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• My perspective & background

• Come from the Hybrid Systems: 

Computation & Control (HSCC) part of 

CPS/IoTWeek community

• Developing formal verification methods for 

AI and machine learning (ML) since ~2016

• DARPA Assured Autonomy & ANSR, NSA 

SoS, NSF FMitF, AFOSR/AFRL, ONR, 

Toyota, Mathworks, …

• Co-led SafeTAI workshop feeding into NSF 

Safe-Learning Enabled Systems (SLES) 

creation, contributed to DARPA AI Forward 

events, AISoLA’23, …

Safe, Secure, & Trustworthy AI
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Motivation: Autonomous Cyber-Physical Systems (CPS)

• CPS: modern embedded 

control systems, specifically 

where there is a tight 

coupling between software 

(cyber) and physical 

processes

• Examples: cars, aircraft, IoT 

devices, etc.

• Most CPS involve 

networking and increasingly 

involve machine learning 

components, such as 

neural networks (NNs)

• F1/10 Architecture: LIDAR 

and stereo camera sensory 

data processed by NNs on 

NVIDIA Jetson TX2

Patrick Musau

https://f1tenth.dev/ 

https://f1tenth.dev/


Motivation: 2D Spacecraft Docking

Agent

Environment 
(ℇ)

Action
𝑎𝑡 ∈ 𝐴(𝑠𝑡)

State
𝑠𝑡+1 ∈ 𝑆

Reward
𝑟(𝑠𝑡 , 𝑎𝑡 )

Deputy
𝑢 = 𝐹𝑥 Ƹ𝑖𝐻 + 𝐹𝑦 ො𝑗𝐻

𝑟 = 𝑥 Ƹ𝑖𝐻 + 𝑦 ො𝑗𝐻

𝑣 = ሶ𝑥 Ƹ𝑖 𝐻 + ሶ𝑦 ො𝑗𝐻

𝜑𝑑𝑜𝑐𝑘𝑖𝑛𝑔 : (𝑟 ≤ 𝜌𝑑 )

Developed with Kerianne Hobbs AFRL/RQ&RY, along with Umberto Ravioli, Preston Robinette, Nate Hamilton

https://github.com/act3-ace/SafeRL and https://github.com/act3-ace/aerospaceRL 

Preston Robinette

https://github.com/act3-ace/SafeRL
https://github.com/act3-ace/aerospaceRL


Motivation: 2D Dubins Rejoin

Agent

Environment 
(ℇ)

Action
𝑎𝑡 ∈ 𝐴(𝑠𝑡)

State
𝑠𝑡+1 ∈ 𝑆

Reward
𝑟(𝑠𝑡 , 𝑎𝑡 )

𝑢 = [ ሶ𝜓𝑊 ,  ሶ𝑣𝑊 ]𝑇

𝜑𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 : ቀ

ቁ

𝑥𝑊 − 𝑥𝑟
2 + 𝑦𝑊 − 𝑦𝑟

2 ≤

𝜌𝑒 ∧ (𝑡𝑟𝑒𝑗𝑜𝑖𝑛 ≥  𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠 )

Wingman

𝑟 = [𝑥𝐿 , 𝑦𝐿 ,  𝜓𝐿 ,  𝑣𝐿 ,  𝑥𝑤 , 𝑦𝑤 ,  𝜓𝑤 ,  𝑣𝑤 ]𝑇

Developed with Kerianne Hobbs AFRL/RQ&RY, along with Umberto Ravioli, Preston Robinette, Nate Hamilton

https://github.com/act3-ace/SafeRL and https://github.com/act3-ace/aerospaceRL 

Preston Robinette

https://github.com/act3-ace/SafeRL
https://github.com/act3-ace/aerospaceRL


• Paired with Northrop Grumman in DARPA 

Assured Autonomy program

• Assured Autonomy: “The goal of the Assured 

Autonomy program is to create technology for 

continual assurance of Learning-Enabled, Cyber 

Physical Systems (LE-CPSs).”

• Our role: develop verification methods for 

autonomous systems, work with Northrop to 

apply them to AUV scenarios

• A specific challenge problem: robustness 

verification of neural networks used for 

semantic segmentation, specifically 

processing sonar data for identifying obstacles 

and targets to track (e.g., pipes/cables) 

underwater

• Can think of sonar data as images (just acquired 

slowly)

Motivation: Autonomous Underwater Vehicles 

(AUVs)

https://www.l3harris.com/all-capabilities/iver3-ep-open-system-uuv 

SegNet: http://mi.eng.cam.ac.uk/projects/segnet/ 
100 x 512 x 3

VGG Encoder-Decoder (SegNet)

