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Show me a groundhog day picture illustrating the Al winters Do you think Phil saw his shadow?

DALL-E
Based on the metaphorical context of these illustrations, if Phil (the

groundhog) represents the cyclical nature of Al research interest and
funding, seeing his shadow could symbolize predicting a prolonged
"winter" or period of stagnation in Al advancements. Given the imagery of
a cautious groundhog in a snowy landscape surrounded by symbols of
past Al research efforts, it suggests a cautious outlook on the future of Al
progress. So, metaphorically speaking, it might imply that Phil saw his
shadow, indicating more challenges ahead before a new "spring" of Al

innovation.

Here are the illustrations depicting Groundhog Day in the context of Al
winters. Each image captures the essence of periods of reduced interest
and funding in Al research, symbolized through a groundhog, vintage

computers, and scattered Al research papers in a showy landscape.

DALL-E Conversation 2/1/2024, GPT-4
https://chat.openai.com/g/g-2fkFE8rbu-dall-e/c/3bd7bfaa-1de6-437f-b619-6528195dd0ca
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Safe, Secure, & Trustworthy Al

WHITE HOUSE

OCTOBER 30, 2023

Executive Order on the Safe,

Secure, and Trustworthy
Development and Use of
Artificial Intelligence

» BRIEFING ROOM » PRESIDENTIAL ACTIONS

By the authority vested in me as President by the
Constitution and the laws of the United States of

My perspective & background

Come from the Hybrid Systems:
Computation & Control (HSCC) part of
CPS/loTWeek community

Developing formal verification methods for
Al and machine learning (ML) since ~2016

DARPA Assured Autonomy & ANSR, NSA
SoS, NSF FMitF, AFOSR/AFRL, ONR,
Toyota, Mathworks, ...

Co-led SafeTAl workshop feeding into NSF
Safe-Learning Enabled Systems (SLES)
creation, contributed to DARPA Al Forward
events, AISOLA'23, ...
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Patrick Musau

Motivation: Autonomous Cyber-Physical Systems (CPS) ﬂ

CPS: modern embedded
e S \f - T = control systems, specifically
L U g A e e = where there is a tight

-~

—

S TR b Tao o gt W coupling between software

G (cyber) and physical
processes
Examples: cars, aircraft, 10T
devices, etc.
Most CPS involve
networking and increasingly
iInvolve machine learning
components, such as
neural networks (NNSs)
F1/10 Architecture: LIDAR
and stereo camera sensory
data processed by NNs on
NVIDIA Jetson TX2
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Reward Action
T(St’ at) B at EA(St)

A

Pdocking* (r < pa)

Developed with Kerianne Hobbs AFRL/RQ&RY, along with Umberto Ravioli, Preston Robinette, Nate Hamilton

https://github.com/act3-ace/SafeRL and https://github.com/act3-ace/aerospaceRL
—



https://github.com/act3-ace/SafeRL
https://github.com/act3-ace/aerospaceRL

Motivation: 2D Dubins Rejoin

Py "9
Preston Robinette

Reward Action
r(St’ at) at € A(St)

P formation- (\/(xW —x: )2+ (Yw — ¥ )? <

pe) A (trejoin > tsuccess)

Developed with Kerianne Hobbs AFRL/RQ&RY, along with Umberto Ravioli, Preston Robinette, Nate Hamilton
https://github.com/act3-ace/SafeRL and https://github.com/act3-ace/aerospaceRL



https://github.com/act3-ace/SafeRL
https://github.com/act3-ace/aerospaceRL

Motivation: Autonomous Underwater Vehicles

(AUVS)

Paired with Northrop Grumman in DARPA
Assured Autonomy program
» Assured Autonomy: “The goal of the Assured
Autonomy program is to create technology for

continual assurance of Learning-Enabled, Cyber
Physical Systems (LE-CPSs).”

Our role: develop verification methods for
autonomous systems, work with Northrop to
apply them to AUV scenarios

A specific challenge problem: robustness
verification of neural networks used for
semantic segmentation, specifically
processing sonar data for identifying obstacles
and targets to track (e.g., pipes/cables)
underwater

« Can think of sonar data as images (just acquired
slowly)

RGB Image

100 x 512 x 3

VGG Encoder-Decoder _(SegNet)

Y LA A A
1 ConvolutionaliEncoder-Decoder

Poollpg Indices

1 B conv + Batch malisation + RelU
: I Pooling I UBsampling Softmax

SegNet: http://mi.eng.cam.ac. uk/Dro1ects/seqnet/

Output

Segmentation

100 x512x 1



https://www.l3harris.com/all-capabilities/iver3-ep-open-system-uuv
http://mi.eng.cam.ac.uk/projects/segnet/
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Representative AUV Architecture (BlueROV)
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Neural Network Control Systems (NNCS)

Initial System
States —— Neural network Controller
o @
X
© o
e o
O 0
/ . \
O
oo
System u = F(x; w) Control
States command
X \ / u
Plant model

x=f(xu)
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Closed-Loop Verification with NNV

nnv + nnmt [CAV’20] y
HYST [HSCC’ I 5] / Communication Networks \ (
4 Physical [ nen A
. Neural L
Environment, o Networks /
Plant’ Control Y §]
Humans, ... Software 4 o A, N

https://github.com/verivital/hyst https://github.com/verivital/nnv
https://cps-vo.org/group/hyst https://github.com/verivital/nnmt

* Plant models: hybrid automata, or networks thereof, represented in
HyST/SpaceEx/CIF formats N Controll D

 Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously
over intervals of real time according to ordinary differential equations (ODES)

» Hybrid behaviors: discrete transitions and continuous trajectories over real time
* ODEs: linear or nonlinear (uses CORA for nonlinear)

« LEC and cyber models: for now, feedforward neural networks, represented in ONNX
format (compatible with Keras, Tensorflow, Matlab, etc.)

