Building Error-Resilient and Attack-Resilient ML-Enabled CPS

Abraham Chan, Zitao Chen, Pritam Dash, Niranjana Narayanan,

Guanpeng Li, Arpan Gujarati, Sathish Gopalakrishnan, Karthik Pattabiraman

University of British Columbia

Machine Learning

Home Care

Law Enforcement

Self-Driving Cars

Machine-learning is increasingly used in safety-critical CPS

Reliability and Security?

Our Goal

Provide Resilience without any human intervention for both faults and attacks

ML-enabled CPS: Why Resilience?

CPS deployed in unpredictable scenarios

ML cannot deal with unseen situations

Cannot simply stop under errors & attacks

ML-enabled CPS Resilience: Challenges

Real-time Operation

- In place correction/recovery

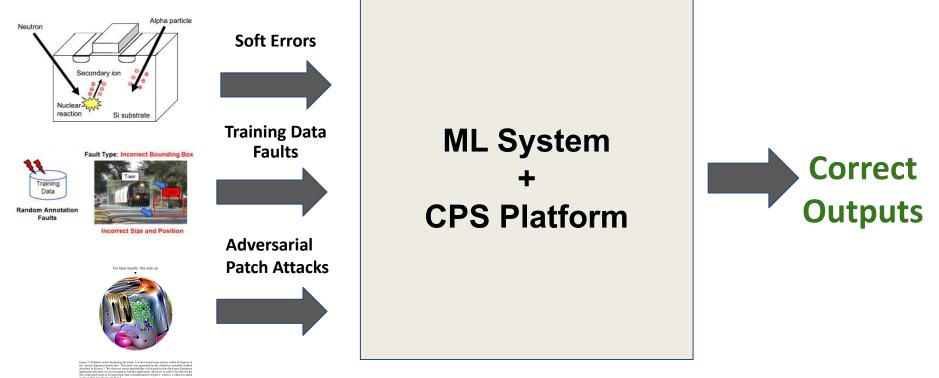
Resource Constraints

- Low performance overheads

No human in the loop

- Completely automated

Fault and Threat Model



Outline

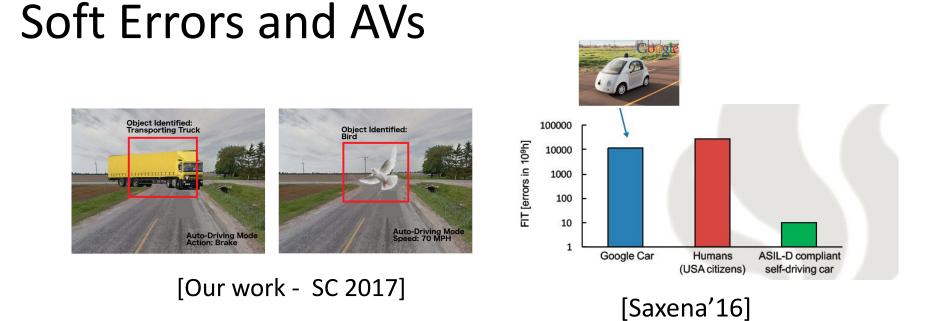
Motivation

Soft Errors [DSN'21 - Best Paper nominee, AlSafety'21 - b.p. nominee]

Training Data Faults [QRS'21 - Best Paper award, DSN'22, ISSRE'23]

Adversarial Patch Attacks [AsiaCCS'23]

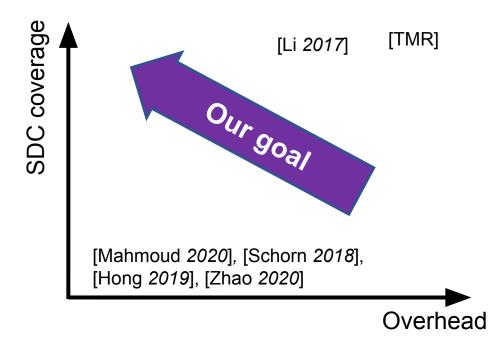
Ongoing work and Conclusions



• Safety standard – Automotive Safety Integrity Level (ASIL-D)

