
Coloring Smart 
Contracts and Other 
Musings About 
Efficient Blockchain 
Execution

Roy Friedman

Technion



A (Distributed) 
Systems View 
of Blockchains

Blockchains implement a distributed 
replicated ledger abstraction

Loosely speaking, blockchains 
consist of the following aspects
• Crypto

• Agreement/consensus on the blockchain content 
despite Byzantine (malicious) failures

• P2P dissemination of transactions and blocks

• Transactions and smart contract validation and 
execution

• Ledger ≜ a log of transactions

• The ledger is divided into blocks of transactions

• Each block includes a cryptographic hash of its 
predecessor, thereby creating a tamper-proof chain

Block 0 Block 1 Block 2
H(B0) H(B1)

Block 3
H(B2)



In This Talk…
Since I am not a 

crypto expert, I will 
focus on the other 

aspects



From PoW to BFT Consensus

• First blockchains were based on PoW

• The good
• Zero trust, fully decentralized, claimed to be censorship 

resistance, “scalable”

• The bad
• Inherently low transactions rate, probabilistic finality, most 

hash rate is concentrated in a few mining pools (it is enough 
to attack the code base of a few mining pools to takeover the 
system), easy to cheat in (new) coins with low compute power

• The ugly
• Consumes too much energy: more resources translate into 

more power consumption per TX, but do not improve the 
throughput of the system
• The energy required for a single transaction could power 

dozens of US households for a day



Permissioned, PoA, and PoS Consensus

A simple replication protocol
▪ Clients can send requests to any replica

▪ All replicas repeatedly run consensus to decide what should be the next transaction (or next 
batch of transactions = block)

▪ Seminal PBFT published in 1999

▪ Famous adaptations to blockchain include

▪ Tendermint/Cosmos and IBFT/QBFT

Client1 Client2

Consensus

Request1
Request2

Reply2Reply1

Replicated Servers



Tendermint/Cosmos (in a Nutshell)

• In a round with no failures

0

1

2

3

Propose Prevote Precommit

n
≥3

f+
1

 v
al

id
at

o
rs

Quorum size = 𝑛 − 𝑓 ≥ 2/3𝑛 +1

The goal is to prevent equivocation.
That is, ensure that the proposer did not 
send different blocks to different validators

Here we discover that a quorum knows that 
the proposer proposed the same valid block 
to a quorum, so we can accept and finalize 
the block

A major performance (computation & network) bottleneck



ImprovementsImprovements

HotStuff (DiemBFT): BFT Consensus with Linearity and Responsiveness [Yin, Malkhi, 
Reiter, Gueta, Abraham - PODC 2019]

• Optimization 1: one-to-all and all-to-one communication with signatures aggregation

• Optimization 2: a third phase to eliminate timeout when no 2/3+ acks

• Finality in 3 phases

• Optimization 3: pipelining

0

1

2

3

3
f+

1
 r

ep
lic

as

Propose Pre-Commit Commit Decide



ImprovementsImprovements

FireLedger: A High Throughput Blockchain Consensus Protocol [Buchnik, Friedman – VLDB 2020]

• Idea 1: Rotating proposer + do not immediately mask Byzantine attacks
• The concept of Weak Reliable Broadcast (WRB)

Improvements:
• HotStuff – PODC2019

If a Byzantine proposer sends different blocks to different nodes, it is 
discovered within at most f+1 blocks 
=> Run full BFT consensus (e.g., BFT-SMaRt, HotStuff, Asyc) only then
=> Transactions finality takes f+1 rounds (blocks)



ImprovementsImprovements

FireLedger: A High Throughput Blockchain Consensus Protocol [Buchnik, Friedman – VLDB 2020] 

• Idea 2: Pipelining - overlap the exchange of block i with proposal of block i+1

Improvements:
• HotStuff – PODC2019



ImprovementsImprovements

FireLedger: A High Throughput Blockchain Consensus Protocol [Buchnik, Friedman – VLDB 2020]

• Idea 3: Separating blocks’ headers from blocks’ data (transactions) dissemination

Improvements:
• HotStuff – PODC2019



ImprovementsImprovements

FireLedger: A High Throughput Blockchain Consensus Protocol [Buchnik, Friedman – VLDB 2020]

• Idea 4: Embrace parallelism
• Run multiple instances of the protocol, but with a total order among them

Improvements:
• HotStuff – PODC2019



ImprovementsImprovements

Improvements:
• HotStuff – PODC2019
• FireLedger – VLDB 2020

ResilientDB: Global Scale Resilient Blockchain Fabric [Gupta, Rahnama, Hellings, Sadoghi
– VLDB 2020]

• Geo-Scale Byzantine FaultTolerant consensus protocol (GeoBFT):

• Scalability by using a topological-aware grouping of replicas in local clusters

