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Video released of Uber self-driving crash
that killed woman in Arizona

New footage of the crash that killed Elaine Herzberg raises fresh
questions about why the self-driving car did not stop

The Guardian, Mar 22 2018

A Uber dashcam footage shows lead up to fatal self-driving crash - video



Assured NIN-based Perception

Perception-based control is an enabling
technology for the state of the art of Autonomous

systems.

: 2 " va¥
,L T e These systems rely on machine vision to detect
\ o objects of interest.
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Subtle changes lead to several misidentifications
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Assured NN-based Perception

Subtle changes lead to several misidentifications

/ SOTA perception-based \
systems are not reliable due
to the use of

learning base neural networks.
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Subtle changes lead to several misidentifications

/ SOTA perception-based \
systems are not reliable due
to the use of

learning base neural networks.
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4 Assured NN-based Perception O A
Design Neural Networks for machine
\ Vision with provable guarantees. Y
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Assured NIN-basec

Different
dynamics
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Formal Verification 0 Model NN

Tools for NN Analysis Checker

Formal
Property ¥

H. Khedr, J. Ferlez, and Y. Shoukry, "PEREGRINN: Penalized-
Relaxation Greedy Neural Network Verifier,"CAV, 2021.

J. Ferlez and Y. Shoukry, "Bounding the Complexity of Formally
Verifying Neural Networks: A Geometric Approach," CDC 2021.

J. Ferlez, H. Khedr, and Y. Shoukry, “FastBATLLNN: Fast Box Analysis
of Two-Level Lattice Neural Networks,” HSCC 2022.

H. Khedr and Y. Shoukry, “DeepBern-Nets: Taming the Complexity of
Certifying Neural Networks using Bernstein Polynomial Activations and
Precise Bound Propagation,” arXiv 2023.

H aith am D I, J amnes Haitham Khedr and Yasser Shoukry, “CertiFair: A Framework for

Certified Global Fairness of Neural Networks,” 37th AAAI Conference on

Kh e d r' Fe rl EZ Artificial Intelligence (AAAI-23).
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INnput-Output Verification

counterexample

O
) Py
/D y=NNx) € [ fﬁ >

{x ERN | x € P, ANN() & P, A (Zl I, NN (X)) < 0) } -

\— — \—— \— —
Input Output Linear input/output
constraints constraints constraints
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Input-Output Verification
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+.007 x

panda -_ | gibbon
58% confidence 99% confidence

Adversarial robustness:

{x|x e Rko, |x—x|, < €, max N/ N (x), =N N(x),,} =

i=1,....n
V V
P, P,
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Fairness of Decision Making!

e Similar individuals are to be treated similarly by the decision

model (e.g. Hiring decision) N »
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* Closeness in feature space
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INnput-Output Verification

Fairness of Decision Making!
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INnput-Output Verification
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Fairness of

e Similar individuals are to be treated similarly by the decision

model (e.g. Hiring decision) N
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INnput-Output Verification

y=NN(x) <0
e —

P,

Decision Making?

L yapunov/Barrier certificate:
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stability/saf
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Adversarial robustness:
- The attacker can not fool the detector;

- The Out-of-Distribution Detector
wiwsiae (OOD) Is robust to bounded noise.

Fairness

Privileged
gender

- Similar individuals are to be treated
& & ..~ similarly by the decision model

Unprivileged

-/
gender
H

Lyapunov/Barrier certificate:
- [rain a NN controller along with a

r~

stability/safety certificate.

['{xe IRko|x€Px /\,/V,/V(x)&‘Py/\ <f/i<1hf(x,/V/V(X))S0>} =




~ Design-for-Veritiability
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Model Checl<er]—>NN

* Formal verification of NINs i1s NP-hard.

CPS Lab
esilient



~ Design-for-Verifiability

P50 o NN —p
Formal Property ¥

Model Checl<er]—>NN

* Formal verification of NINs i1s NP-hard.

* Are all NNs “equally’ hard?
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Zt *NN—»
Formal Property ¥

Model Checl<er]—>NN —

e Formal verification of NINs i1s NP-hard.
* Are all NNs “equally’ hard?