100 x 512 x 1

https://www.l3harris.com/all-capabilities/iver3-ep-open-system-uuv
http://mi.eng.cam.ac.uk/projects/segnet/


Representative AUV Architecture (BlueROV)



Neural Network Control Systems  (NNCS)
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Control 

command

u

Neural network Controller

Plant model

ሶ𝑥 = 𝑓(𝑥, 𝑢)

System 

States

x

Initial System 

States

x0

𝑢 = 𝐹(𝑥; ω)



Closed-Loop Verification with NNV

 https://github.com/verivital/hyst https://github.com/verivital/nnv 

https://cps-vo.org/group/hyst https://github.com/verivital/nnmt  

• Plant models: hybrid automata, or networks thereof, represented in 
HyST/SpaceEx/CIF formats

• Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously 
over intervals of real time according to ordinary differential equations (ODEs)

• Hybrid behaviors: discrete transitions and continuous trajectories over real time

• ODEs: linear or nonlinear (uses CORA for nonlinear)

• LEC and cyber models: for now, feedforward neural networks, represented in ONNX 
format (compatible with Keras, Tensorflow, Matlab, etc.)

• Primarily focused on ReLUs, but recent support for nonlinear activations

• Specifications: primarily safety properties for now, some reachability properties

• Verification: composed LEC and plant analysis

• Bounded model checking: k control periods, alternating reachability analysis of controller and 
plant

Communication Networks

Interfaces

Sensors 

Actuators 

Physical 

Environment, 

Plant, 

Humans, …

Neural 

Networks / 

Control 

Software

HyST [HSCC’15]
nnv + nnmt [CAV’20]

Y U

X0

https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt


Safety Verification of Closed-Loop Autonomous 

Systems with Reachability

• Safe if intersection of overapproximation of reachable states with 

unsafe states is empty (soundness)

Initial

States

Unsafe

States

Reachable 

States

Overapproximation of

Reachable States

If safe, then red trace 

reaching an unsafe 

state cannot exist 

All traces contained 

in reachable states

A trace for closed-loop system typically a solution (trajectory) 𝑥(𝑡) of an ordinary differential equation 

(ODE) ሶ𝑥 = 𝑓(𝑥, 𝑢) or generalization thereof (hybrid automata, differential inclusion, etc.)



Monitoring: Runtime (Online) Verification of Autonomous Systems with 

Real-Time Reachability

• Several orders of magnitude progress in past few years made analyzing learning-enabled 

components (LECs) like neural networks and usage in autonomous CPS at design-time with NNV 

and other approaches (scalability, layer types, closed-loop interaction, etc.)

• However, while improving confidence of such LECs before they are deployed is important, online 

monitoring at runtime is essential

• How can we provide formal and provable guarantees of system-level behaviors, such as safety, 

online at runtime?

• Key idea: abstract LEC behaviors (see other approaches on out of distribution detection, etc.) 

and simply observe the influence of their behavior on plant/system-level at runtime

• Necessary technology: online reachability analysis of plant models, ideally with worst-case 

execution time (WCET) guarantees for implementation in embedded hardware

• Builds on real-time reachability of linear/nonlinear ordinary differential equations (ODEs) and 

hybrid automata with WCET guarantees, implemented as an anytime algorithm [FORTE’19, 

TECS’16, RTSS’14]

• Based on mixed face lifting reachability [Dang and Maler, HSCC’98 & HSCC’19 Test of Time 

Award Winner], using hyperrectangles (intervals) as state-space representation
[Musau et al, “On Using Real-Time Reachability for the Safety Assurance of Machine Learning Controllers”, ICAA’22]
[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]

Patrick Musau

http://www.verivital.com/rtreach/ 

http://www.verivital.com/rtreach/


Monitoring AUV Waypoint Following Mission with Real-Time 

Reachability: Degraded Operation and Obstacle Avoidance

Legend

• Green curve: past 

trajectory

• Light-blue set: nominal 

control reachable set 

projected forward in 

time

• Red set: degraded 

control reachable set 

projected forward in 

time

• Gray dots: waypoints

• Darker blue: pipeline

• Red/blue around 

obstacle: sonar 

detection

• Light gray cone: 

forward looking sonar

Thruster 

Failure

6x speed

Patrick Musau

Based on ROS2 / UUVSim framework: https://uuvsimulator.github.io/ 

[Musau et al, “On Using Real-Time Reachability for the Safety Assurance of Machine Learning Controllers”, ICAA’22]
[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]
http://www.verivital.com/rtreach/ 

https://uuvsimulator.github.io/
http://www.verivital.com/rtreach/


Monitoring AUV Geo-fencing under 

Uncertainty

17

• Localization Uncertainty Considered in Above Video

•  x +- 0.025 %

•  y +- 0.025 %

•  speed +- 0.025 %

•  heading +- 0.025 %

• Unsafe Event Handling via behavior Tree

• Green Boxes: Safe Trajectory

• Red Boxes: Unsafe Trajectory

• Red Dots: Static Obstacles

• White box: local costmap

• Black squares: no-go zone or possible location of 

obstacles

• Red Box: Geo-Fenced area boundary

Patrick Musau



Outline for Remainder

• Why formal methods for AI/ML/NNs?