* Primarily focused on RelLUs, but recent support for nonlinear activations
«  Specifications: primarily safety properties for now, some reachability properties
*  Verification: composed LEC and plant analysis

« Bounded model checking: k control periods, alternating reachability analysis of controller and
plant

\ // . ‘.34 T4

4 A vr

Ve,
g



https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt

Safety Verification of Closed-Loop Autonomous
Systems with Reachabillity

« Safe If intersection of overapproximation of reachable states with
unsafe states is empty (soundness)

If safe, then red trace
reaching an unsafe
state cannot exist

Reachable
States

Initial
States All traces contained
‘ in reachable states ...

ucrc!
RTA Filter

= = ]
= /
yd
Q
S,
{
~
\

Overapproximation of
Reachable States

r
RL Algorithm ]: L Observer

A trace for closed-loop system typically a solution (trajectory) x(t) of an ordinary differential equation
ODE) x = f(x,u) or generalization thereof (hybrid automata, differential inclusion, etc.




Monitoring: Runtime (Online) Verification of Autonomous Systems with

Real-Time Reachability

Patrick Musau

« Several orders of magnitude progress in past few years made analyzing learning-enabled

components (LECs) like neural networks and usage in autonomous CPS at design-time with NNV

and other approaches (scalability, layer types, closed-loop interaction, etc.)

« However, while improving confidence of such LECs before they are deployed is important, online
monitoring at runtime is essential

« How can we provide formal and provable guarantees of system-level behaviors, such as safety,
online at runtime?

» Key idea: abstract LEC behaviors (see other approaches on out of distribution detection, etc.)
and simply observe the influence of their behavior on plant/system-level at runtime

* Necessary technology: online reachability analysis of plant models, ideally with worst-case
execution time (WCET) guarantees for implementation in embedded hardware

» Builds on real-time reachability of linear/nonlinear ordinary differential equations (ODESs) and

hybrid automata with WCET guarantees, implemented as an anytime algorithm [FORTE'19,
TECS’16, RTSS’14]

« Based on mixed face lifting reachability [Dang and Maler, HSCC’98 & HSCC’19 Test of Time
Award Winner], using hyperrectangles (intervals) as state-space representation

[Musau et al, “On Using Real-Time Reachability for the Safety Assurance of Machine Learning Controllers”, ICAA’22]
[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
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http://www.verivital.com/rtreach/

[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]



http://www.verivital.com/rtreach/

Monitoring AUV Waypoint Following Mission with Real-Time
Reachability: Degraded Operation and Obstacle Avoidance

F

Patrick Musau

Based on ROS2 / UUVSIim framework: https://uuvsimulator.qgithub.io/

[Musau et al, “On Using Real-Time Reachability for the Safety Assurance of Machine Learning Controllers”, ICAA’22]

[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19] °
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]

[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]

Legend

Green curve: past
trajectory

Light-blue set: nominal
control reachable set
projected forward in
time

Red set: degraded
control reachable set
projected forward in
time

Gray dots: waypoints
Darker blue: pipeline
Red/blue around
obstacle: sonar
detection

Light gray cone:
forward looking sonar

htti:“www.verivitaI.comirtreachi


https://uuvsimulator.github.io/
http://www.verivital.com/rtreach/

Monitoring AUV Geo-fencing under
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« Green Boxes: Safe Trajectory * Localization Uncertainty Considered in Above Video
* Red Boxes: Unsafe Trajectory e X+-0.025%
* Red Dots: Static Obstacles « y+-0.025%
* White box: local costmap * speed +- 0.025 %
» Black squares: no-go zone or possible location of * heading +- 0.025 %
obstacles « Unsafe Event Handling via behavior Tree

17 + Red Box: Geo-Fenced area boundary




Outline for Remainder

* Why formal methods for AI/ML/NNs?
« Approach for safe & trustworthy Al

* NNV: Verifying neural networks in
autonomous cyber-physical systems

* Focusing mostly on neural networks In
these learning-enabled systems (open
loop vs. closed loop)

« Conclusions




Formal Verification Challenge

 Formal verification problem: Given a system model A and
a specification (requirement) P, prove that A satisfies P
« Automated formal verification: model checking

« Model checking algorithms return:
» A satisfies P and give proof or
» A violates P and why (bug)
» With abstraction, possibly unknown

 Engineering / CS grand challenge

» Debugging and verification: about 50-75% engineering cost
[Beizer, 1990]

« Expensive and life-threatening defects: about $60 billion/year
[NIST, 2002]

« State-space explosion (“curse of dimensionality”) and
undecidability

» Related to simulation/testing, but different: “Program testing can
be used to show the presence of bugs, but never their absence!”-
Edsger W. Dijkstra

» These days at intersection of software engineering and theory

No: defect
AP | (bug,
counterexample,

A E P? —L>
|

Yes: proof (mathematical
and typically machine
checkable, evidence for
certification authority

or regulator, ...)



Overview and Motivation for Formal Verification
In Machine Learning

« Machine learning (ML) components, such as neural networks, are increasingly being deployed
as subcomponents in safety-critical autonomous/semi-autonomous cyber-physical systems

(CPS) that have strict regulatory requirements
» Tasks for these ML components, which we also call learning-enabled components (LECs), range

from sensing, estimation, and perception to planning and control
» Challenge: Strict regulatory requirements for these systems, including for software/computer

components and their safety

« Examples: Aerospace: DO-178C, DO-333; Automotive: ISO 26262; Medical devices: IEC 62304, ...
» Advocates usage of formal methods and verification in software development processes

* No one fully knows what to do for machine learning components yet...
« Based on our ongoing interactions with companies (Boeing, Northrop, Toyota, Collins, GM, etc.),

regulatory/standards bodies (FAA, NHTSA, NRC/IAEA, SAE, etc.)

« But there are significant concerns in safety-critical domains

» Ongoing accepted best practices
« Analyze as much as possible at design time (formal verification, augmentation, simulation, etc.)
« Monitor at runtime (runtime verification, supervisory control, dataset shift, OOD detection, etc.)