*Can we find NINs with special structure/semantics that
lead to "fast’” verification?
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Design-for-Veritiability
§ > NN —p
Formal Property e

Model Checl<er]—>NN —

Formal verification of NINs i1s NP-hard.
* Are all NNs “equally’ hard?

*Can we find NINs with special structure/semantics that
lead to “fast” verification?

*Can we replace the RelLU activation non-linearity with
one that I1s amenable to “fast” verification?
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Design-for-Verifiability
S50 °NN—» B
Formal Property Sp_,[Model Checl<er]—>NN —

Verify “easier” ReLU-NN

architectures
(NN structure/semantics)

Two-Level Lattice (TLL) NNs are
verifiable in polynomial time*

(* in the number of neurons)

G on

o=

0=/
O

J. Ferlez and Y. Shoukry, "Bounding the Complexity of Formally Verifying
Neural Networks: A Geometric Approach," CDC 2021.
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Design-for-Verifiability

':Zj;}f;o 0 NN
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Cormal Property O — l Model Checker]—> ",

Verify “easier” ReLU-NN
architectures
(NN structure/semantics)

Two-Level Lattice (TLL) NNs are
verifiable in polynomial time*

(* in the number of neurons)

cg_j

o_o Pe

Theorem:
Any CPWA function can be

rewritten as:

— 1m mln

which is known as the two-
level lattice representation.

J. M. Tarela and M.V. Martinez. Region configurations for
realizability of lattice Piecewise-Linear models. Mathematical
and Computer Modeling, 1999.

N = # local linear functions
® CPS Lab

esilient M = # uniaue order recions



Design-for-Verifiability
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Formal Property P
Verify “easier” ReLU-NN
architectures
(NN structure/semantics)

Two-Level Lattice (TLL) NNs are
verifiable in polynomial time*

o__j

o_o_o .

(* in the number of neurons) Theorem:
........... S S | Any CPWA function can be
AN I | | rewritten as:
e W e e o f(2) = m min
T e R SIRM fiesiAL-
- LY ed e .| which is known as the two-
b Skt L level lattice representation.

J. M. Tarela and M.V. Martinez. Region configurations for
realizability of lattice Piecewise-Linear models. Mathematical

and Computer Modeling, 1999.
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Formal Property (9

Verify “easier” ReLU-NN
architectures
(NN structure/semantics)

Two-Level Lattice (TLL) NNs are
verifiable in polynomial time*

(* in the number of neurons)

Verify “structured” properties
(use NN structure/semantics)

FastBATLLNNN: Fast Box-like
constraints of TLL NNs

102 E

Proved cases

J. Ferlez and Y. Shoukry, "Bounding the Complexity of Formally Verifying
Neural Networks: A Geometric Approach," CDC 2021.

J. Ferlez, H. Khedr, and Y. Shoukry, “FastBATLLNN: Fast Box Analysis
of Two-Level Lattice Neural Networks,” HSCC 2022.
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Design-for-Verifiability

A
K,o_

Formal Property 2

X Oi;?i?i?i © N N
o _'| Model Checker]—>NN 7

Verify “easier” ReLU-NN
architectures
(NN structure/semantics)

Two-Level Lattice (TLL) NNs are
verifiable in polynomial time*

(* in the number of neurons)

Verify “structured” properties
(use NN structure/semantics)

FastBATLLNNN: Fast Box-like
constraints ofTLL NNs

Proved cases

Verify NNs with ‘“easier”
activation units (use nice properties
of other nonlinear functions)
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Design-for-Verifiability

g oj;ijj}fijo D N N
’° _>I l Model Checl<er]—>NN =
Formal Property (P

Verify “easier” ReLU-NN Verify NNs with ‘“easier”
architectures activation units (use nice properties
(NN structure/semantics) of other nonlinear functions)
Two-Level Lattice (TLL) NNs are Bernstein Polynomials enjoy several “nice”
verifiable in polynomial time¥* properties (enclosure of range and subdivision)
(* in the number of neurons) —~ \ n
b&fjiﬁ“[’l‘)) O-'El’u](x) = Z CkbrEf;cu](x)’ x € [l,u],
. ° T — \Y; % Uy €y oney Cp) n
Verify “structured” properties /\/ B ( ) N k
(use NN structure/semantics) i) O ) = (u— Iy g