• Approach for safe & trustworthy AI

• NNV: Verifying neural networks in 

autonomous cyber-physical systems

• Focusing mostly on neural networks in 

these learning-enabled systems (open 

loop vs. closed loop)

• Conclusions



Formal Verification Challenge

• Formal verification problem: Given a system model 𝓐 and 

a specification (requirement) P, prove that 𝓐 satisfies P

• Automated formal verification: model checking

• Model checking algorithms return:
• 𝓐 satisfies 𝑃 and give proof or

• 𝓐 violates 𝑃 and why (bug)

• With abstraction, possibly unknown

• Engineering / CS grand challenge
• Debugging and verification: about 50–75% engineering cost 

[Beizer, 1990]

• Expensive and life-threatening defects: about $60 billion/year
[NIST, 2002]

• State-space explosion (“curse of dimensionality”) and 

undecidability

• Related to simulation/testing, but different: “Program testing can 

be used to show the presence of bugs, but never their absence!”-

Edsger W. Dijkstra

• These days at intersection of software engineering and theory

𝓐 ⊨ 𝑃?

𝓐, 𝑃
No: defect

(bug,

counterexample,

…)

Yes: proof (mathematical 

and typically machine 

checkable, evidence for 

certification authority 

or regulator, …)



Overview and Motivation for Formal Verification 

in Machine Learning

• Machine learning (ML) components, such as neural networks, are increasingly being deployed 

as subcomponents in safety-critical autonomous/semi-autonomous cyber-physical systems 

(CPS) that have strict regulatory requirements
• Tasks for these ML components, which we also call learning-enabled components (LECs), range 

from sensing, estimation, and perception to planning and control

• Challenge: Strict regulatory requirements for these systems, including for software/computer 

components and their safety
• Examples: Aerospace: DO-178C, DO-333; Automotive: ISO 26262; Medical devices: IEC 62304, …

• Advocates usage of formal methods and verification in software development processes

• No one fully knows what to do for machine learning components yet…
• Based on our ongoing interactions with companies (Boeing, Northrop, Toyota, Collins, GM, etc.), 

regulatory/standards bodies (FAA, NHTSA, NRC/IAEA, SAE, etc.)

• But there are significant concerns in safety-critical domains

• Ongoing accepted best practices
• Analyze as much as possible at design time (formal verification, augmentation, simulation, etc.)

• Monitor at runtime (runtime verification, supervisory control, dataset shift, OOD detection, etc.)



Assurance-based Learning-enabled Cyber-Physical 

Systems (ALC) Toolchain
• Focusing on verification efforts, but everything 

is integrated into a broader toolchain covering 

modeling, training, verification, assurance, 

runtime monitoring, etc.

• Latest release:

• https://github.com/AbLECPS/alc

• https://ablecps.github.io/

https://github.com/AbLECPS/alc
https://ablecps.github.io/


Challenge: Robustness of Neural Networks, 

Especially when used in CPS
• Neural networks are susceptible to adversarial perturbations: they are not robust to small 

changes in inputs, as small changes in inputs may cause drastic changes in outputs

• Example: noise of various forms applied to inputs may cause networks to change 

classification results for image classifiers

• Many forms and types: single pixel attacks, physical perturbations, etc.

• Additional risks and challenges when used within CPS

• Typical formalization: local adversarial robustness under L-infinity (or other) norm

• Intuition: for image classification, nearby test data yield the same classes (so adversarial perturbation or noise 

does not change class)

[Eykholt et al, CVPR 2018]



Challenges for Assurance of Learning-Enabled 

Components (LECs)

• Nontransparency
• LECs encode information in a complex manner, and it is hard for 

humans to reason about the encoding

• Error rate
• LECs typically exhibit some nonzero error rate

• True error rate unknown, and only estimates from statistical 

processes known

• Training-based
• Training dataset is necessarily incomplete

• Potentially unpredictable behavior
• Training based on nonconvex optimization algorithms and may 

converge to local minima

• Changing training dataset may change behaviors

• LECs can exhibit unique hazards
• Adversarial examples (incorrect output for a given input that 

cannot be discovered at design time): whole field of adversarial 

machine learning

• May be always possible to find adversarial examples

• Perception of environment difficult to specify
https://www.labsix.org 

https://www.labsix.org/


Why Formal Verification in ML?

