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Machine Learning

Home Care Law Enforcement Self-Driving
Cars

Machine-learning is increasingly used in safety-critical CPS




ility and Security?

Reliab




Our Goal

Provide Resilience without any human
intervention for both faults and attacks



ML-enabled CPS: Why Resilience?

CPS deployed in unpredictable scenarios
ML cannot deal with unseen situations

Cannot simply stop under errors & attacks



ML-enabled CPS Resilience: Challenges
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Real-time Operation
- In place correction/recovery

Resource Constraints

- Low performance overheads

No human in the loop
- Completely automated




Fault and Threat Model
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Outline

Soft Errors [DSN’21 - Best Paper nominee, AlSafety’21 - b.p. nominee]
Training Data Faults [QRS’21 - Best Paper award, DSN’22, ISSRE’23]
Adversarial Patch Attacks [AsiaCCS’23]

Ongoing work and Conclusions



Soft Errors and AVs
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* Safety standard — Automotive Safety Integrity Level (ASIL-D)
* Error rate <10 FIT (per 1 billion hours) — SO 26262
* DNN systems do not satisfy it without protection



Towards Reliable DNNs

SDC coverage
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Key idea

Transform Critical Faults into Benign Faults, via Selective Range
Restriction in Hidden Layers
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Effectiveness of Ranger
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SDC rate reduced from 14.92% to 0.44% (34X reduction)
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Accuracy of DNNs

No accuracy degradation for the DNNs

(without fault)

Overhead

0.53%

Floating-point Operations (FLOPSs)
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Ranger in Action

Prediction (without fault): Prediction (with fault): Prediction (with fault):
156.58 -78.09 (with Ranger)
155.97

Code: https://github.com/DependableSystemsLab/Ranger



Real world adoption

©penVIN® .

PO St- 0 pt i m i Za t i o n (a) Yolov3 prediction wi'tjhout fault
Training

(b) Yolov3 prediction corrupted with single weight fault (c) Yolov3 prediction corrupted with single weight fault - Ranger
applied
Source: https://docs.openvino.ai/nightly/pot_ranger_README.html
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Outline

Soft Errors [DSN’21 - Best Paper nominee, AlSafety’21 - b.p. nominee]
Training Data Faults [QRS’21 - Best Paper award, DSN’22, ISSRE’23]
Adversarial Patch Attacks [AsiaCCS’23]

Ongoing work and Conclusions
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Training Data Faults

70% of Lyft dataset missing,
mislabelled [Kang et al, 2022]

Autonomous Vehicles

20% of ChestX-ray mislabelled
[Tang et al, 2021]

Healthcare
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Autonomous Vehicle Example
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Autonomous Vehicle Example
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How to mitigate training data faults?

More Effort
\ . Label Correction

1
. & 2. Knowledge Distillation
3. Robust Loss
4. Label Smoothing
5. Ensembles Less Effort

Our Work: The Fault in Our Data Stars: Studying Mitigation Techniques against
Faulty Training Data in ML Applications [DSN’22]




Neural Networks

ML Model Name Depth (# of Layers)
ConvNet Shallow
DeconvNet Shallow
MobileNet Deep

ResNetl8 Deep

ResNet50 Deep

VGG11 Deep

VGG16 Deep



Evaluation Datasets
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Safety-Critical Applications
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Reliability Metric: Accuracy Drop (AD)

Model trained with golden data Model trained with faulty data
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Accuracy Drop (AD)=2/3=67%
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Higher AD
is worse

GTSRB, ResNet50, Mislabelling

AD Across Models
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Higher AD
is worse

AD Across Models

Ensembles effective across models
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What makes Ensembles Resilient?
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Our Work: Understanding the Resilience of Neural Network Ensembles against
Faulty Training Data [QRS’21]
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Individual Models vs Ensemble

CIFAR-10, 30% Mislabelling
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Resilience Gap between Ensembles
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Searching for Resilient Ensembles
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Training Data Faults: Summary

