter-robot accusations. Cooperative robots make use of local observations to detect misbehaving
peers and make accusations accordingly. Accusations propagate through the cooperative robots, which each robot
then independently processes with a matching algorithm to compute a blocklist. We derive necessary and sufficient
conditions on the set of accusations that must be made and connectivity of the MRS that ensures that all Byzantine
robots are eventually blocked by the cooperative robots, and their influence mitigated. Specifically, we show that for a
closed MRS satisfying an analogous (F + 1)-connectivity requirement for time-varying networks, blocking all of the
Byzantine robots is equivalent to Hall’s marriage condition on the accusations made within the system. In addition to
W-MSR requiring the number of Byzantine robots to tolerate be known a priori, we claim that W-MSR does not scale
with the number of robots in practice. We show empirically on target tracking and time synchronization applications
that this is the case, and that our proposed approach adaptively scales to hundreds of robots/attackers, in contrast to
just one or two attackers in a swarm of no more than 20 robots as in related works. W-MSR cannot be used to provide
Byzantine resilience for MRS not implemented over LCP, such as cooperative localization. We implement Byzantine-
resilient cooperative localization using our approach as a proof of concept; to our knowledge ours is the first successful
technique for decentralized and Byzantine-resilient cooperative localization.

2 Background & Related Work

W-MSR. Perhaps the most well-understood approach to Byzantine-resilient decentralized MRS is the W-MSR al-
gorithm. W-MSR can be applied to MRS applications that are implemented over Linear Consensus Protocol – a
distributed consensus algorithm for real-valued variables whereby in each timestep robots update their local variable
to a convex combination of their neighbor’s broadcast values, i.e.

xi(t) =
X

j2NG(i)

↵jxj(t� 1) where
X

↵j = 1

and NG(i) are the neighbors of i in the connectivity graph G. The authors of [LeBlanc et al.(2013)] first introduced
W-MSR for Byzantine resilience which discards the F highest and F lowest values received at each timestep of LCP,
and show that convergence despite up to F Byzantine robots is equivalent to a graph robustness property. Specifically,
if the connectivity graph of the robots is at least (2F+1)-vertex-connected, then the consensus will converge to a value
within the convex hull of the cooperative robots’ initial values. W-MSR has been applied to a variety of applications,
such as flocking [Saulnier et al.(2017)] and state estimation [Mitra et al.(2019)]. Extensions for the W-MSR algorithm
to time-varying networks where the union of the connectivity graphs within a bounded window is robust are proposed
in [Saldaña et al.(2017)] and to event-driven control in [Amirian and Shamaghdari(2021)]. Methods to form robust
graph topologies, as required by the W-MSR algorithm, are proposed in [Guerrero-Bonilla et al.(2017)].
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Decentralized Blocklist Protocol

• Main idea: Based on locally-made observa@ons, coopera@ve robots accuse 
misbehaving peers. The accusa@ons propagate through the network via flooding 
and are used as input to a matching algorithm that outputs a blocklist 
• The precise rules used to decide if and when an accusa@on should be issued are 

applica@on-specific 
• Each robot locally maintains a set of accusa@ons that it has received. A subset  

will be locally computed by using any determinis@c maximum matching algorithm 
(such as Edmond’s ) to form the blocklist 

• ”i accusing j ” can be understood as “i is Byzan5ne or j is Byzan5ne (or both are).” 
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Applications: Target Tracking

• Goal:  robots locate and coopera0vely follow a 
mobile target that has a maximum speed 
• In each (mestep, robots sort received observa(on messages 

by observa(on (me, and choose the most recent one to 
transmit to its neighbors. 

• Controller: 
• Compute a heading vector poin(ng to the target from their 

current loca(on and move towards the target. 
• Robots that do not directly observe the target rely on received 

observa(on messages to compute their heading vector. 
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5.1 Target Tracking

Application overview. In swarm target tracking, the goal of the robots is to locate and cooperatively follow a mobile
target that has a maximum speed of d. In our experimental setup, the target is a robot that has a yellow light – robots
within a distance r can see the light and make a direct observation of the target. To enable the entire swarm to track
the target, even for those robots that do not directly observe the target, robots broadcast target observation messages
containing:

1. the observer’s unique ID
2. the time of the observation
3. the observed location of the target

In each timestep, robots sort received observation messages by observation time, and choose the most recent one to
transmit to its neighbors. Robots keep track of how many times a given observation message has been transmitted, and
stop sharing it after fixed, finite number of times. The purpose of transmitting the same observation message multiple
times is to account for the time-varying connectivity with neighboring robots. In addition to the application messages,
DBP is used to mitigate the influence of Byzantine robots. Robots delete and do not forward observations messages
from blocked observer IDs. Old observation messages are periodically deleted from the local cache.