• Advocated by DARPA Assured Autonomy / 

ANSR, NSF FMitF / SLES, by safety 

organizations (EASA), showing up in NIST AI 

RMF / reports, etc.

• If we can specify precisely what ML components 

should/should not do, this may aid in 

understandability and explainability

• Analyzing these specifications for ML 

components can address concerns related to 

lack-of robustness

• Needs to be automated (model checking-like 

approaches, not theorem proving)

• Challenges
• Specifications, …

• Scalability, …

• Evaluation w.r.t. data sets, …

“Concepts of Design Assurance for Neural Networks (CoDANN)”, 

EASA, 2020 

https://www.easa.europa.eu/document-library/general-

publications/concepts-design-assurance-neural-networks-codann

SAE G-34 / EUROCAE WG-114

https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-neural-networks-codann


Neural Network Verification (NNV) Software Tool

[Xiang et al, “Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks”, TNNLS’18]
[Tran et al, “Star-Based Reachability Analysis for Deep Neural Networks”, FM’19]
[Tran et al, “Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control”, EMSOFT’19]
[Tran et al, “NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems”, CAV’20]

[Tran et al, “Verification of Deep Convolutional Neural Network using ImageStars”, CAV’20]
[Bak et al, “Improved Geometric Path Enumeration for Verifying ReLU Neural Networks”, CAV’20]
[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’20]
[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability”, CAV’21]
[Lopez et al, “Evaluation of Neural Network Verification Methods for Air to Air Collision Avoidance”, AIAA JAT’22]
[Lopez et al, “Reachability Analysis of a General Class of Neural Ordinary Differential Equations”, FORMATS’22]
[Lopez et al, “NNV 2.0: The Neural Network Verification Tool”, CAV’23]

Feedforward Neural 
Networks (FFNN)

Neural Network 
Control Systems (NNCS)

Convolutional Neural 
Networks (CNN)

Reachability 
Solvers

Visualizer

Verifier
𝑴 ⊨ 𝑺?

The Neural Network Verification (NNV) Tool

No: bug

Yes: proof

𝑺 ≜ ¬

𝑴 ≜

[Eykholt et al, CVPR 2018]

𝑺 ≜ ¬

https://github.com/verivital/nnv 

Hoang-Dung Tran

https://github.com/verivital/nnv


Neural Network Verification with Reachability

• Given a NN 𝑀: ℝ𝑛 ↦ ℝ𝑚 & an input set 𝒳 ⊆ ℝ𝑛, the output 

reachable set of M is Y = 𝑦 𝑦 = 𝑀 𝑥), ∀𝑥 ∈ 𝒳 ⊆ ℝ𝑚

• Computationally: Given a NN M, a convex initial set of inputs I represented as a 

polytope poly(𝒳), compute the output set 𝑌 =  𝑀(𝐼) of the network

Input 

Set 𝒳
Output 

Set 𝒴

Specification 

S

Layer-by-Layer Propagation 

of Polytopes

I=poly(𝒳)

𝐼 = 𝑥 ∈ ℝ𝑛 𝐴𝑥 ≤ 𝐵}
Compute: 𝑌 = 𝑀 𝐼
Verify: 𝑀 𝐼 ∩ 𝑆 = ∅ ?

Weiming Xiang



Neural Network Reachability Illustrative Example

Input set: 𝒳 ≜ 𝑥 ∈ ℝ3 𝑥 ∞ ≤ 1}

Specification: 

𝑆 ≜ 𝑦 ∈ ℝ2 − 50 ≤ 𝑦1 ≤ −20 ∧ 10 ≤ 𝑦2 ≤ 25}

Verify: 𝑀 𝒳 ∩ 𝑆 = ∅ ?

Output reachable set 𝑌 = 𝑀(𝒳): union of 1250 

polytopes, shown in different colors

8000 randomly generated outputs (evaluating 

M on points, e.g., 𝑀(𝑥) for 8000 points 𝑥 ∈ 𝒳)

𝑀: simple feedforward NN with 3 inputs, 

2 outputs, 7 hidden layers of 7 neurons 

each, ReLU activations; 𝑀: ℝ3 → ℝ2

𝑆 𝑆

𝑀(𝒳)

Scalability Challenge: 

for ReLU activations, 

this problem is NP-

complete

Intuition: number of 

polytopes may grow 

exponentially in 

number of ReLUs due 

to case splitting

Weiming Xiang

Given a NN 𝑀: ℝ𝑛 ↦ ℝ𝑚 & an input set 𝒳 ⊆ ℝ𝑛, the output 

reachable set of M is Y = 𝑦 𝑦 = 𝑀 𝑥), ∀𝑥 ∈ 𝒳 ⊆ ℝ𝑚

𝒳 𝑀(𝒳)



ReLU (Rectified Linear Unit) Neural Network

1 1

( ) max(0, )
n n

j i i i i i i

i i

y f x x   
= =

= + = + 

max(0, )= +y Wx 

For single neuron:

For single layer:

x
( ) max(0, )f x x=

Input set: 

Union of polytopes

Theorem: For ReLU neural networks, if 

input set is a union of polytopes, then 

output sets of each layer are union of 

polytopes. 