Training data faults are common and impactful
Ensembles tolerate training data faults
Ensembles’ resilience has lot of variance

— Need to search for the best ensemble

Code: https://github.com/DependableSystemsLab/TDFM-Techniques
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Soft Errors [DSN’21 - Best Paper nominee, AlSafety’21 - b.p. nominee]
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Ongoing work and Conclusions
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Classic Adversarial Attacks
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57.7% confidence 8.2% confidence 99.3 % confidence

From Goodfellow et al. ICLR’14
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Adversarial patch attacks

- Universally malicious and physically-realizable
- Localized adversarial patch for misclassification

Classifier Output

wwwww

I Brown et al. 2017

Universally effective on any image 33
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Threat model

Adversary

- White-box adversary, Access to a surrogate dataset.
- Goal: Universal targeted misclassification [Brown et al.].

Defender

- Hold-out set (random samples hidden from adversary).
- Goal: Attack detection & mitigation.
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Jujutsu

Turning the adversary’s strength against the adversary

Universal Misclassification

Localized Corruption

35



Key idea: Detection

® Adversarial patch is universally malicious.

® Expose the consistent misclassification by the patch attacks.

Target

Tl toaster
sample

@ Same label 2
attack detected

|

toaster
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Key idea: Mitigation

* Localized perturbations for physically realizable attack.

» Utilize uncorrupted features to reconstruct clean samples with GAN.

GAN
masking reconstruction
M ' ﬁ Wt ﬁ
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Evaluation

Datasets: ImageNet, ImageNette, CelebA, Place365
Six patch sizes: 5% - 10%

Seven architectures: ResNet, DenseNet, VGG, etc.
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Overall results

g A 95.93% detected

Adversarial samples > 79.73% mitigated
. o

Match the accuracy on benign samples

{ Benign samples } > { 0.7% mis-detected }
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Physical-world attack

Jujutsu mitigates >95% attacks, with 3% FPR
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Summary

Jujutsu: A two-stage defense against adversarial patch attacks.

/ Attack detection \ / Attack mitigation \

Adversary: universal attacks Adversary: localized attacks

Jujutsu: expose attacks’ _ - |
consistent misclassification Jujutsu: utilize the uncorrupte

& j Qeatures ] clean samples /

Code [ https://github.com/DependableSystemsLab/Jujutsu
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Outline

Motivation

Soft Errors [DSN’21 - Best Paper nominee, AlSafety’21 - b.p. nominee]
Training Data Faults [QRS’21 - Best Paper award, DSN’22, ISSRE’23]
Adversarial Patch Attacks [AsiaCCS’23]

Ongoing work and Conclusions
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Robotic Vehicles Security

GPS Spoofing Signal Injection
Transmit malicious GPS Signals Optical, Magnetic, Acoustic noise
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Need techniques for recovering RVs
safely from attacks .



Deep-RL based Safe Recovery

o - Invariants
/ Safety \ ( always(deviation<= 10 ) ) & ( always( not collision ) ) in STL
Constraints
L if deviation<= 10: \
1. Staywithina Generate
designated reward_distance = k_distance * (10 - deviation) Reward
5 I?’?:vr;iirg/cfl‘lli(;zg)r.] if collision: # 1 if collision, else O Function
reward_collision = - k_collision * collision
K / Qota/_reward =reward_distance + reward_collision /
[ e Balance objectives Reward Reward++ => prevent violation

(mission, safety constraints) Function Reward -- 2 safety violation

v



Conclusions

«Machine learning used in safety-critical CPS
- Need resilience to both errors and attacks
- Need real-time and automated correction

-Detection and Mitigation Techniques
- Soft Errors - Range checking [DSN’21][AlSafety’23]
- Training data faults - Diverse Ensembles [DSN’22][QRS’21]
- Adversarial Patch attacks - Two-stage Defense [AsiaCCS’23]

More info: http://blogs.ubc.ca/karthik/