• Parallelization of consensus at the local level

• Minimizing inter-cluster communication

10s to 100s of thousands of TPS in wide area deployments



ImprovementsImprovements

Dumbo: Faster Asynchronous BFT Protocols [Guo, Lu, Tang, Xu, Zhang – CCS 2020]

• In each round, every validator proposes a sub-block

• Use probabilistic asynchronous Byzantine consensus protocol to decide 
which sub-blocks should be accepted to form the next block

• Does not depend on timing assumptions and is therefore very robust

• Throughput of ~20,000 TPS on 100 nodes committee

Improvements:
• HotStuff – PODC2019
• FireLedger – VLDB 2020
• ResilientDB – VLDB 2020



ImprovementsImprovements

Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback 
[Gelashvili, Kokoris-Kogias, Sonnino, Spiegelman, Xiang – FC 2022]

• A HotStuff like protocol when no failure occur that does not need the 3rd

phase => 30% faster

• The recovery protocol is an asynchronous consensus protocol
➢ If we had a failure, the system is probably in an unstable state, so better use an 

asynchronous protocol

Improvements:
• HotStuff – PODC2019
• FireLedger – VLDB 2020
• ResilientDB – VLDB 2020
• Dumbo – CCS 2020



ImprovementsImprovements

Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus [Danezis, 
Kogias, Sonnino, Spiegelman – EuroSys 2022]

• Narwhal: client transactions are disseminated using a scalable 
dissemination protocol while maintaining causality

• Tusk: an asynchronous consensus protocol that utilizes the fact that client 
transactions are already causally ordered

• Obtains throughput of hundreds of thousands TPS with geo-distributed 
committees

Improvements:
• HotStuff – PODC2019
• FireLedger – VLDB 2020
• ResilientDB – VLDB 2020
• Dumbo – CCS 2020
• Jolton&Ditto – FC2022



ImprovementsImprovements

Kauri: Scalable BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation 
[Neiheiser, Matos, Rodrigues – SOSP 2021]

• Integrates a dissemination tree with the consensus protocol to enable 
scalability of the validators’ committee

• Significantly improves HotStuff’s throughput in very large clusters

Improvements:
• HotStuff – PODC2019
• FireLedger – VLDB 2020
• ResilientDB – VLDB 2020
• Dumbo – CCS 2020
• Jolton&Ditto – FC2022
• Narwhal&Tusk – EuroSys 2022



Improvements

• Numerous sharding ideas
• Sharding reduces BFT resilience

• Performance greatly depends on type of transactions and workload

➢Summary: lots of ideas on how to order 10K-1M TPS
oBut can we really obtain similar numbers on real blockchains?

Improvements:
• HotStuff – PODC2019
• FireLedger – VLDB 2020
• ResilientDB – VLDB 2020
• Dumbo – CCS 2020
• Jolton&Ditto – FC2022
• Narwhal&Tusk – EuroSys 2022
• Kauri – SOSP 2021



Reality Check

When trying to run a full fledged blockchain, performance 
drops dramatically

• Discussions with industry

• HyperLedger fabric’s limited throughput

• Diablo: A Benchmark Suite for Blockchains (EuroSys 2023)

• Smart Red Belly Blockchain

That is, consensus is no longer the performance bottleneck



Systems Aspects of Local BC Execution

FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second [Gorenflo, 
Lee, Golab, Keshav – ICBC 2019]

• Improved performance from 3,000 TPS to 20,000 by

1. Separating data (TX content) from meta-data (TX ids) – the ordering service 
only needs to order the latter

2. Pipeline client messages processing using multi-threading with forwarding to 
the ordering (consensus) service

3. Storing the local state in an in-memory hashtable instead of DB + separating 
long term block storage from recent data

4. Parallelize TX validation using multi-threading (go-routines)
5. Caching recent blocks’ unmarshalled data to avoid repeated deserialization



Systems Aspects of Local BC Execution

Smart Red Belly Blockchain: Enhanced Transaction Management for 
Decentralized Applications [Tennakoon, Gramoli – ArXiv 2022]

• Improved dApp performance from 1,000 TPS to 4,000 by

1. Perform deep validation only on a single validator (block proposer)

2. Divide each block into sub-blocks – process and store sub-blocks, resulting in 
better overlap of processing and I/O

3. Cache recent data

4. Changed the state data structure

5. Replace the hashing algorithm from Sha-256 to Blake3



What About Concurrent TX Execution?

• CPUs are becoming increasingly parallel
• An i9-13900K CPU has 24 cores and 32 hardware threads
• AMD Ryzen™ Threadripper™ PRO 5995WX has 32 cores
• Xeon CPUs with up to 56 cores (double threads)
• 4th generation AMD EPYC with 96 cores (later this year, also 128 cores)

• Why is the problem different than standard DB parallelism?