Assurance-based Learning-enabled Cyber-Physical
Systems (ALC) Toolchain

« Focusing on verification efforts, but everything
IS Integrated into a broader toolchain covering

. .. .o . 1 System Modeling 3 Verification & Validation
moc!ellng, training, verification, assurance, oy, fp— posontty | o T3t DD enteasn | e
runtlme mOnItOI’Ing, etC Component |y Models /~»  Models Tools Cases

Library E
« Latest release: l | 4
« https://github.com/AbLECPS/alc 2 Sameaidn, LEC Consiruction
Data Generation Supervised Learning Performance Evaluation

e https://ablecps.qgithub.io/ |

Design » Configure Configure [,/ Test Set > Collect Analyze
Experiment Simulation Training Evaluation Evaluation Data Performance
A FR '
i Adjust Parameters
Design Space Analysis Space - 4 i i
® (Architecture Models) | . | (Analysis Models) v Gather Additional Data
° . Y “
S 0
£ § Reinforcement Learning
2 £
] \ o Design Configure
& - = . NN .
.g Component Model Analysis Analysis ) £ Experiment Simulation \ Exploration
3| [ModelRep. Composition Flow Int. Template s Learning
,38,5- with LECs ] with Emb. [Repository ] |5 Design Reward Configure
N & Function Learning Algorithm
sification, Testing and Oot. 0 \
E
R Design-time Embedded Operation-time 0
Multi-Model Analysis Processes Learning+Monitoring Processes
observations
Evidence-based Assurance Argumentation:
Design-time + Operation time

\ assurance-level-indicator


https://github.com/AbLECPS/alc
https://ablecps.github.io/

Challenge: Robustness of Neural Networks,
Especially when used in CPS

* Neural networks are susceptible to adversarial perturbations: they are not robust to small
changes in inputs, as small changes in inputs may cause drastic changes in outputs

« Example: noise of various forms applied to inputs may cause networks to change
classification results for image classifiers

 Many forms and types: single pixel attacks, physical perturbations, etc.
« Additional risks and challenges when used within CPS

« Typical formalization: local adversarial robustness under L-infinity (or other) norm

 Intuition: for image classification, nearby test data yield the same classes (so adversarial perturbation or noise
does not change class)

[Eykholt et al, CVPR 2018]




Challenges for Assurance of Learning-Enabled
Components (LECs)

Nontransparency S
« LECs encode information in a complex manner, and it is hard for Rt B |/ e
humans to reason about the encoding e OO Neural Networks
« Error rate e d _ the Real World* :
« LECs typically exhibit some nonzero error rate o SRS . |abs,x R
« True error rate unknown, and only estimates from statistical S
processes known
» Training-based
» Training dataset is necessarily incomplete
« Potentially unpredictable behavior
« Training based on nonconvex optimization algorithms and may
converge to local minima
« Changing training dataset may change behaviors
« LECs can exhibit unique hazards
« Adversarial examples (incorrect output for a given input that
cannot be discovered at design time): whole field of adversarial
machine learning
« May be always possible to find adversarial examples
« Perception of environment difficult to specify

https://www.labsix.org



https://www.labsix.org/

- ___________________________________
Why Formal Verification in ML?

« Advocated by DARPA Assured Autonomy /
ANSR, NSF FMitF / SLES, by safety
organizations (EASA), showing up in NIST Al
RMF / reports, etc.

« If we can specify precisely what ML components
should/should not do, this may aid in
understandability and explainability

« Analyzing these specifications for ML
components can address concerns related to

European Union Aviation Safety Agency

Daedalean — EASA CoDANN IPC Extract — Chapter 6 56

(a) Legend (b) Counterexample result (c) Adversarial result (d) Reachability result

Figure 6.6: Three types of formal verification results. (a): notation. Light-blue and light-

|aC k_of robustn ess red areas X,Y depict input and output spaces; blobs X, Y. depict the constraint sets. (b):
. . a counterexample result represents a single datapoint x* that violates the constraint. (c):
° Needs to be automa‘ted (model Check”']g-“ke an adversarial result represents the minimum perturbation ¢ of the input around xg that still
. violates the constraint. (d): reachability result represents the image £ (X.) in the output space.
approaches, not theorem proving)
* Cha”en_g_es . “Concepts of Design Assurance for Neural Networks (CoDANN)”,
» Specifications, ... EASA, 2020
« Scalability, ... https://www.easa.europa.eu/document-library/general-

publications/concepts-design-assurance-neural-networks-codann

« Evaluation w.r.t. data sets, ... SAE G-34 / EUROCAE WG-114



https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-neural-networks-codann

Neural Network Verification (NNV) Software Tool

The Neural Network Verification (NNV) Tool
https://github.com/verivital/nnv

Hoang-Dung Tran

Feedforward Neural

Networks (FFNN) Visualizer

| Neural Network Reachability s
S ) —
L3 ] Control Systems (NNCS) Solvers
) . — No: bu
Verifier g
- . ?
@ A\ — Convolutional Neural MES? |, yes: proof
o T Networks (CNN) 5
[Xiang et al, “Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks”, TNNLS’18] S A e ‘ ’Z -
[Tran et al, “Star-Based Reachability Analysis for Deep Neural Networks”, FM’19] = 1 (J a \

[Tran et al, “Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control”, EMSOFT’19]
[Tran et al, “NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems”, CAV’20] g 2 EREED
[Tran et al, “Verification of Deep Convolutional Neural Network using ImageStars”, CAV’20] L 45
[Bak et al, “Improved Geometric Path Enumeration for Verifying ReLU Neural Networks”, CAV’20] £

[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’20] [Eykholt et al, CVPR 2018]
[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability”, CAV’'21]

[Lopez et al, “Evaluation of Neural Network Verification Methods for Air to Air Collision Avoidance”, AIAA JAT’22]

[Lopez et al, “Reachability Analysis of a General Class of Neural Ordinary Differential Equations”, FORMATS’22]

[Lopez et al, “NNV 2.0: The Neural Network Verification Tool”, CAV’23]



https://github.com/verivital/nnv

Neural Network Verification with Reachability

2l
b)

Weiming Xiang

- Givena NN M:R" » R™ & an input set X € R", the output
reachablesetof MisY={y |y =M(x),vx € X} € R™

(= 3 -
SPCCINCAtion

~

hidden layer 1 hidden layer 2 hidden layer 3

inpu

- Computationally: Given a NN M, a convex initial set of inputs | represented as a
polytope poly(X), compute the output set Y = M(I) of the network

== Fally
5= e(:,5)
Input Layer
2

[ ={x € R"Ax < B} L - Compute: Y = M(I)
Verify M(I) NS =@ ?

