Session Summary

Performance and Scalability Aspects of Blockchain

Session Summary

- Problem: improving performance of blockchain
 - Still unsolved
 - But great progress are being made
- A blockchain system
 - Consensus
 - And other stuff
- Two insightful talks:
 - Roy Friedman:
 - Coloring Smart Contracts and Other Musings About Efficient Blockchain Execution
 - Qiang Tang:
 - Dumbo Protocols: Making Asynchronous Consensus Real

Improving Consensus

- 1st gen: PoW -> PBFT
- HotStuff and variants:
 - Better communication complexity
- Some notable optimization:
 - Network level: decoupling consensus vs. non-consensus messages
 - Rotating leaders
 - Sharding (local vs. geo-replicated setting)

Improving Consensus

- Asynchronous consensus: overcoming the FL Impossibility result
 - Live and safety in fully asynchronous network
 - But, probabilistic
- Dumbo family of asynchronous consensus:
 - HoneyBadger:
 - Use reliable broadcast to send message to everyone
 - Bottleneck: Binary Byzantine agreement protocol
 - Dumbo2:
 - Binary -> Multi-value Byzantine agreement
 - Demonstrate the significant of MVBA
 - Still quite expensive
 - Bolt-Dumbo-Transformer: optimistic
 - Good days: run deterministic BFT
 - Bad days (lots of complaints) -> switch
 - Performance comparable to BFT

Other stuffs

- Consensus getting too good
 - Now bottleneck is elsewhere
 - Storage
 - Verification
 - Network round trips
- Systems level optimizations:
 - FastFabric
 - Redbelly
- Concurrent transactions:
 - Main challenges: all nodes have the same concurrency schedule
 - DAG based
 - Coloring: extract set of concurrent tx from colored dependency graph

Key takeaways

- Lots of progress in consensus, driven by blockchain
- Asynchronous consensus:
 - May not be too complex to understand
- How to close the gap to the consensus limit
- Techniques from systems/databases communities are powerful