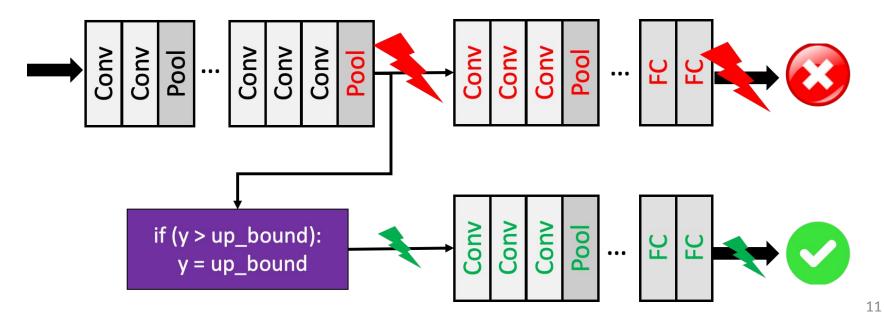
- Error rate <10 FIT (per 1 billion hours) ISO 26262
- DNN systems do not satisfy it without protection

Towards Reliable DNNs

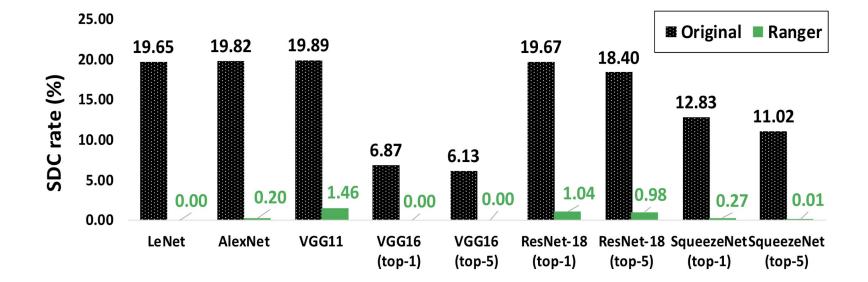


Key idea

Transform Critical Faults into Benign Faults, via Selective Range Restriction in Hidden Layers



Effectiveness of Ranger



SDC rate reduced from 14.92% to 0.44% (**34X reduction**)

Accuracy of DNNs

No accuracy degradation for the DNNs (without fault)

Overhead

0.53% Floating-point Operations (FLOPs)

Ranger in Action

Code: https://github.com/DependableSystemsLab/Ranger

Real world adoption

(a) Yolov3 prediction without fault

Post-Optimization Training

(b) Yolov3 prediction corrupted with single weight fault

Source: https://docs.openvino.ai/nightly/pot_ranger_README.html

(c) Yolov3 prediction corrupted with single weight fault - Ranger applied

Outline

Motivation

Soft Errors [DSN'21 - Best Paper nominee, AlSafety'21 - b.p. nominee]

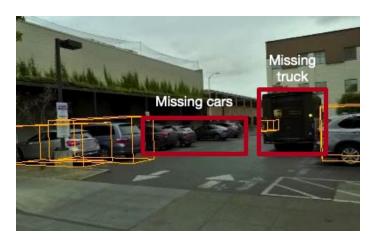
Training Data Faults [QRS'21 - Best Paper award, DSN'22, ISSRE'23]

Adversarial Patch Attacks [AsiaCCS'23]

Ongoing work and Conclusions

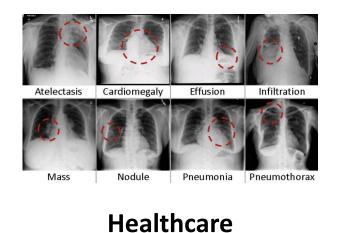
Training Data Faults

70% of Lyft dataset missing, mislabelled [Kang et al, 2022]