Layer-by-Layer Propagation || .. ...
of Polytopes e




Neural Network Reachabillity lllustrative Example

Weiming Xiang

Given a NN M: R"™ » R™ & an input set X € R", the output Input set: X' = {x € R3 | |lx]le0 < 1}
reachable setof MisY={y |y = M(x),Vx € X} € R™ Specification:

i - : S&{yeR?| —50<y, <—-20A10 <y, <25}
M: simple feedforward NN with 3 inputs, ‘

Verify: M(X) NS =0 ?
2 outputs, 7 hidden layers of 7 neurons w2 o M (X))
each, RelLU activations; M: R3 - R?

— Output#2
Input #3 —

Scalability Challenge:
for ReLU activations,
this problem is NP-
complete

Intuition: number of
polytopes may grow
exponentially in
. number of ReLUs due
s 4 w0 2 40 0o 10 T T 0 10 to case splitting

¥, y

Output reachable set Y = M (X):union of 1250 8000 randomly generated outputs (evaluating
polytopes, shown in different colors M on points, e.g., M(x) for 8000 points x € X))




RelLU (Rectified Linear Unit) Neural Network

-3 -2 -1 0 1 2 3

f (x) = max(0, x)

Input set:

Union of polytopes

28 We can compute layer-by-layer.

For single neuron:

Yi = f(za)ixi +0) = max(o’za)ixi +6)
i=1 i=1

For single layer:

y = max(0, Wx + 0)

Theorem: For ReLU neural networks, if
input set is a union of polytopes, then
output sets of each layer are union of

polytopes.

y =Re LU(x)

Union of polytopes




MNIST Robustness Verification: Comparison of Set

Hoang-Dung Tran

00000000/ 0O00CL QOO0
T R U N S I R U B B R
2222232222222 222
3233333353>3333333
g erda9 Yy gvdq 4 44y
55 5855%S 559555459
666 blbbobobdedbtol
T7927771TINT2RT 77
Y3 S L3P BPTTEI S B
$499943%9949%494499 9
http://yann.lecun.com/exdb/mnist/
ImageSItar 500 Zonotqpe
6] T
400
4 -
200 |
2r I |
3 I |8
g 0 I 12 0f
@ (1]
o o
,2 - T
-200
4+
-400 |
I
-8 : -600 L
0 5 9 0 5

Qutput

Output

9

Ranges

Polytope

5 9
Qutput

MNIST classifier is a function from images to
classes,M: R?8%%8 i {0, ..., 9}

Input: R?8%28: input set: a convex subset in
]RZSXZB

Output prior to softmax/argmax: RY; output set:
shape in R

Final output: take argmax over these 10
dimensions, this is the identified class

ImageStar: efficient and accurate set
representation developed for NNV, extension of
star sets for images

Zonotopes: symmetric data structure, leads to
greater imprecision

Polytope: better accuracy than zonotope, but
worse than ImageStars

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]


http://yann.lecun.com/exdb/mnist/

(ONNX)
Feedforward
Neural Network
Set
Representation
Neural Network (e.g., Star) -
Control System Visualizer
= @%%\\ — Convolutional
8. ol gt Neural Network
T y 1 mpnditions
s Neural Ordinary ? " Initial €9 (VNNLIB)
. Differential . Reachability ‘

. Computation W7
beann EQUAGON. ..., . . S2 o RNy
Encoder-Decoder
: (e.g., SegNet) |

, E ...................... Verifier — NO: bug
e~F o : Recurrent . o M E §?
e = S : Neural Network : R‘:Z?::élfy " Yes: proof
:-...-.-.-...-.-.-.-.-.-.-.-...-.-.-...-...-.: (soun d, g
alebe : Binary : and complete)
i Neural Network

[Manzanas Lopez et al, "Verification of Neural Network Compression of ACAS Xu Lookup Tables with Star Set Reachability”, AIAA'21]
[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’21]

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability”, CAV’21]

[Tran et al, "Verification of Piecewise Deep Neural Networks: A Star Set Approach with Zonotope Pre-filter", FAOC'21]

[Manzanas Lopez et al, "Reachability Analysis of a General Class of Neural Ordinary Differential Equations”, FORMATS'22]
[Manzanas Lopez et al, "Evaluation of Neural Network Verification Methods for Air-to-Air Collision Avoidance”, JAT'22]

[Tran et al, "Verification of Recurrent Neural Networks using Star Reachability”, HSCC'23]

[lvashchenko et al, "Verifying Binary Neural Networks on Continuous Input Space using Star Reachability”, FormaliSE'23]

[Manzanas Lopez et al, "NNV 2.0: The Neural Network Verification Tool", CAV'23]

ﬁ


https://github.com/verivital/nnv

Legend
Features

- NNV 2.0 additions
Feature Supported
Neural Network type Feedforward, Convolutional, Encoder-Decoder, Recurrent and Binary

Neural Networks, Neural Ordinary Differential Equations

Layers MaxPool, Conv, BatchNorm, AvgPool, FullyConnected, MaxUnpool,
Transposed Conv, Dilated Conv, NODE, Recurrent, Sign

Activation functions RelU, Satlin, Sigmoid, Tanh, Leaky ReLU, Satlins

Plant dynamics (NNCS) Linear ODE, Nonlinear ODE, Hybrid Automata, Continuous & Discrete
Time

Set Representation Polyhedron, Zonotope, Star, ImageStar

Reachability methods Sound and complete: exact
Sound: approx, abs-dom, relax-range, relax-area, relax-random,
relax-bound