FastBATLLNNN: Fast Box-like
constraints of TLL NNs

102 E

101 E

2022 VNN-COMP Award L

o W8 e w100 150 200
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-for-Verifiability

S 4 3

Design
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Model Checl<er]—>NN

Formal Property ¥

— ¥

Verify “easier” ReLU-NN
architectures
(NN structure/semantics)

Two-Level Lattice (TLL) NNs are
verifiable in polynomial time*

(* in the number of neurons)

Verify “structured” properties |
(use NN structure/semantics)

FastBATLLNNN: Fast Box-like
constraints ofTLL NNs

Verify NNs with ‘“easier”
activation units (use nice properties
of other nonlinear functions)

Bernstein Polynomials enjoy several “nice”
properties (enclosure of range and subdivision)

yv‘
H— o(x; 1, u, g, ...,
%) (w31, u,c9

Cn)

Co

b[lu]( )_

n

o) = Y eblhln), x e[l ul,

1 el

()

(u— D)

——(x -

D — x)*

Deep Bern- Nets = Precise Bound Propagation

] Order €= 0001 e =0.01 = 0.04 €e=0.1
102 - IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP
E 2 -20.16 -16.63 4272 -16.56 -837 2222 7133 -8.25
] 3 -96.55 -12.16 -205.09 -14.02 -34962.84 2291 | -2302369792  -137.07
S ] 4 -3550.07 -10.15 -56758.56 -13.72 | -1.09065E+15 923 | -8.24695E+24  -23.03
) 5 -1345.89 -11.78 | -2.2861E+35  -12.93 -inf -8.68 -inf -18.11
101 -
Z E 6 | -109130.05 -12.24 -inf -17.03 -inf -30.47 -inf -72.53
103 = 0.001 €= 0.01 €= 0.04 e= 0.1
-e- IBP ; :
— -e-- Bern-IBP /
% 102 1 ‘/‘/
| 10! e l
> N e e Y -
H. Khedr and Y. Shoukry, “DeepBern-Nets: Taming the Complexity of 2 100 e - K%
Certifying Neural Networks using Bernstein Polynomial Activations and 0y g 5 “““ 6 T T R
Precise Bound Propagation,” AAAI 2024. Degree Degree Degree Degree
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Assured NN-based

Perception

Ulices Santa
Cruz Leal

U. Santa Cruz and Y. Shoukry, “NNLander-VeriF: A Neural Network Formal
Verification Framework for Vision-Based Autonomous Aircraft
Landing,” NASA Formal Methods Symposium (NFM), 2022.

U. Santa Cruz and Y. Shoukry, “Certified Vision-based State Estimation for
Autonomous Landing Systems using Reachability Analysis,” CDC 2023.




Assured NIN-based Perception

*Can we train NINs with
provable guarantees In
terms of:

* Ability to detect certain
objects!

* Abllity to estimate the
location of these objects!?
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Assured NIN-based Perception
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Assured NIN-based Perception
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Assured NIN-based Perception

' |r If Ir fo

= (%,9,2,0,9.p) € R

» State Estimate

Image from Camera

I1(¢) € {0,1}**°

I(f) — Ir(g) T

E)riginal Image = Image of Runway +
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Assured NN-based Perce

C:R* — {0,1}2%?

