
Building Error-Resilient and Attack-Resilient 
ML-Enabled CPS

Abraham Chan, Zitao Chen, Pritam Dash, Niranjana Narayanan,

Guanpeng Li, Arpan Gujarati, Sathish Gopalakrishnan,

Karthik Pattabiraman

University of British Columbia



Machine Learning

Home Care Law Enforcement Self-Driving 
Cars

Machine-learning is increasingly used in safety-critical CPS
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Reliability and Security?
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Our Goal

Provide Resilience without any human 
intervention for both faults and attacks
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ML-enabled CPS: Why Resilience?

CPS  deployed in unpredictable scenarios

ML cannot deal with unseen situations

Cannot simply stop under errors & attacks
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ML-enabled CPS Resilience: Challenges

Real-time Operation

    - In place correction/recovery

Resource Constraints

    - Low performance overheads

No human in the loop

- Completely automated
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Fault and Threat Model

ML System
+
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Training Data 
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Correct 
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Outline
Motivation

Soft Errors [DSN’21 - Best Paper nominee, AISafety’21 - b.p. nominee]

Training Data Faults [QRS’21 - Best Paper award, DSN’22, ISSRE’23]

Adversarial Patch Attacks [AsiaCCS’23]

Ongoing work and Conclusions
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Soft Errors and AVs

[Our work -  SC 2017]

• Safety standard – Automotive Safety Integrity Level (ASIL-D)
• Error rate <10  FIT (per 1 billion hours) – ISO 26262

• DNN systems do not satisfy it without protection

[Saxena’16]
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Towards Reliable DNNs

Overhead

[Mahmoud 2020], [Schorn 2018], 
[Hong 2019], [Zhao 2020]

Our goalS
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[Li 2017] [TMR]
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Key idea
Transform Critical Faults into Benign Faults, via Selective Range 
Restriction in Hidden Layers
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Effectiveness of Ranger

SDC rate reduced from 14.92% to 0.44% (34X reduction)
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Accuracy of DNNs

No accuracy degradation for the DNNs 
(without fault)

Overhead 

0.53% 
Floating-point Operations (FLOPs) 
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Ranger in Action

Prediction (without fault):

156.58
Prediction (with fault):

-78.09
Prediction (with fault):

(with Ranger) 
155.97
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Code: https://github.com/DependableSystemsLab/Ranger



Real world adoption

Post-Optimization 
Training
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Training Data Faults
70% of Lyft dataset missing, 
mislabelled [Kang et al, 2022]

20% of ChestX-ray mislabelled 
[Tang et al, 2021]

HealthcareAutonomous Vehicles
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Autonomous Vehicle Example
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Observed

Training 
Data

Accuracy: 87%



Autonomous Vehicle Example

Observed

30% 
Random
Mislabelling

Training 
Data

Accuracy: 74%

Original Acc: 87%
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How to mitigate training data faults?

1. Label Correction

2. Knowledge Distillation

3. Robust Loss

4. Label Smoothing

5. Ensembles

More Effort

Less Effort

Our Work: The Fault in Our Data Stars: Studying Mitigation Techniques against 
Faulty Training Data in ML Applications [DSN’22]



Neural Networks

ML Model Name Depth (# of Layers)

ConvNet Shallow

DeconvNet Shallow

MobileNet Deep

ResNet18 Deep

ResNet50 Deep

VGG11 Deep

VGG16 Deep
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Evaluation Datasets

CIFAR-10
Object Detection

GTSRB
Self-Driving Cars

Pneumonia
Medical Diagnosis

Safety-Critical Applications
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Reliability Metric: Accuracy Drop (AD)

Test Image 1

Test Image 2

Test Image 3

Test Image 4

Test Image 1

Test Image 2

Test Image 3

Model trained with golden data Model trained with faulty data

Accuracy Drop (AD) = 2 / 3 = 67%

Test Image 4
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GTSRB, VGG16, MislabellingGTSRB, ResNet50, Mislabelling

KD not effective here KD effective here

Higher AD 
is worse

AD Across Models
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GTSRB, ResNet50, Mislabelling GTSRB, VGG16, Mislabelling

Ensembles effective across models

AD Across Models

Higher AD 
is worse
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Model 1

Model 2

Model 3

Our Work: Understanding the Resilience of Neural Network Ensembles against 
Faulty Training Data [QRS’21]

What makes Ensembles Resilient?
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Individual Models vs Ensemble
CIFAR-10, 30% Mislabelling

Highest Accuracy,
But Least Resilient

Most ResilientNN-Ensemble

Key Observation:
Accuracy ⇏ Resilience

Lower AD is Better

27



Resilience Gap between Ensembles
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Searching for Resilient Ensembles

2929
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Training Data Faults: Summary

• Training data faults are common and impactful 

• Ensembles tolerate training data faults

• Ensembles’ resilience has lot of variance

– Need to search for the best ensemble
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Code: https://github.com/DependableSystemsLab/TDFM-Techniques
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Classic Adversarial Attacks

From Goodfellow et al. ICLR’14 

32



Adversarial patch attacks

- Universally malicious and physically-realizable

- Localized adversarial patch for misclassification

Brown et al. 2017

Universally effective on any image 33



Threat model
Adversary

- White-box adversary, Access to a surrogate dataset.

- Goal: Universal targeted misclassification [Brown et al.].

Defender

- Hold-out set (random samples hidden from adversary).

- Goal: Attack detection & mitigation.
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Jujutsu

Turning the adversary’s strength against the adversary

Universal Misclassification

Localized Corruption
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Key idea: Detection

● Adversarial patch is universally malicious.

● Expose the consistent misclassification by the patch attacks.
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Key idea: Mitigation

• Localized perturbations for physically realizable attack.

• Utilize uncorrupted features to reconstruct clean samples with GAN.
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Evaluation

Datasets: ImageNet, ImageNette, CelebA, Place365

Six patch sizes: 5% - 10%

Seven architectures: ResNet, DenseNet, VGG, etc.
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Overall results

Adversarial samples

Benign samples

95.93% detected

0.7% mis-detected

Match the accuracy on benign samples

79.73% mitigated
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Physical-world attack

Jujutsu mitigates >95% attacks, with 3% FPR
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Attack mitigation

Jujutsu: utilize the uncorrupted 
features 🡪 clean samples

Summary

Attack detection

Adversary: universal attacks

Jujutsu: A two-stage defense against adversarial patch attacks.

Code 🡪 https://github.com/DependableSystemsLab/Jujutsu 

Jujutsu: expose attacks’ 
consistent misclassification

Adversary: localized attacks
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Robotic Vehicles Security

Yaw = 122.45 
Roll = 0.20 
Pitch =0.72 

Signal Injection
Optical, Magnetic, Acoustic noise

Actual PositionSpoofed Position

GPS Spoofing 
Transmit malicious GPS Signals

Need techniques for recovering RVs 
safely from attacks 43



Deep-RL based Safe Recovery
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Conclusions

• Machine learning used in safety-critical CPS
• Need resilience to both errors and attacks

• Need real-time and automated correction 

• Detection and Mitigation Techniques

• Soft Errors - Range checking [DSN’21][AISafety’23]

• Training data faults - Diverse Ensembles [DSN’22][QRS’21]

• Adversarial Patch attacks - Two-stage Defense [AsiaCCS’23]

More info: http://blogs.ubc.ca/karthik/
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