Reachable set Yes, exact and over-approximation

visualization

Verification Safety, robustness, VNNLIB

Miscellaneous Parallel computing, counterexample generation, ONNX*

*ONNX support has been improved and extended to other NN types. 31



———————————————————
Related Work

* NN verification [MN Miiller et al, VNN-COMP 2022]
* ApproaChes All Instances
» SMT, MILP, Reachability... 1000 ' ' ' 1] ABCROWN-:
* Tools 100 ] N erinet
* 0,B-CROWN, MN BaB, Verinet, nnenum, cdgtest 2 10 ‘‘‘‘‘‘‘ ] Pe(r:eggdrtﬁi:
* Peregrinnm Marabou, Debona, Fastballnn g 1 ....... 7 Marabou ==~
* Reluplex, DLV, ReluVal, ERAN, Venus, OVAL = et —
« DNNF, RPM, NV.jl, MIPVerify, Verapak, Averinn 0.1 7 Averinn
* Competition 0.01 . . . w —
- VNN-COMP (participant 2020, 2021, 2023) A o e g 0 120
* Neural Network Control System (NNCS) verification
* Also referred to as "Neural Feedback Loops" e Caske
* Linear vs Nonlinear .
* Continuous vs discrete-time
System States = RE) Control command
* Friendly Competition x %
« ARCH-COMP AINNCS (participant 2019, 2020, 2021, 2022, 2023)
o Tools Plant model
- CORA, JuliaReach, Verisig, ReachNN*, POLAR, OVERT, VenMAS, Sherlock e
* RINO, NFL_veripy, DeepNNC, SMC, AutomatedReach N NCS

‘P.S. Aioloiies if we missed iour tool| ilease come talk to us after the talk and we'll fix it for the next onei ii



Generalized Star Sets

« Generalized starset® =<¢,V,P >
c O ={x|x=c+Z av;, P(a)}

1

* c € R"is the center
 V ={v,,v,,v,}Is aset of basis vectors
* P(a) 2 Ca <d,is apredicate
« a=lay,ay,a,]",is predicate variable
 Properties
« Any bounded convex polyhedron can be represented as a star C_{

0

= V=
)

« Affine mapping of a star is also a star

xXEO=<cV,P> y=Wx+b >5ye®@=<Wc+bWV,P>

* Intersection of a star with a half-space is also a star
XEO=<cV,P>
H2{x|Gx<g} > OnH=<cV,PAP' >
Pla)=(GxV)a<g—GXc
[Tran et al, “Star-Based Reachability Analysis of Deep Neural Networks,” FM’19]

1

O=(x|x=c+Va,Ca<d,a=(a,a,)

0

—1
.O

Hoang-Dung Tran




Generalized Star Sets

Hoang-Dung Tran

« Why are star sets suitable for reachability analysis of NNs?

« Star set is efficient in affine mapping and intersection with half-
spaces

« Other argument: very effective in verification of high-dimensional R10°
hybrid systems: [Bak S, Tran H-D, Johnson TT, “Numerical Verification
of Affine Systems With Up to a Billion Dimensions,” HSCC’19]; Hylaa
tool...

« How do we use these?

« This is a data structure used to represent infinite sets of inputs:
considers a symbolic sets of inputs (e.g., an infinite number of images
simultaneously) as opposed to testing/evaluating on individual inputs
(points)

« Can lead to scalability improvements vs. trying all inputs (Monte Carlo
vs. reachability argument)

« Extended to images efficiently with ImageStars [CAV'21]

1
-

O={x|x=c+Va,Ca<d,a=(a,a,)

4

Xy

—1

1 0

0 1]’C:

"
1 0 1
0o 11, |1
-1 0 d= 1
0 -1 1




Symbolic State Space
Representation: Star Sets vs. Zonotopes, Part | - oang bung Tran

Star set symbolic representation of reachable states in our NNV tool allows
Improvements varying from 10x to 10,000x speedup vs. existing methods
(Reluplex, DeepZ, DeepPoly, ReluVal...) with less conservatism than other
overapproximative methods

y.=ReLU (x,) ¥, =ReLU (x,) Y, =ReLU (x,)

Over-approximate set Over-approximate set Over-approximate set

_» Exact set
Vi=X; |

=Y

' >
U; X

L

Over-approximation with star Over-approximation with zonotope Over-approximation with abstract-domain



Symbolic State Space

Representation: Star Sets vs. Zonotopes, Part I

lllustration of overapproximation conservativeness for different symbolic state-
space representations (zonotopes, abstract domains, approximate star sets,
and exact star sets) within an ACAS Xu benchmark, illustrating the accuracy
provided by star set representations, as they are the smallest sets
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Symbolic State Space

Representation: Star Sets vs. Zonotopes, Part II| oane o Tran

Because star sets minimize overapproximation error, properties may be
efficiently verified with them vs. other symbolic state space representations that
are too imprecise (zonotopes, abstract domains, polytopes, intervals, etc. as
used in DeepZ, DeepPoly, ReluVal...)

25

20

Weak-Left

CcocC

Weak-Right

Approximate Star
Exact Star

coc

Strong-Right

CcocC




VGG16 Robustness Verification Example

Hoang-Dung Tran

224 x 224 x3 224 x 224 x 64 VGG].G

112 %3312 % 128

56|x 56 x 256
28 x 28 x 512

7x7x512
14:x14x5’1?

1x1x4096 1 x 1 x 1000

= convolution+RelLU
[/ max pooling
fully nected+RelU
softmax

= 11.8199015 /
a=1e-6% a = 8e-6% ) Bell Pepper
oy 1ete90t e .
cC
©
[ 11.8199005 - -
118199 1 | i | 1 1 L 1 1
940 942 944 946 948 950 952 954 956 958 960

Disturbed images = Original image + a * Noise; note a is a set
Is VGG16 robust to an FGSM attack for a < 2 x 10782

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]




MNIST Robustnhess Verification across Dataset

Hoang-Dung Tran

« How do we use this?