€0 \\\

Image from Camera

I1(¢) € {0,1}%®

>

Htion

State Estimate

E=(%9,20,y,p) € R

eriginal Image = Image of Runway +

I(g) — Ir(&) T

-

\§

Given: A camera image (&) = I,.(§) + I,(€)

Given: User defined error € > 0
Design: NN Estimator ¢ = NA/(I)

such that ||§ —¢|| < )

-
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Assured NIN-based Perception

(PCF) P
/jgp’ (CCF)
Image ri.q) (P
Formation /
Process f
0
C:R®— {0,1}*
e/
y 1 0 0 gf (D2 |
[Z:y(;::-‘ = [p(;v —(,)Oh U(()) [5 ?p 8 8-‘ 8 _CO.S $o singy G
{szcpJ {O 0 1J {O 0 1 OJ . St)nge CO(S)ée §1z plz (RCF)
” /1 7 o _ Qxpcr Qyecr R
p (pCUPCF’pyPCF) o <{quCFJ ! \‘quCFJ) p

f: focal length
Pw, Pr: Pixels/image size
Up, Vg: image size scale

/! < m 11 < E
visible — yes |p:npcpl — 2 N |pyPCF| — 2 — M — E
no otherwise Pw W Ph H



Assured NN-based Perce

Santa Cruz, U., Shoukry, Y. (2021). NNLander-VeriF: A Neural Network Formal]

Verification Framework for Vision-Based Autonomous Aircraft Landing . In:
NASA Formal Methods Conference
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(Trainable) = (Non-Trainable)
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Assured NIN-based Perception

Geometry-based
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Assured NIN-based Perception

§:L‘ = 5 100
&y =10 Generative
N iy —10 . = Model 200
4 Model
\\ gz — 180 — . 300
AN §9 =0.5

£ —% >\7

Geometry-based
Generatwe Vodel

Position, | |
angles & |

—

Physical Parameters Geometrical Parameters
(Trainable) = (Non-Trainable)

(1]
P
-~ @
(D)
D
0
-
)
-{D
(D
<D
()
()
-
M
_{m
0
— D
)
“{m
—(m)
__{m
D
— ()




Assured NN-based Perce

Geometry-

Moy

Position, |
angles & |i@

—

Physical Parameters Geometrical Parameters
(Trainable) = (Non-Trainable)

100

200

300

400

300 A

400




Assured NN-based Perception

/ Theorem (Informal Version) \
For any 2D object that can be formed as unions and
intersection of polytopes, then the Geometry-based
Generative Model (GGM) Neural Network is

equivalent to the Pin-hole camera model, i.e.,
1,(5) = GGM,(S)

Geometry-based
Generative Model
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Position, .
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Assured NIN-based Perception

Theorem (Informal Version)

For any 2D object that can be formed as unions and
intersection of polytopes, then the Geometry-based

Generative Model (GGM) Neural Network is
equivalent to the Pin-hole camera model, i.e.,

I,(¢) = GGM (<)
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/ Theorem (Informal Version) \
For any 2D object that can be formed as unions and
intersection of polytopes, then the Geometry-based
Generative Model (GGM) Neural Network is

equivalent to the Pin-hole camera model, i.e.,
1,(&) = GGM,(S) (Vicon Cameras)

Based Camera
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/ Theorem (Informal Version) \
For any 2D object that can be formed as unions and

intersection of polytopes, then the Geometry-based
Generative Model (GGM) Neural Network is

equivalent to the Pin-hole camera model, i.e.,
1,(5) = GGM,(S)
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Geometrical Parameters
(Non-Trainable)

NIN-based Perception

Can we design certified
“object detectors™?

U
4

Can we design certified
“state estimators™?

VAN
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Case |:ldeal Image

I(¢) = GGM,(¢)

Geometry-based
Generative Model

Position,
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Physical Parameters
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Image

Geometrical Parameters
(Non-Trainable)
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Perception

Can we design certified
“object detectors™?
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Can we design certified
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Assured NN based Perception

Case |:ldeal Image jjj Can we design certified
(&) =GGM (&) s “object detectors”?

VAN

Can we design certified
“state estimators™?

Geometry-based
Generative Model

Estimated
position,
angles &

Position,
angles &
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0

4 )

Case |:ldeal Image Can we design certified
(&) =GGM (&) s | “object detectors™
T 4 )

Can we design certified
“state estimators™?