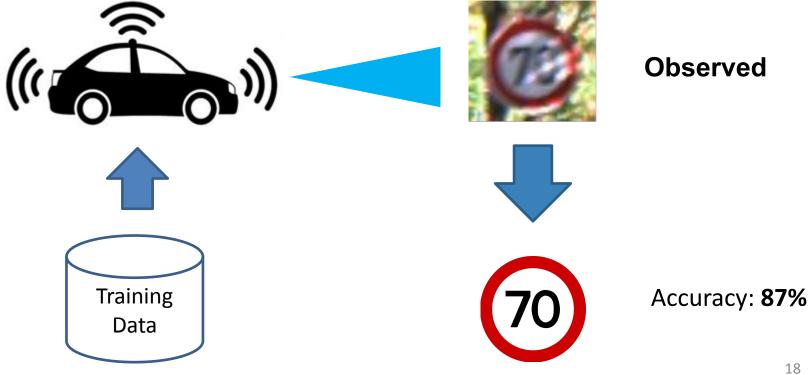


Autonomous Vehicles

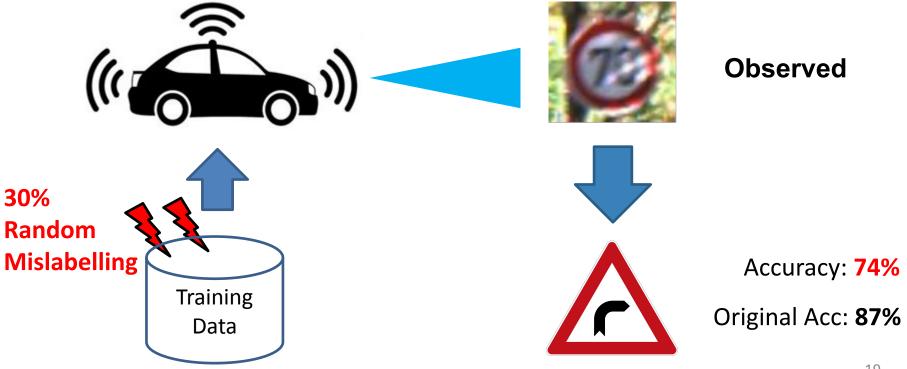
20% of ChestX-ray mislabelled [Tang et al, 2021]



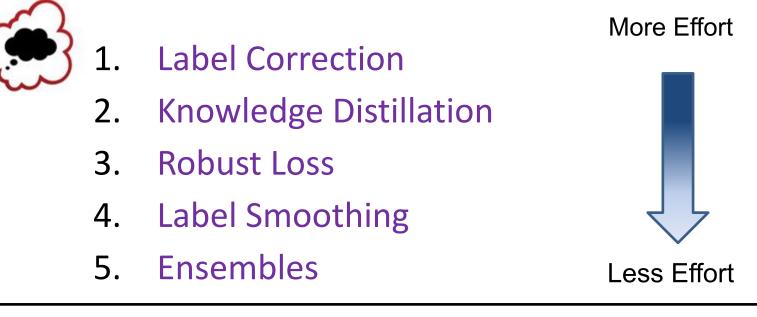
Autonomous Vehicle Example



Autonomous Vehicle Example



How to mitigate training data faults?



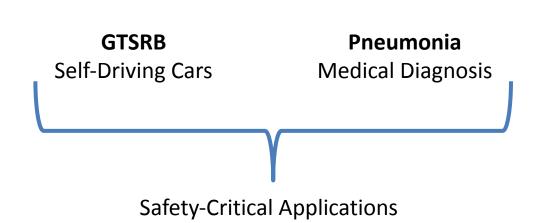
Our Work: The Fault in Our Data Stars: Studying Mitigation Techniques against Faulty Training Data in ML Applications **[DSN'22]**

Neural Networks

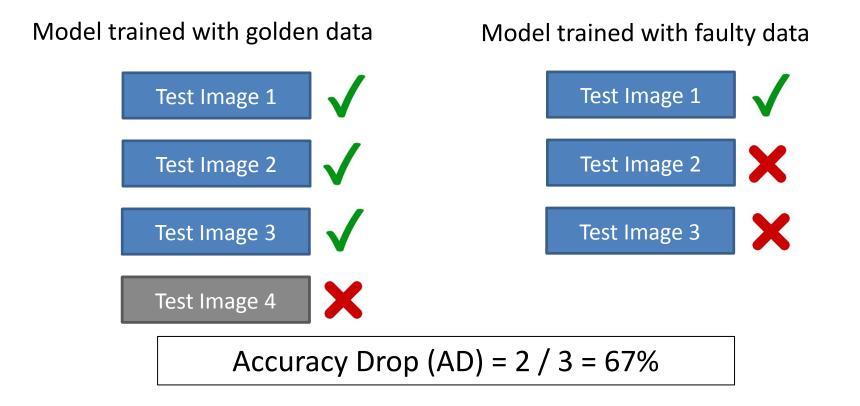
ML Model Name	Depth (# of Layers)
ConvNet	Shallow
DeconvNet	Shallow
MobileNet	Deep
ResNet18	Deep
ResNet50	Deep
VGG11	Deep
VGG16	Deep