Union of polytopesWe can compute layer-by-layer. 28



• MNIST classifier is a function from images to 

classes,M: ℝ28×28 ↦ {0, … , 9}

• Input: ℝ28×28; input set: a convex subset in 

ℝ28×28

• Output prior to softmax/argmax: ℝ10; output set: 

shape in ℝ10

• Final output: take argmax over these 10 

dimensions, this is the identified class

• ImageStar: efficient and accurate set 

representation developed for NNV, extension of 

star sets for images

• Zonotopes: symmetric data structure, leads to 

greater imprecision

• Polytope: better accuracy than zonotope, but 

worse than ImageStars

MNIST Robustness Verification: Comparison of Set 

Representations Hoang-Dung Tran

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]

http://yann.lecun.com/exdb/mnist/ 

http://yann.lecun.com/exdb/mnist/


NNV 2.0

30

[Manzanas Lopez et al, "Verification of Neural Network Compression of ACAS Xu Lookup Tables with Star Set Reachability", AIAA'21]

[Xiang et al, “Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach”, TNNLS’21]

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability”, CAV’21]

[Tran et al, "Verification of Piecewise Deep Neural Networks: A Star Set Approach with Zonotope Pre-filter", FAOC'21]

[Manzanas Lopez et al, "Reachability Analysis of a General Class of Neural Ordinary Differential Equations", FORMATS'22]

[Manzanas Lopez et al, "Evaluation of Neural Network Verification Methods for Air-to-Air Collision Avoidance", JAT'22]

[Tran et al, "Verification of Recurrent Neural Networks using Star Reachability", HSCC'23]

[Ivashchenko et al, "Verifying Binary Neural Networks on Continuous Input Space using Star Reachability", FormaliSE'23]

[Manzanas Lopez et al, "NNV 2.0: The Neural Network Verification Tool", CAV'23]

https://github.com/verivital/nnv 

https://github.com/verivital/nnv


Features
Feature Supported

Neural Network type Feedforward, Convolutional, Encoder-Decoder, Recurrent and Binary 
Neural Networks, Neural Ordinary Differential Equations

Layers MaxPool, Conv, BatchNorm, AvgPool, FullyConnected, MaxUnpool, 
Transposed Conv, Dilated Conv, NODE, Recurrent, Sign

Activation functions ReLU, Satlin, Sigmoid, Tanh, Leaky ReLU, Satlins

Plant dynamics (NNCS) Linear ODE, Nonlinear ODE, Hybrid Automata, Continuous & Discrete 
Time

Set Representation Polyhedron, Zonotope, Star, ImageStar

Reachability methods Sound and complete: exact

Sound: approx, abs-dom, relax-range, relax-area, relax-random, 
relax-bound

Reachable set 

visualization

Yes, exact and over-approximation

Verification Safety, robustness, VNNLIB

Miscellaneous Parallel computing, counterexample generation, ONNX*

*ONNX support has been improved and extended to other NN types.

Legend

- NNV

- NNV 2.0 additions

31



• NN verification

• Approaches
• SMT, MILP, Reachability...

• Tools
• α,β-CROWN, MN BaB, Verinet, nnenum, cdgtest

•  Peregrinnm Marabou, Debona, Fastballnn

• Reluplex, DLV, ReluVal, ERAN, Venus, OVAL

• DNNF, RPM, NV.jl, MIPVerify, Verapak, Averinn

• Competition
• VNN-COMP (participant 2020, 2021, 2023)

• Neural Network Control System (NNCS) verification
• Also referred to as "Neural Feedback Loops"

• Linear vs Nonlinear

• Continuous vs discrete-time

• Friendly Competition
• ARCH-COMP AINNCS (participant 2019, 2020, 2021, 2022, 2023)

• Tools
• CORA, JuliaReach, Verisig, ReachNN*, POLAR, OVERT, VenMAS, Sherlock

• RINO, NFL_veripy, DeepNNC, SMC, AutomatedReach

Related Work

32

[MN Müller et al, VNN-COMP 2022]

(P.S. Apologies if we missed your tool, please come talk to us after the talk and we'll fix it for the next one)