Geometry-based
Generative Model

Estimated
position,
angles &

Position,
angles &
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Case 2: Limited Noise |

(&) = GGM(&) + 1, "
i

Perception

dSEC
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Can we design certified
“object detectors™?

N\

VAN

Can we design certified
“state estimators”™?




Assured NN- based Perception

Case 2: Limited Noise | R [ Canwe design certified
(&) = GGMO(@ + In - “object detectors”?
W

VAN

Can we design certified
“state estimators™?

Geometry-based
Generative Model

Estimated
position,
angles &

Position,
angles &



Assured NIN-based Perception

Case 2: Limited Noise - E_GS

(&) = GGM, (&) + 1, It

Can we design certified
“object detectors™?

N
VAN

. 1| Can we design certified
................................................ QX o NN ) “state estimators™?

Geometry-based
Generative Model

Estimated
position,
angles &

Position,
angles &



Assured NN-based Perception

Case 3: Cluttered Noise Image Can we design certified
“object detectors™?

N
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/ Theorem (Informal Version)
Given:

iven:
* Acameraimage: [(§)

Under the following assumptions:

) I,(&) ¢ {NN-(§I€ € E}
(ii) V&€ € E*.[1,(6) @ NN (€) = 04 3]

The following holds:

p—
— K
H H

- Partitioning of the state space: =1, ...,

/ ;
& 4

Htion

Perce

7

Other objects can not be generated by the
same geometric generative model of the
runway, i.e., other objects not look like a
target runway.

\

N

7

Other objects does not appear in the
neighborhood of the runway

NN output:

.|+ The partition where the state belongs

 Filtered image estimate.
\.

-
Bound:

L, Lipschitz constant of Generative Model

/

d  Radius of the infinity ball used to
partition the state space

\.
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Assured NIN-based Perception

SilkyevCam Event Based Camera Ground Truth states (Vicon Cameras)
Model PPS3MVCD (PROPHESEE) / ‘ i 4
Image size Type 3/4“ (Diagonal 12mm) /
IV!odulé effective pixels \1/!(:: nf :41(?5 5:1) X 480 (V) ) Y
:::lc; Latency 200us . 2 '

Filtered Video

Th=0.49, y=1.73, z=0.55
Error =0.27
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X. Sun and Y. Shoukry, "Neurosymbolic Motion and Task Planning for Linear
Temporal Logic Tasks,” T-RO, submitted, arXiv 2022.

X. Sun, W. Fatnassi, U. Santa Cruz, and Y. Shoukry, "Provably Safe Model-

Based Meta Reinforcement Learning: An Abstraction-Based Approach," CDC
2021.

X. Sun and Y. Shoukry, “NNSynth: Neural Network Guided Abstraction-Based
Controller Synthesis for Stochastic Systems,” CDC 2022.
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Assured Meta Learning for LTL Tasks

Given: a nonlinear dynamical system z(**1) = f(2(®) 4 *)) 4 g(2*F) 4 *))

The nominal model f is assumed to be black-box model, e.g,, a simulator or a neural network.

The unknown model-error g is assumed to be bounded and can be learned by Gaussian
Process regression.
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Assured Meta Learning for LTL Tasks
Given: a nonlinear dynamical system z(**1) = f(2(®) 4 *)) 4 g(2*F) 4 *))
Obijective: train a neural network-based controller u'*) = NN/ (z(*))

such that the closed-loop system satisfies safety and liveness specifications:

W o W W
NN? Xinit — ¢Safety A ¢liveness7

The nominal model f is assumed to be black-box model, e.g,, a simulator or a neural network.

The unknown model-error g is assumed to be bounded and can be learned by Gaussian
Process regression.
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Assured Meta Learning for LTL Tasks

Given: a nonlinear dynamical system z(**1) = f(2(®) 4 *)) 4 g(2*F) 4 *))

Obijective: train a neural network-based controller u'*) = NN/ (z(*))

such that the closed-loop system satisfies safety and liveness specifications:

4%
NN 1n1t ¢safety A ¢liveness )

The nominal model f is assumed to be black-box model, e.g,, a simulator or a neural network.