Evaluation Datasets

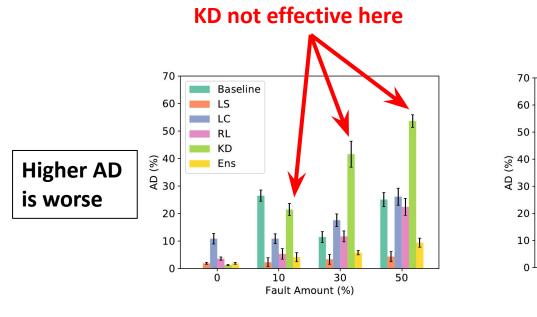
CIFAR-10 Object Detection



Reliability Metric: Accuracy Drop (AD)



AD Across Models



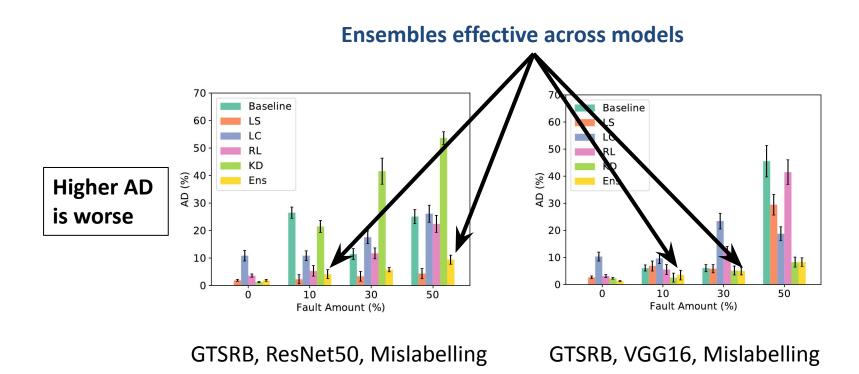
GTSRB, ResNet50, Mislabelling

KD effective here

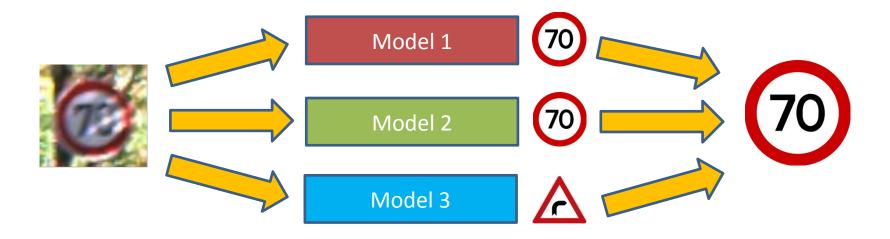
GTSRB, VGG16, Mislabelling

24

AD Across Models

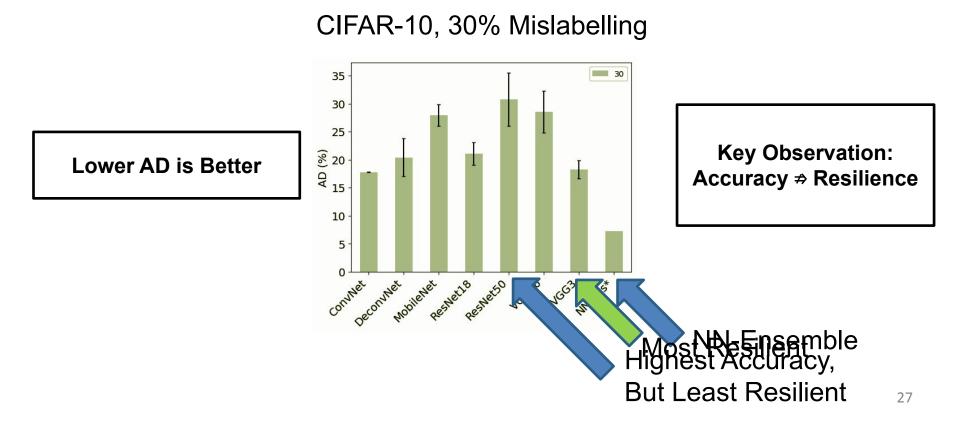


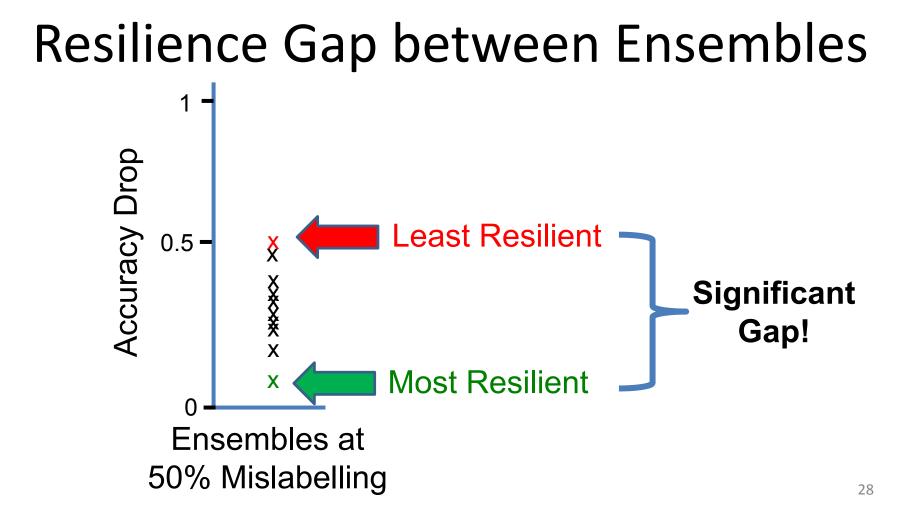
What makes Ensembles Resilient?