 Local robustness: with
respect to inputs from
the test data set

« Current best practice:
evaluate across the test
data set to provide a
robustness measure in
addition to accuracy
(certified robust
accuracy / CRA)

Robustness Results (in Percent)

MNIST_Smali

o = 0.005 = 0.01 0 =0.015
Polytope ImageStar — Polytope ImageStar — Polytope ImageStar
d =250 85.00 86.00 83.00 86.00 82.00 86.00
d =245 73.00 74.00 68.00 74.00 66.00 73.00
d =240 68.00 69.00 63.00 68.00 59.00 67.00
Verification Times (in Seconds)
d=250 6.33 7.80 9.23 19.10 13.97 41.29
d=245 7.25 9.27 11.39 21.01 17.68 63.73
d=240 8.75 11.31 16.32 35.63 26.53 116.04

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]

98% accuracy




« Semantic segmentation

. F:RWXHXN_)CwXH
 What is robustness for semantic segmentation?

Bicyclist

Pedestrian

Car

Fence
SignSymbol

B Tree

Pavement

Road

Pole

Building
Extended from classification robustness ' ISky
For a small perturbation of an input image, does the class c of any pixel change (and if so, which
ones and how many)?
Builds on set-based reachability analysis: again consider a set of input images as an ImageStar,

and determine the output reachable set of F
« More precisely: F: RWV*HXN _, RWxHXC gnd then take argmax (softmax) over C

Output space is significantly more complicated, as for classification, it was just C* (or more
precisely, R¢ prior to taking the argmax/softmax to determine the class)

Major challenge to overcome is handling this upsampling process from the latent space,
accomplished e.g. through dilated/transposed convolutions/deconvolutions or unpooling layers

Input: image of width W pixels, height H pixels, and N color channels
Output: image specifying class ¢ € C of every pixel

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]



M2NIST Semantic Segmentation Robustness
Verification

Hoang-Dung Tran

* Multi-digit variant of MNIST
« Uses background as 10% class
« Segmentation mask defined by digits

Segmentation image

eeeeee

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]



M2NIST Semantic Segmentation Robustness:

AttaC kS Hoang-Dung Tran
« Simple adversarial attack
 Brighten/darken some gixels of input image . Example net
input image noise image attacked image ..
Ny
:COQU:}, p
.07,
!‘efu;’m
i .8 }'H‘?
+ = .Do
o, % 7
0.0
0.2 5
!‘@)fu“ﬁ
G
aygp
Attack_image = input_image + a * noise_image :ggmf 3
. N
* Robustness questions Ain < A < Ay St
: - N3
« How many pixels are robust (correctly classified)? :igns,%
. : - sp,
« How many pixels are not robust (incorrectly classified )? 'fgf OS@deoﬁE;
: : L A B
« How does the number of attacked pixels impact robustness? -f;;g;vak
S

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]




M2NIST Semantic Segmentation Robustness

. 21-layer CNN, Mean loU: 87.3% o,

« lllustration with 4 attacked pixels :
to brightness O

 Runtime: ~20s
« 28x56x1 Iinput image

Above: robustness with attack, below: without

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]




Back to AUV Semantic Segmentation a.

| have to be a little vague here

f e e
1 ConvolutionaliEncoder-Decoder

Output

Characterized robustness for pipe b
segmentation from sonar

Transfer learning approach: trained on
synthetic (and augmented) data set,
analyzed on actual sonar data (transfer
accuracy acceptable)

Poollng Indices

VGG Encoder-Decoder (SegNet)
1

Segmentation

Il Conv + Batch Nbrmalisation + RelU

RGB Image
I Pooling I Ubsampling Softmax

1
I
100 x 512 X3 ST s s ’ 100 x512 x3

SegNet: http://mi.eng.cam.ac.uk/projects/segnet/

Synthetic

Proved absence of
adversarial perturbations of
certain size across test data
set

class3

classi



http://mi.eng.cam.ac.uk/projects/segnet/

———————————————————
NNV Use Cases

* Prove properties hold for neural networks, in terms of input-output
specifications
« Example: characterize local robustness for test data set, generating a metric similar to
accuracy (robustness across test data set), for given perturbation levels
» Provide robustness measure and accuracy measure with respect to test data set
* E.g., MNIST classifier is 99% accurate and 95% robust for epsilon = 4/255 under I-infinity

» Generate counterexamples (“adversarial examples/perturbations”) if not

* Prove properties hold for neural network control systems (e.g., usage of
neural networks in autonomous CPS / AINNCYS)

« Overall: provide assurance for machine learning components and their usage
In autonomous CPS




e
Collins RUL VNN-COMP Benchmark

QA .
%né Collins Aerospace

2022 VNN Competition (VNN-COMP)

Benchmark proposal: Neural Network Based Remaining Useful Life Predictor

Executive summary: Collins Aerospace proposes a benchmark problem for the 2022 Competition on
the Verification of Neural Networks (VNN). Current document contains problem background and the
description of models and formal properties that are provided to the participants.

1. Background: Remaining Useful Life

Remaining Useful Life (RUL) is a widely used metric in Prognostics and Health Management (PHM)
that manifests the remaining lifetime of a component (e.g., mechanical bearing, hydraulic pump,
aircraft engine). RUL is used for Condition-Based Maintenance (CBM) to support aircraft maintenance
and flight preparation. It contributes to such tasks as augmented manual inspection of components
and scheduling of maintenance cycles for components, such as repair or replacement, thus moving
from preventive maintenance to predictive maintenance (do maintenance only when needed, based
on component’s current condition and estimated future condition). This could allow to eliminate or
to extend service operations and inspection periods, optimize component servicing (e.g., lubricant
replacement), generate inspection and maintenance schedules, and obtain significant cost savings.
RUL could also highlight areas for inspection during the next planned maintenance, i.e., it could be
used to move up a maintenance/inspection action to prevent component failure. Finally, RUL function
can also be used in airborne (in-flight) applications to dynamically inform pilots on the health state of
aircraft components during flight.

https://github.com/loonwerks/vnncomp2022

Engaging with Collins and Mathworks on
neural networks used for remaining useful life
(RUL) estimation, in conjunction with Dr.
Khaza Anuarul Hoque, Missouri

Simpler than perception tasks, but similar
concerns, & clearer specifications: monotonic
decrease, robustness, continuity, etc.