• Because all validators must execute all transactions in the same (logical) order



Parallelizing BC Transactions’ Execution

High Throughput Byzantine Fault Tolerance [Kotla and Dahlin – DSN 2004]

• Enables parallel execution of TXs as long as they maintain the logical
consensus total order (the CBASE algorithm)

1. Assumes knowledge (possibly conservative) of read sets and write 
sets

2. Parallelizer ensures that if TX1 conflicts TX2 and TX1→TX2 in the 
Byzantine consensus order, then TX2 only starts executing after TX1

has terminated
a. Maintains a dependency graph

• The dependency graph is a DAG since the direction of edges is 
determined by the Byzantine consensus order

b. A TX is scheduled as soon as all its dependencies in the DAG are 
removed



Parallelizing BC Transactions’ Execution

ParBlockchain: Leveraging Transaction Parallelism in Permissioned Blockchain Systems [Amiri, 
Agrawal, El Abbadi – ICDCS 2019]

• A similar idea to the previous slide, applied to blockchains with a HyperLedger inspired architecture

o Transactions are divided into blocks

o Assumes each transaction exposes its read-sets and write sets

▪ Known, static analysis, or speculative execution

o Ordering nodes are separate from execution nodes

o Ordering nodes repeatedly run consensus on the ordering of 
transactions

o An ordering node batches groups of transactions obtained 
from consensus, according to a deterministic rule, computes 
their dependency DAG, and disseminates to executors

o When using a multi-version KV, no need to maintain W-W 
conflicts in the graph



Parallelizing BC Transactions’ Execution

Boosting Concurrency in Parallel State Machine Replication [Escobar, 
Dotti, Alchieri, Pedone – Middleware 2019]

• BFT SMR – not specific to blockchains

• Focuses on how to maintain the DAG concurrently, when 
transactions arrive continuously
• Specifically, defined Conflict-Ordered Set (COS) data type

1. Coarse grain locking (entire structure)
2. Fine grain (single node) locking through the hand-over-hand paradigm
3. Lock-free implementation based on AtomicSet, AtomicRead, and CompareAndSwap

(CAS)
Relative results depend on percentage of writes (conflicts) and the execution time for a 
single TX



Parallelizing BC Transactions’ Execution

Coloring Approach – work in progress

• Assume all TXs in the same block can be executed in any agreed upon permutation

• Calculate a minimal (possibly approximate) coloring of the dependency graph

• Ensure execution that obeys the coloring order



Parallelizing BC Transactions’ Execution

Benefits of the Coloring Approach

• If the execution time of all TXs is similar, then the scheduler can simply schedule TXs 
in phases based on their color
• This is the fastest schedule and requires no synchronization

• Otherwise, schedule TXs in color order, and impose synchronization in color order
• Reduces synchronization tracking and overheads

• Can potentially obtain faster schedules than maintaining the Block order which is arbitrary

TX1: A→B

TX2: B→C

TX3: C→D

TX4: D→A

TO inspired DAG Coloring DAG

Linear time

Contant time (2)



Parallelizing BC Transactions’ Execution

Block-STM: Scaling Blockchain Execution by Turning Ordering Curse to a Performance Blessing 
[Gelashvili, Spiegelman, Xiang, Danezis, Li, Malkhi, Xia, Zhou – ArXiv 2022]

• Main goal is to solve the readset/writeset transparent discovery problem
1. Transactions read and write from a multi-versioned DB

2. Transactions are scheduled in their block order, but tentatively executed concurrently

3. Validations occur concurrently, but a transaction only commits if all previous 
transactions (including itself) have passed validation successfully

4. If a transaction aborts, it gets re-executed

5. When a TX aborts, it uses the readset and writeset of the aborted execution as 
estimated readset and writeset for its re-execution phase

Intra-block order

Committed Validated Executed Executing Pending



Conclusions



Q&A
Thank you


	Slide 1: Coloring Smart Contracts and Other Musings About Efficient Blockchain Execution
	Slide 2
	Slide 3: In This Talk…
	Slide 4: From PoW to BFT Consensus
	Slide 5
	Slide 6
	Slide 7: Improvements
	Slide 8: Improvements
	Slide 9: Improvements
	Slide 10: Improvements
	Slide 11: Improvements
	Slide 12: Improvements
	Slide 13: Improvements
	Slide 14: Improvements
	Slide 15: Improvements
	Slide 16: Improvements
	Slide 17: Improvements
	Slide 18: Reality Check
	Slide 19: Systems Aspects of Local BC Execution
	Slide 20: Systems Aspects of Local BC Execution
	Slide 21: What About Concurrent TX Execution?
	Slide 22: Parallelizing BC Transactions’ Execution
	Slide 23: Parallelizing BC Transactions’ Execution
	Slide 24: Parallelizing BC Transactions’ Execution
	Slide 25: Parallelizing BC Transactions’ Execution
	Slide 26: Parallelizing BC Transactions’ Execution
	Slide 27: Parallelizing BC Transactions’ Execution
	Slide 29: Conclusions
	Slide 30: Q&A

