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No-Regret Learning in
Dynamic Stackelberg Games

[N. Lauffer, M. Ghasemi, A. Hashemi, Y. Savas, and U. Topcu, TAC 2023]



Motivating concepts

Non-cooperative 
multi-agent systems

Sequential decision making in 
an environment

Online learning
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Background
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Stackelberg games [1934]

1. The leader plays a mixed strategy x

2. The follower plays an action b in response

3. An action a is sampled from x

4. The leader and follower receive payoff 

       r(a,b) and u(a,b), respectively
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Applications of Stackelberg games

Security scheduling at the LA 
airport

Randomized patrol routes by 
the US Coast Guard 

Park ranger patrol patterns to 
fight illegal poaching
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Markov decision process

Defined by a tuple                    :
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Dynamic Stackelberg game

Played on a tuple                            defined as follows.
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Dynamic Stackelberg game

1. The leader observes state s

2. The leader plays a mixed strategy x

3. The follower plays an action b in response

4. An action a is sampled from x

5. The leader and follower receive payoff r(s,a,b) and u(a,b)

6. The state transitions to s’ according to probabilities P(s,a,b,s’)
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Dynamic Stackelberg game
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Related work

Repeated Stackelberg games [Balcan et al., 2018], [Blum et al., 2014]: 
repeated interactions, but without dynamics

Stochastic games [Wei et al., 2017], [Ouyang, et al., 2017]: agents 
choose actions simultaneously

Feedback Stackelberg games [Li and Sethi, 2017], [Chen and Cruz, 1972]: 
typically studied in continuous settings modeled by differential equations 
with perfect information
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Connection to model-free RL

A dynamic Stackelberg game                            , can be reduced to a 
Markov decision process                         .

Model-free RL, e.g., Q-Learning and SARSA

Regret dependent on the number of states
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Learning Problem, Regret, 
and Assumptions
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Online learning in a dynamic Stackelberg game

set of all policies the best policy’s reward the learner’s reward
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learning agent

reward

time

regret



Episodic state space

•  States are partitioned into H layers.

•  Transitions only exist from one layer to the next.

0
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Linear function approximation

Assume that the follower’s utility function is linearly parameterized.

for some function                                    and parameter       .

For each              , we have a feature matrix                       .
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Tie broken in leader’s favor

Ensures the best in hindsight policy exists

Ensures the following inequality can be active

Strong Stackelberg equilibrium
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The Learning Scheme
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Learning from past observations

After we play a mixed strategy                      , we observe a response              . 
Then, we know that              ,
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Learning from past observations

After we play a mixed strategy                      , we observe a response              . 
Then, we know that              ,
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The learning scheme

1. Maintain a version space of what         could be given past observations. 
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The learning scheme

1. Maintain a version space of what         could be given past observations. 

2. Solve for an optimistic -conservative policy.
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choose θs optimistically 

mixed strategy over 
possible actions

value of current state via 
Bellman equation

choose the policy 
conservatively



The learning scheme
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No-regret learning with high-probability
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• With high probability, the regret is upper bounded such that it is

• Independent of the size of leader’s state space (S)

• Sublinear in the size of follower’s action space: 

• Linear in the size of leader’s action space (n) and episode length (H)

• Depends on the number of rounds (T) and follower’s features (p):

• Tight w.r.t. p and T [Zhao, Zhu, Jiao, Jordan, ICML 2023] 



No-regret learning with high-probability

Theorem 1: (high-probability regret bound)

Let                . With probability at least         , 

number of episodes

number of leader 
actions

size of episodes

number of features 
representing u

number of follower 
actions

constant
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Proof overview

Sources of regret:

1. From making mistakes (the follower plays an unexpected action) we 

get              regret.

2. From choosing   -conservative policies we get                  regret.
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Experimental Results
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Overview

1. Experimentally verify how regret scales in 
parameters of the game

2. Comparing against other policies:
• The optimal policy
• SARSA
• A random policy
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Structure of the state space.



Varying p

= (1,2,4,8,16)
n = 4
m = 4 

Parameters

Average Regret
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The rate of convergence of the algorithm depends on the number of 
features representing the follower’s utility function.



Varying |  |
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p = 4
n = 4
m = 4 

Parameters

The regret of the algorithm is independent of the size of the state space.



Comparing policies

Average Cumulative Reward

32

= (1,2,2,2,2)
n = 4
m = 4 

Parameters

The algorithm outperforms SARSA, even on small state spaces.



Conclusion

• Introduced discrete-time dynamic Stackelberg games

• Developed a novel learning algorithm based on optimistically building

           

• Established a no-regret learning bound with high probability

-conservative policies
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