Special thanks to Dmitrii Kirov, Darren Cofer,
Giacomo Gentile of Collins, and Akshay
Rajhans & Amanijit Dulai of Mathworks

-»m» =

HUMS

(Health Usage Monitoring System)

Pilot

g Cockpit Display

Drivetrain

W

Post-

DL model 5
processing

processing Maintenance team

Ground
station/display

Avionics

software

Figure 1. High-level overview of the ML Constituent for RUL estimation, and its operating environment



https://github.com/loonwerks/vnncomp2022

.
Veritex: Neural Network Verification

& RQI ’alr Xiaodong Yang

« Veritex is a new tool for neural network verification and repair, developed in
collaboration with Toyota, including both exact and overapproximative
analysis methods; paper at FORMATS'22

« Uses several novel state-space representations, specifically facet vertex,
facet-vertex incidence matrix (FVIM), and face lattice

N

Plot exact Output

S
Sover Reachabiliy  Analyzer Reachable Domain o O oy
; AnaIySIS : & (FORMATS 2022)
Exact Analysis Visualizer | - . Exact Unsafe SEPTEMBER 18-15, 2022 - WARSAW, POLAND
Network Model —___y, : Reachable : Input Domain
(ONNX, PyToch) e — , ,
: Over_approximated Sets o %Bgt grt[f&tt @haluatlﬂn gmarh
Analysis Verifier - P Safe / Unsafe § Y §

Kaodong QFumg, Tom QPumaguchi SCoang-ung Tran,
CBardh SCozwha, Taylor T Sohnson, and anil Rrokhorov
Neural Network Repair with Reachability Analysis

Safety Properties - > I +
ﬁEngine Neural Network Repair J et Satfe Model

(ONNX, PyTorch)

AAAAAAAAA

Figure: An overview of Veritex architecture. It is an object-oriented tool programmed in Python.
(https://github.com/Shaddadi/veritex)

4. [Neural Network Repair with Reachability Analysis, Yang et al, FORMATS’22]



https://github.com/Shaddadi/veritex.git

Xiaodong Yang

Veritex Counterexample Generation

 lllustration for an ACAS-Xu NN generating entire set of inputs that violate a
specification, showing how changing the specification (red) by sliding it
across the reachable set (blue) modifies the unsafe inputs (red, left)

* Relation to inverse of the NN from unsafe states

« Used in neural network repair framework [FORMATS 22]

Instance 1
Input domain & Exact unsafe subspace Exact output reachable domain & Unsafe domain
25|

TVime = 114,500 ft

TVine = 105,000 ft TUDWTL = Vint
vy = 11450001t
95,500 ft
own

4 Wi
UUWn
/ Vit | p=87472 ft

50 40 -30 20 -10 0 10 p = 43,736 ft
Y1

20




I
Conclusions

* Presented overview of NNV and neural network verification in the context of autonomous CPS that
have safety-critical requirements

» Other aspects not covered: out-of-distribution detection, conformal prediction, novel data detection, performance
monitoring, details on runtime verification, data augmentation, ...

« Other ongoing projects not covered: LSTM/RNN/CNN verification for time-series data (with
Collins/MathWorks/Toyota), neural ODE verification, physics-guided machine learning with PDEs, fuzz/coverage
testing, closed-loop verification, neural network repair (with Toyota), safe reinforcement learning, symbolic
(automata) learning, ...

« Technology transition: Toyota, Mathworks/Matlab neural network verification toolbox
https://www.mathworks.com/products/deep-learning-verification-library.html , NSA malware classification, ...

« Vibrant research community: ongoing activities like VNN-COMP and ARCH-COMP Artificial Intelligence
/ Neural Network Control Systems (AINNCS) categories, that we help organize

* https://sites.google.com/view/vnn2024

» https://cps-vo.org/group/ARCH/FriendlyCompetition

« Recent “NSF Workshop on Safety and Trust in Artificial Intelligence Enabled Systems" at intersection of
Formal Methods, Machine Learning, Safety, Trust, etc.

* Neural network verification is a subset of broader trustworthy Al community, covering aspects mostly of
formal methods/verification, AI/ML, and security/privacy so far, but there are many other ongoing

activities (FAccT, AIES, etc.)



https://www.mathworks.com/products/deep-learning-verification-library.html
https://sites.google.com/view/vnn2024
https://cps-vo.org/group/ARCH/FriendlyCompetition

5th International Competition on Verification of Neural Networks (VNN-
COMP’24), co-located with CAV’'24 in new Symposium on Al Verification
(SAIV’24)

https://sites.qoogle.com/view/vhn2024 https://www.aiverification.org/

2037 G

2023 report: hitps://arxiv.org/abs/2312.16760
2020-2022 comparative report: https://arxiv.org/abs/2301.05815
2022 report: https://arxiv.org/abs/2212.10376
2021 report: https://arxiv.or 2109.004



https://sites.google.com/view/vnn2024
https://arxiv.org/abs/2312.16760
https://arxiv.org/abs/2301.05815
https://arxiv.org/abs/2212.10376
https://arxiv.org/abs/2109.00498
https://www.aiverification.org/

2022 NSF Workshop on Safety and Trust in Artificial
Intelligence (Al) Enabled Systems, Sept. 22-23, 2022

 There are major challenges
everywhere in every domain:
statistical learning (“2"d wave Al”)
likely not going to cut it going
forward, so need “3@ wave Al”,
probably neurosymbolic

 What are the grand challenges in
safety/trust in Al and autonomous
systems?

« Served as input for creation of
new $20M NSF Safe Learning-
Enabled Systems program (23-
562)

https://cps-vo.org/group/2022-NSFSafeTAI-Workshop

KEYNOTE SPEAKERS

DR. KATHLEEN FISHER [ assumed
the role of Office Director for DARPA’'s
Information Innovation Office (120) in
May 2022. In this position, she leads
program managers in the development
of programs, technologies, and
capabilities to ensure information
advantage for the United States and its
allies, and coordinates this work across

the Department of Defense and U.S. government.