NNCS



Generalized Star Sets

• Generalized star set 𝚯 = < 𝐜, 𝐕, 𝐏 >

• Θ = 𝑥 𝑥 = 𝑐 + Σ𝑖=1
𝑚 𝛼𝑖𝑣𝑖 , 𝑃(𝛼)}

• 𝑐 ∈ 𝑅𝑛 is the center

• 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} is a set of basis vectors

• 𝑃 𝛼 ≜ 𝑪𝜶 ≤ 𝒅, is a predicate

• 𝛼 = 𝛼1, 𝛼2, ⋯ , 𝛼𝑚
𝑇, is predicate variable

• Properties

• Any bounded convex polyhedron can be represented as a star

• Affine mapping of a star is also a star

𝑥 ∈ Θ =< c, V, P >, 𝑦 = 𝑊𝑥 + 𝑏 → 𝐲 ∈ ഥ𝚯 = < 𝑾𝒄 + 𝒃, 𝑾𝑽, 𝑷 >

• Intersection of a star with a half-space is also a star

𝑥 ∈ Θ =< c, V, P >
𝐻 ≜ 𝑥 𝐺𝑥 ≤ 𝑔} → 𝚯 ∩ 𝑯 = < 𝒄, 𝑽, 𝑷 ∧ 𝑷′ >

𝑃′(𝛼) = (𝐺 × 𝑉) 𝛼 ≤ 𝑔 − 𝐺 × 𝑐
[Tran et al, “Star-Based Reachability Analysis of Deep Neural Networks,” FM’19]

Hoang-Dung Tran



Generalized Star Sets

• Why are star sets suitable for reachability analysis of NNs?

• Star set is efficient in affine mapping and intersection with half-

spaces

• Other argument: very effective in verification of high-dimensional ℝ109

hybrid systems: [Bak S, Tran H-D, Johnson TT, “Numerical Verification 

of Affine Systems With Up to a Billion Dimensions,” HSCC’19]; Hylaa 

tool…

• How do we use these?

• This is a data structure used to represent infinite sets of inputs: 

considers a symbolic sets of inputs (e.g., an infinite number of images 

simultaneously) as opposed to testing/evaluating on individual inputs 

(points)

• Can lead to scalability improvements vs. trying all inputs (Monte Carlo 

vs. reachability argument)

• Extended to images efficiently with ImageStars [CAV’21]

Hoang-Dung Tran



Symbolic State Space

Representation: Star Sets vs. Zonotopes, Part I

Star set symbolic representation of reachable states in our NNV tool allows 

improvements varying from 10x to 10,000x speedup vs. existing methods 

(Reluplex, DeepZ, DeepPoly, ReluVal…) with less conservatism than other 

overapproximative methods

Hoang-Dung Tran



Symbolic State Space

Representation: Star Sets vs. Zonotopes, Part II

Illustration of overapproximation conservativeness for different symbolic state-

space representations (zonotopes, abstract domains, approximate star sets, 

and exact star sets) within an ACAS Xu benchmark, illustrating the accuracy 

provided by star set representations, as they are the smallest sets

Hoang-Dung Tran



Symbolic State Space

Representation: Star Sets vs. Zonotopes, Part III

Because star sets minimize overapproximation error, properties may be 

efficiently verified with them vs. other symbolic state space representations that 

are too imprecise (zonotopes, abstract domains, polytopes, intervals, etc. as 

used in DeepZ, DeepPoly, ReluVal…)

Hoang-Dung Tran



VGG16 Robustness Verification Example

Is VGG16 robust to an FGSM attack for 𝒂 ≤ 𝟐 × 𝟏𝟎−𝟖?

Disturbed images = Original image + a * Noise; note a is a set

Hoang-Dung Tran

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]



MNIST Robustness Verification across Dataset

• How do we use this?

• Local robustness: with 

respect to inputs from 

the test data set

• Current best practice: 

evaluate across the test 

data set to provide a 

robustness measure in 

addition to accuracy 

(certified robust 

accuracy / CRA)

Hoang-Dung Tran

[Tran et al, “Verification of Deep Convolutional Neural Networks Using ImageStars,” CAV’20]



Semantic Segmentation Robustness

• Semantic segmentation
• Input: image of width W pixels, height H pixels, and N color channels

• Output: image specifying class 𝑐 ∈ 𝐶 of every pixel

• 𝐹: ℝ𝑊×𝐻×𝑁 → 𝐶𝑊×𝐻

• What is robustness for semantic segmentation?
• Extended from classification robustness

• For a small perturbation of an input image, does the class c of any pixel change (and if so, which 

ones and how many)?