Ud(t�s)(x̃) Greedily ignore
observations with
empty intersection

Figure 2: Observation-based target tracking setup for use with DBP. Robots that do not observe the target directly
sort received observations by age and compute a bounding box for each observation containing the target based on
the elapsed time. Reducing over the bounding boxes with the set intersection operator yields the robot’s current belief
about the target location. Conflicting observations, those that result in an empty intersection, are dropped, ending the
iteration.

Controller. For robots that directly observe the target, they compute a heading vector pointing to the target from
their current location and move towards the target. Robots that do not directly observe the target rely on received
observation messages to compute their heading vector. We denote by Ud(c) the closed square centered at c with side
length 2d. Given an observation message with time s and observed target location x̃, the implied belief is that the set
Ud(t�s)(x̃) contains the target at the current time t > s. First, the received observation messages are sorted by time
(s1, x̃1), (s2, x̃2), . . . with s1 � s2 � · · · . To compute the heading vector, robots iteratively take the intersection

Ud(t�s1)(x̃1) \ Ud(t�s2)(x̃2) \ · · ·
If the intersection ever becomes empty while iterating, the offending observation is dropped and the iteration ends.
Robots take the center of the intersection to be their believed target location and use it to compute their heading vector.
The control procedure is illustrated in Fig. 2. Bounding boxes are used instead of circles to simplify the computation
of set intersections.

Accusation rules. On receiving a new observation message, robots issue DBP accusations according to four target
tracking-specific accusation rules. Given the received observation by robot j of x̃ made at time s, let �t = t � s
the elapsed time, �pi = kpi[t] � x̃k the distance from i’s location pi[t] to the observed target, and c a constant
denoting an upper bound on the speed with which messages can travel through the network (in our experimental setup,
4m/timestep). The first accusation rule is triggered when r + c�t < �pi, as the observation would need to have
traveled faster-than-possible through the network. The second accusation rule is triggered when �pi < r � d�t and
i did not make a direct observation of the target – i missed an observation that it should have made if the received
observation was legitimate. The third accusation is rule is triggered when �pi > r+d�t but a direct observation was
made by i; in this case the target couldn’t possibly have moved fast enough from the received observation location to
the place where i observed it presently. Finally, the last accusation rule detects oscillations from a single observer. If i
has received an observation from j in the past, it will consider the most recent previous observation from j of x̃old at
time sold, and will make an accusation of j if kx̃ � x̃oldk > d(s � sold). In this case, j’s observations are inherently
inconsistent with the maximum rate of change in x.

6

Accusation rules: 
• Observations can not travel faster-

than-physically-possible
• Missed an observation that it should 

have made if the received observation 
was legitimate

• The target couldn’t possibly have 
moved fast enough from the received 
observation location to the place 
where it observed it presently

• Detects oscillations from a single 
observer



Target tracking: Experiments
• DBP-based target tracking performance. 

• At timestep ∼ 200, all Byzantine robots have been 
blocked on each honest robot, and the honest 
robots track the target with close to no error

• W-MSR-based target tracking performance. 
• F = 100 guarantee safety, the informa(on about the moving 

target cannot propagate through the coopera(ve robots
• F = 15  has no safety guarantee but allows a subset of the 

robots to track the target successfully. However, the 
influence of the Byzan(nes is never removed. 
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Summary

• Mul3-agent pathfinding in a centralized seLng
• Horizon-limited co-observa@on that exploited the characteris@cs of the 

task (given map, obstacles, posi@on of forbidden areas) to issue 
incremental plan to the robots, plans that are guaranteed to prevent 
cau@ous aRackers and limit bold aRackers

• Consensus in a decentralized seLng
• Show how to build a decentralized blocking protocol that leverages 

applica@on-specific rules to generate accusa@ons such that all robots can 
compute the maximum list of such accusa@ons
• BeRer scalability and less strict connec@vity requirements than state of 

the art WMSR
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