DEBORAH RAJI is a Mozilla fellow and CS PhD
student at University of California, Berkeley, who is
interested in questions on algorithmic auditing and
evaluation. In the past, she worked closely with the
Algorithmic Justice League initiative to highlight bias in
deployed Al products. She has also worked with

. Google’s Ethical Al team and been a research fellow

‘ at the Partnership on Al and Al Now Institute at New

4 (’ York University working on various projects to

operationalize ethical considerations in ML engineering practice. Recently, she

was named to Forbes 30 Under 30 and MIT Tech Review 35 Under 35
Innovators.

Kathleen Fisher, Keynote Address: Artificial Intelligence: Do you trust it?

Abstract. We have seen significant progress in Al over the last ten years, predominantly driven by dramatic advances in machine
learning and particularly deep learning. Society is realizing the benefits across a wide range of application domains. However, within the
military, the consequence of making a wrong decision based on Al could be catastrophic. And the DoD must defend against nation-state
level adversaries with significant resources, the ability to create deception, and the desire to change our way of life. DARPA is funding
research in trustworthy Al technologies and systems that can be trusted to perform as expected despite the efforts of sophisticated
adversaries. In this presentation, | will discuss research efforts in Al systems that we can trust with our (and warfighters') lives and
explore fundamental advances beyond statistical ML that appear promising toward reaching the goal of trustworthy Al.

Inioluwa Deborah Raji, Keynote Address: On Audits, Algorithms and Accountability

Abstract. As algorithmic deployments infiltrate our daily existence, it has become increasingly clear that in addition to the benefits they
provide, these systems have also become a source of meaningful harm - significantly disrupting the lives of many real people. At the
crux of these issues are biased and incorrect model outcomes that are hard to evaluate and stakeholders that are frustratingly difficult to
hold accountable. As a result, policymakers and advocates are increasingly turning to audits as a method to accumulate concrete
evidence for algorithmic harm and as a promising approach for accountability. Informed by important lessons from audit systems in
other industries, this approach appears in many cases to be truly successful - some audits have already led to product updates or
recalls, organizational changes and developments to regulation or standards. However, difficulties in execution, oversight and impact
threaten the credibility and effectiveness of these audits as well as throw into question how much we can rely on this intervention
without first investing in the technical, legal and institutional design of a more mature audit ecosystem for algorithmic deployments.


https://cps-vo.org/group/2022-NSFSafeTAI-Workshop

o
NSF FMitF: Track |- Generative Neural Network ‘

Verification in Medical Imaging Analysis ek Oguz  Moi Ma

 DNNSs, GANS, ... increasingly used to process medical data, including images

(segmentation, denoising, synthesis, image reconstruction, ...)
« Major concerns about introduction of artifacts, etc. with generative models; less concerns
about adversaries, but also to a degree
* Project goals: develop ways to write specifications for generative models, define/scale
verification for segmentation and image synthesis

e Collaboration between ISIS VISE and VUMC

N0|sy input (raw) Self-fusion result (input to DL)

Self-fusion result

Optic nerve head

DL Baseline

Francesca
Bagnato

(synthetic MRI)

Output Image
Fovea

DL Proposed

Vanderbilt Institute for Surgery & Engineering (VISE): https://www.vanderbilt.edu/vise/



https://www.vanderbilt.edu/vise/

NSA SoS: Improving Malware Classifiers

with Plausible Novel Samples (eLeath  proston Roinets

https://github.com/pkrobinette/verify malware

* Neural Networks are a popular means of classification:
» Benign vs. malicious Yunera Adversarial Noise

‘{_I'- [ .:' = 1'-"'+;. "!-I‘H-."rrl:

* Malware family S pe

Adversarial Sample

Malware Family . e a

“Yuner.A” “Swizzor.gen!l” “Autorun.K”

Malware Feature Data

Benign vs. Malicious

Malware Images Epsilon (¢)

(b] na ry) Metric  Model Tool 1255 9/255 3/255
] . e . linearas NNV 85 83 79
» Adversary can perturb input sample to cause incorrect classification - A2 nenum 90 86 82
= 25 NNV 89 76 62
5 nnenum 94 80 66
NNV 88 82 67
16-25 nnenum 90 86 64
Incorrectly classified _ fneargs NNV 0.84 0.85 0.85
, s benign 2 ' nnenum  3.60 3.63 3.69
s g
. / = NNV 17.75 41.66 82.18
Adversarial / = 4-25
. ) nnenum 11.59 10.80 11.13
M Perturbation M Z
- _— 1695 NNV 85.00 21000  710.25
nnenum 38.66 44.16 43.43
Malware Binary Perturbed

Malware Binary
[Robinette et al, “Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets,” Formalise’24]

[Robinette et al, “Benchmark: Neural Network Malware Classification,” AISOLA'23]



https://github.com/pkrobinette/verify_malware

Perspective Summary

» Great time to research safe, secure, and trustworthy Al

* As we have seen, Al/ML being used in many
safety/security-critical domains whether we like it or not,
with some market-driven pullback already for (in part)
safety issues (particularly in autonomous driving: Uber,
Argo Al, Cruise, Tesla NHTSA actions, ...)

* Did Phil see his shadow and impending Al winter (or just
another told you so for dependability / formal methods)?
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Samuel Sasaki  preston Robinette Serena Serbinowska  Dr. Diego Dr. Tianshu Bao] Dr. Neelanjana Pal
2021 NDSEG Manzanas Lopez MathWorks

Postdoc / PhD / Research Scientist Alumni

Dr. Nate Hamilton Dr. Xiaodong Dr. Patrick Musau Prof. Weiming Xiang Prof. Hoang-Dung Tran Prof. Joel Rosenfeld Prof. Luan Nguyen Prof. Omar Beg  Dr. Shafiul Chowdhury  prof. Khaza Hoque Dr. Andrew
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Outstanding Dissertation Rising STARs Southampton /
Lancaster

MSc Thesis / Undergrad Researcher Alumni: at Google, Meta, Microsoft, Amazon, Qualcomm, Rivian, etc.




______________________________________
_ taylor.johnson@vanderbilt.edu
Thank You: Questions?

http://www.verivital.com/
Twitter: @taylorjohnson @verivital
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