• Builds on set-based reachability analysis: again consider a set of input images as an ImageStar, 

and determine the output reachable set of F
• More precisely: 𝐹: ℝ𝑊×𝐻×𝑁 → ℝ𝑊×𝐻×𝐶 and then take argmax (softmax) over C

• Output space is significantly more complicated, as for classification, it was just 𝐶1 (or more 

precisely, ℝ𝐶 prior to taking the argmax/softmax to determine the class)

• Major challenge to overcome is handling this upsampling process from the latent space, 

accomplished e.g. through dilated/transposed convolutions/deconvolutions or unpooling layers

Hoang-Dung Tran

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]



M2NIST Semantic Segmentation Robustness 

Verification

• Multi-digit variant of MNIST

• Uses background as 10th class

• Segmentation mask defined by digits

Hoang-Dung Tran

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]



M2NIST Semantic Segmentation Robustness: 

Attacks

• Simple adversarial attack

• Brighten/darken some pixels of input image

• Robustness questions

• How many pixels are robust (correctly classified)?

• How many pixels are not robust (incorrectly classified )?

• How does the number of attacked pixels impact robustness?

+ =

𝑨𝒕𝒕𝒂𝒄𝒌_𝒊𝒎𝒂𝒈𝒆 = 𝒊𝒏𝒑𝒖𝒕_𝒊𝒎𝒂𝒈𝒆 + 𝜶 ∗ 𝒏𝒐𝒊𝒔𝒆_𝒊𝒎𝒂𝒈𝒆 

input image noise image attacked image

𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥

Example net

Hoang-Dung Tran

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]



M2NIST Semantic Segmentation Robustness

• 21-layer CNN, Mean IoU: 87.3%

• Illustration with 4 attacked pixels 

to brightness 0

• Runtime: ~20s

• 28x56x1 input image
Above: robustness with attack, below: without

Hoang-Dung Tran

[Tran et al, “Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability,” CAV’21]



Back to AUV Semantic Segmentation

• Characterized robustness for pipe 

segmentation from sonar

• Transfer learning approach: trained on 

synthetic (and augmented) data set, 

analyzed on actual sonar data (transfer 

accuracy acceptable)
Synthetic

Hoang-Dung Tran

SegNet: http://mi.eng.cam.ac.uk/projects/segnet/ 
100 x 512 x3

VGG Encoder-Decoder (SegNet)

100 x 512 x3

• Proved absence of 

adversarial perturbations of 

certain size across test data 

set

• I have to be a little vague here

http://mi.eng.cam.ac.uk/projects/segnet/


NNV Use Cases

• Prove properties hold for neural networks, in terms of input-output 

specifications

• Example: characterize local robustness for test data set, generating a metric similar to 

accuracy (robustness across test data set), for given perturbation levels

• Provide robustness measure and accuracy measure with respect to test data set

• E.g., MNIST classifier is 99% accurate and 95% robust for epsilon = 4/255 under l-infinity

• Generate counterexamples (“adversarial examples/perturbations”) if not

• Prove properties hold for neural network control systems (e.g., usage of 

neural networks in autonomous CPS / AINNCS)

• Overall: provide assurance for machine learning components and their usage 

in autonomous CPS



Collins RUL VNN-COMP Benchmark

https://github.com/loonwerks/vnncomp2022 

Engaging with Collins and Mathworks on 

neural networks used for remaining useful life 

(RUL) estimation, in conjunction with Dr. 

Khaza Anuarul Hoque, Missouri

Simpler than perception tasks, but similar 

concerns, & clearer specifications: monotonic 

decrease, robustness, continuity, etc.

Special thanks to Dmitrii Kirov, Darren Cofer, 

Giacomo Gentile of Collins, and Akshay 

Rajhans & Amanjit Dulai of Mathworks

https://github.com/loonwerks/vnncomp2022


Veritex: Neural Network Verification 

& Repair

• Veritex is a new tool for neural network verification and repair, developed in 

collaboration with Toyota, including both exact and overapproximative

analysis methods; paper at FORMATS’22

• Uses several novel state-space representations, specifically facet vertex, 

facet-vertex incidence matrix (FVIM), and face lattice
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Xiaodong Yang

Figure: An overview of Veritex architecture. It is an object-oriented tool programmed in Python.