The unknown model-error g is assumed to be bounded and can be learned by Gaussian
Process regression.

Xgoal

gwo,NN qbsafety < Vk ~ N7 g:l:o,./\/:/\/'(k) Q/ (91 U 02
gil?o,NN — ¢liveness — dk € {17 "oy H}a ga:o,J\/'N(k) < Xgoal

Oy




Assured Meta Learning for LTL Tasks

Given: a nonlinear dynamical system z(**1) = f(2(®) 4 *)) 4 g(2*F) 4 *))

Obijective: train a neural network-based controller u'*) = NN/ (z(*))

such that the closed-loop system satisfies safety and liveness specifications:

4%
NN 1n1t ¢safety A ¢liveness )

The nominal model f is assumed to be black-box model, e.g,, a simulator or a neural network.

The unknown model-error g is assumed to be bounded and can be learned by Gaussian
Process regression.

X,onl €$O,NN qbsafety <~ Vk €N, gazo,./\/'./\/'(k) Q/ 01 U Oy
goa

ga?O,NN — ¢liveness — dk € {17 S H}7 gazo,J\/'N(k) < Xgoal

Oy

- Task = {workspace, obstacles, LTL mission, model error}
O3

S not known during training e



Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function Task

Neurosymbolic
Training
(Offline phase)

Symbolic
Composition
(Execution phase)

Task = {workspace, obstacles,
LTL mission, model error}
s not known during training

Library of NN
Controllers

Switching

Network
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Assured Meta Learning for LTL Tasks

Train a finite |

Training data/reward function

sensor

sensor

sensor

information | -

information | -

information | -

ibrary of NNs offline to satisfy infinitely many tasks at runtime

Task

Symbolic
Composition
(Execution phase)

Neurosymbolic
Training
(Offline phase)

Task = {workspace, obstacles,
LTL mission, model error}
s not known during training

Library of NN
Controllers
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Network
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Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/r:eward function Ta:s.k
Neurosymbolic Symbolic Task = {workspace, obstacles,
Training Composition o
(Offline phase) (Execution phase) |_T |_ MISSION ’ Mo d e | erro r}

re—r o s not known during training

Controllers Network

sensor s
information | -

control

sensor action

information | -

sensor :
information | -

Composition of NNs is provably correct

Individual NNs are provably correct
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Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function Ta:s.k
+*" Neurosymbolic*s Symbolic Task = {workspace, obstacles,
Y Training . Composition o
(Offline phase) (Execution phase) |_T |_ MISSION ’ m OCI e | erro r}
H = o s not known during training
- Controllers Network
infz?:i(;iron

s control
sensor X action

information | -
| |

.
et
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o ove,
......

N
O .
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a
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Composition of NNs is provably correct

sensor :
information [ -

Individual NNs are provably correct

79




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function

R Neurosymbolic *s
o Training .
(Offline phase)

: o S
s TN NN = Continuous Piece-Wise Affine
: (CPWA) functions
sen;'or =
information § -
sen§>r :
informa-tion .

sensor :
information [ -

Individual NNs are provably correct .




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function

R Neurosymbolic *s
o Training .
(Offline phase)

M e NN = Continuous Piece-Wise Affine
: (CPWA) functions

sen;'or :
information | -
[ |

ul®) = Kz + b,
P={(K,b)| Ke K ,be B }
—~— T~

polytopic polytopic

| ]
senspr :
information | -

sensor :
information § -

Individual NNs are provably correct N




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function

R Neurosymbolic *s
o Training .
(Offline phase)

: o S
s TN NN = Continuous Piece-Wise Affine
: (CPWA) functions
sen;'or .
information J -

ul®) = Kz + b,
P={(K,b)| Ke K ,be B }
—~— T~

polytopic polytopic

| ]
senspr :
information | -

sensor :
information § -

Controller Partitions:
P={P,Ps,...,Py,}

Individual NNs are provably correct .