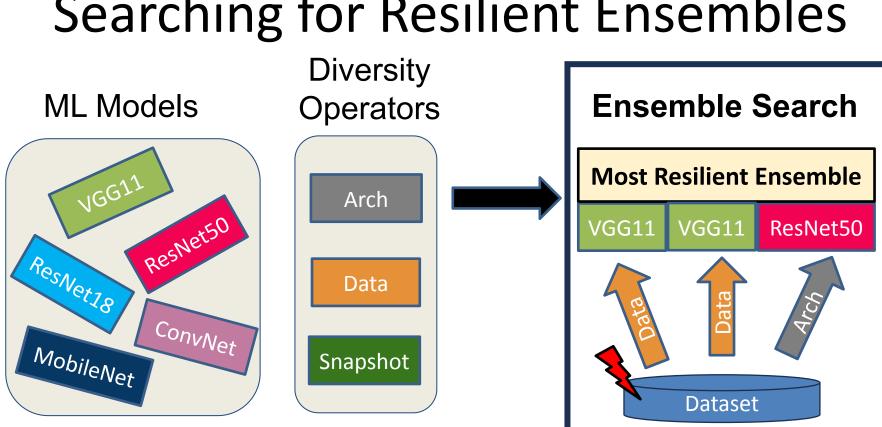


Our Work: Understanding the Resilience of Neural Network Ensembles against Faulty Training Data **[QRS'21]**

Individual Models vs Ensemble







Searching for Resilient Ensembles

Training Data Faults: Summary

- Training data faults are common and impactful
- Ensembles tolerate training data faults
- Ensembles' resilience has lot of variance
 - Need to search for the best ensemble