(https://github.com/Shaddadi/veritex) 

[Neural Network Repair with Reachability Analysis, Yang et al, FORMATS’22]

https://github.com/Shaddadi/veritex.git


Veritex Counterexample Generation

• Illustration for an ACAS-Xu NN generating entire set of inputs that violate a 

specification, showing how changing the specification (red) by sliding it 

across the reachable set (blue) modifies the unsafe inputs (red, left)

• Relation to inverse of the NN from unsafe states

• Used in neural network repair framework [FORMATS’22]

Xiaodong Yang



Conclusions
• Presented overview of NNV and neural network verification in the context of autonomous CPS that 

have safety-critical requirements
• Other aspects not covered: out-of-distribution detection, conformal prediction, novel data detection, performance 

monitoring, details on runtime verification, data augmentation, …

• Other ongoing projects not covered: LSTM/RNN/CNN verification for time-series data (with 

Collins/MathWorks/Toyota), neural ODE verification, physics-guided machine learning with PDEs, fuzz/coverage 

testing, closed-loop verification, neural network repair (with Toyota), safe reinforcement learning, symbolic 

(automata) learning, …

• Technology transition: Toyota, Mathworks/Matlab neural network verification toolbox 

https://www.mathworks.com/products/deep-learning-verification-library.html , NSA malware classification, …

• Vibrant research community: ongoing activities like VNN-COMP and ARCH-COMP Artificial Intelligence 

/ Neural Network Control Systems (AINNCS) categories, that we help organize
• https://sites.google.com/view/vnn2024

• https://cps-vo.org/group/ARCH/FriendlyCompetition

• Recent “NSF Workshop on Safety and Trust in Artificial Intelligence Enabled Systems" at intersection of 

Formal Methods, Machine Learning, Safety, Trust, etc.

• Neural network verification is a subset of broader trustworthy AI community, covering aspects mostly of 

formal methods/verification, AI/ML, and security/privacy so far, but there are many other ongoing 

activities (FAccT, AIES, etc.)

https://www.mathworks.com/products/deep-learning-verification-library.html
https://sites.google.com/view/vnn2024
https://cps-vo.org/group/ARCH/FriendlyCompetition


5th International Competition on Verification of Neural Networks (VNN-

COMP’24), co-located with CAV’24 in new Symposium on AI Verification 

(SAIV’24)

https://sites.google.com/view/vnn2024   

2023 report: https://arxiv.org/abs/2312.16760 

2020-2022 comparative report: https://arxiv.org/abs/2301.05815

2022 report: https://arxiv.org/abs/2212.10376 

2021 report: https://arxiv.org/abs/2109.00498 

https://www.aiverification.org/ 

https://sites.google.com/view/vnn2024
https://arxiv.org/abs/2312.16760
https://arxiv.org/abs/2301.05815
https://arxiv.org/abs/2212.10376
https://arxiv.org/abs/2109.00498
https://www.aiverification.org/


2022 NSF Workshop on Safety and Trust in Artificial 

Intelligence (AI) Enabled Systems, Sept. 22-23, 2022

• There are major challenges 

everywhere in every domain: 

statistical learning (“2nd wave AI”) 

likely not going to cut it going 

forward, so need “3rd wave AI”, 

probably neurosymbolic

• What are the grand challenges in 

safety/trust in AI and autonomous 

systems?

• Served as input for creation of 

new $20M NSF Safe Learning-

Enabled Systems program (23-

562)

https://cps-vo.org/group/2022-NSFSafeTAI-Workshop 

https://cps-vo.org/group/2022-NSFSafeTAI-Workshop


NSF FMitF: Track I: Generative Neural Network 

Verification in Medical Imaging Analysis

• DNNs, GANs, ... increasingly used to process medical data, including images 

(segmentation, denoising, synthesis, image reconstruction, …)
• Major concerns about introduction of artifacts, etc. with generative models; less concerns 

about adversaries, but also to a degree

• Project goals: develop ways to write specifications for generative models, define/scale 

verification for segmentation and image synthesis

• Collaboration between ISIS, VISE, and VUMC 

Ipek Oguz Meiyi Ma

Vanderbilt Institute for Surgery & Engineering (VISE): https://www.vanderbilt.edu/vise/ 

Kenny TaoFrancesca

Bagnato

https://www.vanderbilt.edu/vise/


NSA SoS: Improving Malware Classifiers 

with Plausible Novel Samples Preston RobinetteKevin Leach

[Robinette et al, “Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets,” Formalise’24]

[Robinette et al, “Benchmark: Neural Network Malware Classification,” AISoLA’23]

https://github.com/pkrobinette/verify_malware 

https://github.com/pkrobinette/verify_malware


Perspective Summary

• Great time to research safe, secure, and trustworthy AI

• As we have seen, AI/ML being used in many 

safety/security-critical domains whether we like it or not, 

with some market-driven pullback already for (in part) 

safety issues (particularly in autonomous driving: Uber, 

Argo AI, Cruise, Tesla NHTSA actions, …)

• Did Phil see his shadow and impending AI winter (or just 

another told you so for dependability / formal methods)?
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Thank You: Questions? 
taylor.johnson@vanderbilt.edu 

http://www.verivital.com/ 

Twitter: @taylorjohnson @verivital

mailto:taylor.johnson@vanderbilt.edu
http://www.verivital.com/
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