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function

R Neurosymbolic *s
o Training .
(Offline phase)

Library of NN
Controllers

sen;'or

|
senspr

P={(K,b)|Ke K ,be B }

polytopic polytopic

sensor :
information [ -

Controller Partitions:
P={P,Ps,...,Py,}

Individual NNs are provably correct .




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function

Py
. s
*" Neurosymbolic *s
* " Training s 0 Py > @2
(Offline phase) q 1 q )
. Library of NN Pl (% s
. Controllers
Seni.or q3 q4 q3 q4

|
senspr

P={(K,b)|Ke K ,be B }

polytopic polytopic

sensor :
information § -

Controller Partitions:
P={P,Ps,...,Py,}

Individual NNs are provably correct y




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function

Py
. s
*" Neurosymbolic *s
o Training . 7 Py > @2
(Offline phase) q 1 q )
. Library of NN Pyl |P2 IS
. Controllers
Seni.or Q3 q4 q3 q4

information J -

| ]
senspr :
information | -

Training Data (offline or Training

through interaction) >

sensor :
information § -

Individual NNs are provably correct .




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function . . .
NN Weight Projection:

R Neurosymbolic *s
o Training .
(Offline phase)

L
N
N
o Library of NN
. Controllers
.
sen;'or
information J -
sen§>r g C
inf i ‘ . . .
ome e Training Data (offline or Training
" through interaction) >
.
)
)

sensor :
information § -

Individual NNs are provably correct y




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime
Training data/reward function N N Welgh-t Plnoj ec-ti o
.+ Neurosymbolic *s

*  Training % argmin max |ANN 5(x) — NNo(z)|1

. (Offline phase) k W(F),/b\(F) TEQ
s [ Libraryof NN s.t. (K;,b;) € P, VR; € {R € Lan, | RNq# 0}
- Controllers
sen;'or

information J -

| ]
senspr :
information | -

Training Data (offline or Training

through interaction) >

sensor :
information § -

Individual NNs are provably correct .




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function . . .
NN Weight Projection:

’ -
.* Neurosymbolic *s

*  Training " argmin max |ANN 5(x) — NNo(z)|1

. (Offline phase) W(F),/b\(F) TEQ
: Library of NN S.t. (IA(Z-,E-) e P, VR, e {Relyn, | RNg#0}
- Controllers
- - Linear program.
ntormation | - The change by projection max [NNG(w) = NNo(2)]x
5 can be upper bounded.
sen&r

information | -

Training Data (offline or Training

through interaction) >

sensor :
information § -

Individual NNs are provably correct .




Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/reward function

Neurosymbolic
Training
(Offline phase)

Task

Symbolic
Composition
(Execution phase)

Library of NN Switching
Controllers Network
» ..::"“ o WK
sensor . G- ,

information | -

LAY
O
. e
o

.,

.
------

sensor : - r
information § - SR o
. 0‘,.'. O..o..

.......
.

.
.....

sensor || . RN
information J - . 5

Task = {workspace, obstacles,

LTL mission, model error}

s not known during training

control

Composition of NNs is provably correct

Individual NNs are provably correct
e Construct finite MDP
* NIN-Weight-Projection Iraining

T
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Assured Meta Learning for LTL Tasks

Train a finite library of NNs offline to satisfy infinitely many tasks at runtime

Training data/r:eward function Ta:s.k
Neurosymbolic Symbolic Task = {workspace, obstacles,
Training Composition o
(Offline phase) (Execution phase) |_T |_ MISSION ’ Mo d e | erro r}
re—r o s not known during training
Controllers Network

o
ot
* e
IR ARG
B

‘e

sensor 2 B ’
information § - g g

O
., .
oy %00
o

.

”\"::...:::7 -...:'u.,. . M ,..::.‘:'::_ s .._.... control
sensor . G R % L™ action

information J - S -~
v ."'.. .°o:‘.

. ..
.
o

of e,
......

.......
.

