
Free Ride for Resilience:
from the Perspective of Software Engineering

Bohan Zhang (UIowa), Zhu Zhu (GMU), Lishan Yang (GMU),
Hui Xu (Fudan U), Guanpeng Li (UIowa)

Idea

2

Free Ride: Low SDC Probability & High Performance?

High-Level
Code Design

Low-Level
Hardware Resilience

Different Coding
Styles

Code Level
Differences

Different
Resilience

Collect
Implementations

Target
Problem

Random Fault
Injection

Per-Instruction
Fault injection

Identify
Differences

Controlled

Experiments

Fast & Reliable
Implementation

Approach

3

Approach

4

Implentation
A

Component 3

Component 1

Component 2

Implentation
B

Component 3

Component 1

Component 2

New
Implentation

Component 3

Component 1

Component 2

Implentation
C

Component 3

Component 1

Component 2

Faster & Less SDC Components

Proof-of-Concept

5

● A Debian server with two 20-core CPU

● Fault Model

○ Single bit-flip injections - accurate

○ Errors in computation units/data path

○ One fault per program execution

○ Use LLFI for fault injection

● Application : BubbleSort

○ Outer loop

○ Inner loop

○ Swaption

Proof-of-Concept

● Overall SDC probabilities accros 5 programs
○ The SDC probabilities range: 4% ~ 26.7%
○ P5's DI count: much higher

6

P2

P1

Proof-of-Concept

7

Difference: The swaption in P1 is

through a function call whereas it is

directly inlined in P2.

Result

● Controlled experiment of Hypothesis
○ P1 swaption replaced with P1 implementation to generate P2'
○ The SDC probability of P2’ is only 18.5%

8

Future Works

● Future Work

○ Generalize methodology

○ Different performance measures and tradeoffs

○ Create comprehensive guidance for reliable coding

○ Github & LeetCode problems

○ Course Projects

○ Human studies

9