Code: https://github.com/DependableSystemsLab/TDFM-Techniques

Outline

Motivation

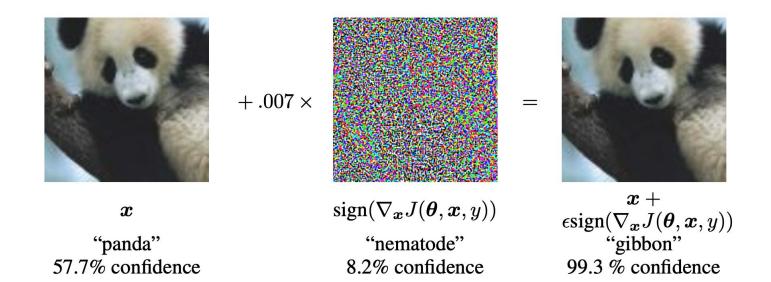
Soft Errors [DSN'21 - Best Paper nominee, AlSafety'21 - b.p. nominee]

Training Data Faults [QRS'21 - Best Paper award, DSN'22, ISSRE'23]

Adversarial Patch Attacks [AsiaCCS'23]

Ongoing work and Conclusions

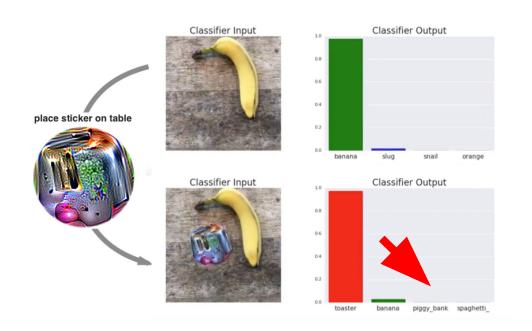
Classic Adversarial Attacks



From Goodfellow et al. ICLR'14

Adversarial patch attacks

Universally malicious and physically-realizable
 Localized adversarial patch for misclassification



Brown et al. 2017

Universally effective on any image 33

Threat model

Adversary

- White-box adversary, Access to a surrogate dataset.
- Goal: Universal targeted misclassification [Brown et al.].

Defender

- Hold-out set (random samples hidden from adversary).
- Goal: Attack detection & mitigation.

Jujutsu

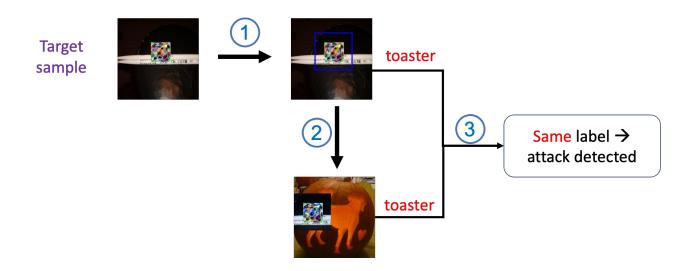
Turning the adversary's strength against the adversary

Universal Misclassification

Localized Corruption

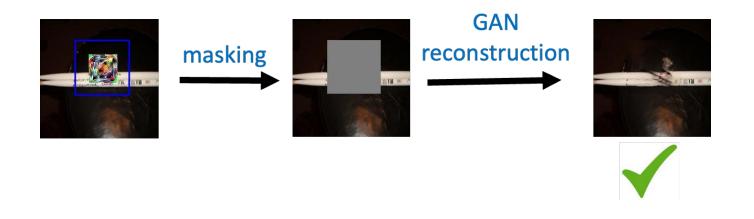
Key idea: Detection

- Adversarial patch is universally malicious.
- Expose the consistent misclassification by the patch attacks.



Key idea: Mitigation

- Localized perturbations for physically realizable attack.
- Utilize uncorrupted features to reconstruct clean samples with GAN.



