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Approach 
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Proof-of-Concept
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● A Debian server with two 20-core CPU

● Fault Model

○ Single bit-flip injections - accurate

○ Errors in computation units/data path

○ One fault per program execution

○ Use LLFI for fault injection

● Application : BubbleSort  

○ Outer loop 

○ Inner loop 

○ Swaption



Proof-of-Concept

● Overall SDC probabilities accros 5 programs
○ The SDC probabilities range:  4% ~ 26.7% 
○ P5's DI count: much higher
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P2

P1

Proof-of-Concept
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Difference: The swaption in P1 is 

through a function call whereas it is 

directly inlined in P2.



Result 

● Controlled experiment of Hypothesis 
○ P1 swaption replaced with P1 implementation to generate P2'
○ The SDC probability of P2’ is only 18.5%
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Future Works

● Future Work

○ Generalize methodology

○ Different performance measures and tradeoffs

○ Create comprehensive guidance for reliable coding

○ Github & LeetCode problems

○ Course Projects

○ Human studies
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