Composition of NNs is provably correct
® Safety: Back-tracking
sensor | - @y ® | iveness: Dynamic Programming

information | -

Individual NNs are provably correct
e Construct finite MDP
* NIN-Weight-Projection Iraining 50




Assured Meta Learning for LTL Tasks

Theorem (informal):

Consider the nonlinear system ™ = f(z,u) + g(z,u). Let MN
be the library of neural networks trained using the projected
neural network training algorithm. For any arbitrary task

T = (workspace, error in dynamics, LTL specifications)

Then:

Activation map

| Pr (NN [mm®

= ) — mar(P

space of CPWA functions (ReLU NNSs)

= )| < HZAW

(e, NN[mm,r] can generalize to any task, If the task
s achievable)




Assured Meta Learning for LTL Tasks

Practical Considerations:

- Do we need to train a full NN library 917
- No, we can use a partial library + formal transfer learning
- We can obtain the same theoretical guarantees

- Can we used data collected from previous tasks to accelerate
the framework!?

- Yes, expert data can be used to better train the NN library
- |t can also be used to accelerate the construction of the
symbolic model




Comparison against Meta-RL
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Neurosymbolic
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https://arxiv.org/abs/2210.05180
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Xiaowu Sun and Yasser Shoukry, “Neurosymbolic Motion and Task Planning for Linear Temporal Logic Tasks,” T-RO, submitted.



https://arxiv.org/abs/2210.05180

Formal Verification

Tools for NN Analysis

Formal
Property ¥

Assured NN-based
Perception

Controller
(Deep RL)

~f 1 |r 19—

Model
Checker

Assured NN-based

T a—

Control

— (0 (LTL Specs)

NN




Synthesis of NN-based Safety Filters

»

fscvcoL |
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James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody U nve rl ﬂ e d N e_tWO r|<

Fleming, ¢‘Shiel :APr ly Saf Filter for Unsaf
Controllers,” arXiv 2022.


https://arxiv.org/abs/2006.09564
https://arxiv.org/abs/2006.09564
https://arxiv.org/abs/2006.09564
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Synthesis of NN-based Safety Filters

Q
Map Town04 : ) .

Number of vehicles: 1

TVehicle Ford ﬁ\summg SN

Y B

Pappd r /s edidl
- ~ 0 )

:Hl—‘.zd:::d -89° "W

W VE

Location=4061,-127.1)

Height. -0m
d Ak =
Throttle . ) B
Steer. [ o 1
Brake. I , ‘ : .
Reverse: o e J :
Hand brake: o o '\ 3
Manual o F o - "
Gear: 1 ,[
: E J . -
®Reward: 1526 -~ ‘ "_-
" - _\
Manewver Follow Lane .
Laps completed: 1.09 %
Dstance traveled: Oom
Center deviance: 0.01
Avg center dev 001 m
Avg speed: 3.21 km/h &
»y
b,

Collision with Fence

ames Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody

Fleming, ¢‘Shiel :APr ly Saf Filter for Unsaf
Controllers.” arXiv 2022.
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Synthesis of NN-based Safety Filters

ShieldNN

ON

Agent

#2

Agent

#3

O=SMO LVnNMZ—WNCWO T

H
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James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody
Fleming, ¢‘Shiel :APr ly Saf Filter for Unsaf
Controllers,” arXiv 2022.


https://arxiv.org/abs/2006.09564
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Synthesis of NN-based Safety Filters

75 : . —— Config1 'S —— Config2 !
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Without Root-of-Trust Network With Root-of-Trust Network
Training Testing Experlme'nt i, Expenmenfi
Config | Obstacle | Filter | Filter | TC%' | OHR%® | TC%' | OHR%> |
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2 OFF OFF ON 9882 |z 05 = 9873 = 05 = |
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1 ON OFF ON 00 |[= 0 ] 100 |5 0 =]
5 ON ON | OFF | 6243 |+ 44 ] 5003 [+ 60 7 |
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I'TC% := Track Completion % 2 OHR% *=0bstacle Hit Rate %

James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody

Fleming, ¢“ShieldNN: A Provably Safe NN Filter for Unsafe NN

Controllers,” arXiv 2022.
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Synthesis of NIN-based Safety Filters
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