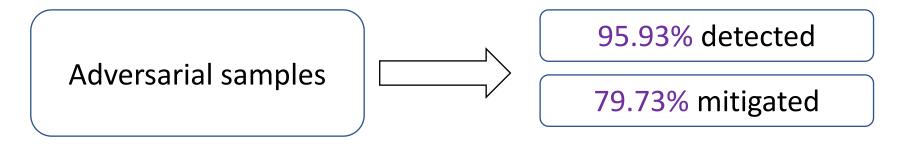
Evaluation

Datasets: ImageNet, ImageNette, CelebA, Place365

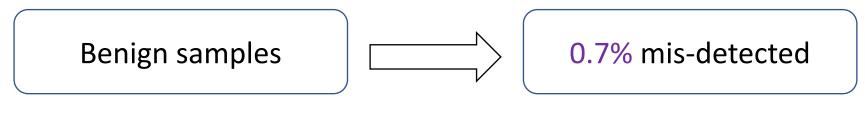
Six patch sizes: 5% - 10%

Seven architectures: ResNet, DenseNet, VGG, etc.

Overall results



Match the accuracy on benign samples



Physical-world attack

Jujutsu mitigates >95% attacks, with 3% FPR

Summary

Jujutsu: A two-stage defense against adversarial patch attacks.

Attack detection

Adversary: universal attacks

Jujutsu: expose attacks' consistent misclassification

Attack mitigation

Adversary: localized attacks

Jujutsu: utilize the uncorrupted features
Clean samples

Code
<u>https://github.com/DependableSystemsLab/Jujutsu</u>

Outline

Motivation

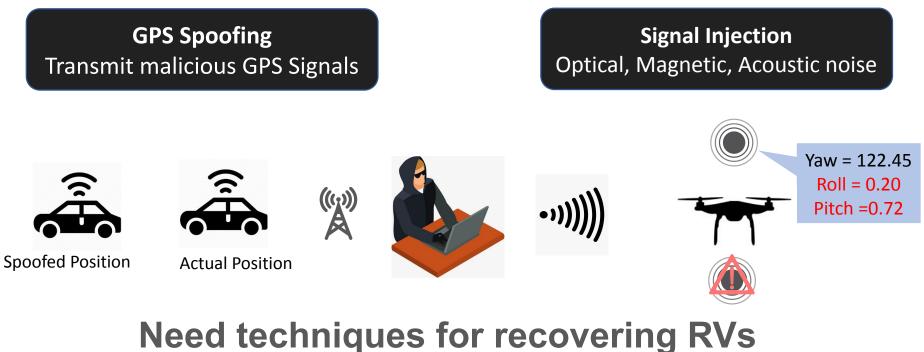
Soft Errors [DSN'21 - Best Paper nominee, AlSafety'21 - b.p. nominee]

Training Data Faults [QRS'21 - Best Paper award, DSN'22, ISSRE'23]

Adversarial Patch Attacks [AsiaCCS'23]

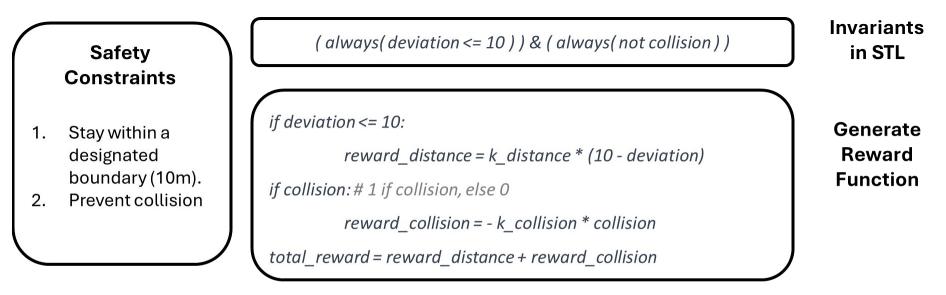
Ongoing work and Conclusions

Robotic Vehicles Security



safely from attacks

Deep-RL based Safe Recovery



Invariants Balance objectives (mission, safety constraints)

Reward Function

Reward++ \rightarrow prevent violation Reward -- \rightarrow safety violation

44

Conclusions

Machine learning used in safety-critical CPS

- Need **resilience** to **both** errors and attacks
- Need real-time and automated correction
- Detection and Mitigation Techniques
 - **Soft Errors** Range checking [DSN'21][AlSafety'23]
 - Training data faults Diverse Ensembles [DSN'22][QRS'21]
 - Adversarial Patch attacks Two-stage Defense [AsiaCCS'23]

More info: http://blogs.ubc.ca/karthik/