Blockchain and Database

A match made in the cloud

About Me

e Senior Lecturer at Deakin University

e Previously:

o SUTD (Assistant Professor)

o NUS (Senior Research Fellow)
e Research interest

o Databases
o Security
o Distributed systems

An Observation

e Settings:
o Some data involved multiple users
o Computation on the data
o Outsourced to untrusted servers

e Example: blockchains, key management

e The blockchain way:
o Consensus ensure that bad things do not happen
m Given some assumption
e The certificate transparency way:

o Servers made accountable via auditing
m Detect bad things after the fact

Transparency

e Untrusted server

o Publish digests over the data » auditor
e Client audits a server . .
. . digests audits
e Third-party / global auditor l
o Ensure fork consistency : server
queries A Onseswries
proofs
user 1 user 2
dige& digests
sl bulletin

board

Transparency

e Prevention vs. detection
o Cost:
m Blockchains vs. databases
o Assumptions:
m Upper bound on failures vs. window of vulnerability
e Transparency is gaining traction!
o Applications: key/certificate transparency
o Systems: QLDB, LedgerDB, SQLLedger

Dynamic Pricing

e Retailers: purchase electricity from wholesale market
e Retailer sells to consumers
e Consumer pays bill based on usage

Dynamic Pricing

e Retailer’s cost is lowest if total demands spread out over the day
o ->want consumer to shift loads to low-demand period
e Smart meters:
o Fine-grained tracking of electricity usage
e Dynamic pricing
o Different rates based on usage
o Higher rate if exceeding some thresholds

Dynamic Pricing

e Pricing scheme:
o Charged based on system-level demand
o Peak rate applied to consumer if:
m Individual demand exceeds t1
m System-level demand exceeds t2

3 3
= £
5/2 \.:::/2
R 3
=} =}
81 B 1
8)
< <
€3 €2

ot ot

6 12 18
Time of day Time of day

0 18

Energy use (kWh)

[\V]

—

o
T

network
threshold (7)

Time of day

Dynamic Pricing

e Threat model
o Retailer exaggerates system-level demand
m More money
o Consumer A curious about consumer B’s usage
e Goals:
o Transparency: retailer cannot exaggerates beyond a bound

m Defined by number of malicious/fake users
o Privacy: does not reveal data to curious consumers

off-peak peak

network
threshold ()

Energy use (kWh)
Energy use (kWh)
Energy use (kWh)

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24
Time of day Time of day Time of day

e Additively homomorphic commitment protocol:

Dynamlc P”Clng C(Vl, I’1) + C(Vz, I’2) = C(Vl + v, + I’2)

e Building blocks: e Zero-knowledge range proofs for the above protocol:
o Commitments {(c,Vmax), (v, r) : C(v,r) = c,v € [0,Vmax|}
o ZKrange proofs

e Baseline:

O

Retailer computes C for all data and sums
Retailer computes range proofs for all data and sums
Retailers sends all commitments and proofs to users, publishes hashes on bulletin boards
Consumer checks all proofs
m And her datais included in C

o O O

Dynamic Pricing

e Merkle tree based solution:

Retailer builds Merkle tree on commitments
Sends inclusion proofs to consumer
Consumer verifies proofs

Auditor checks all range proofs

\
vl 1

level 2: [06 =c12 + C13J
v b

C12 C13

o O O O

level 3:

Transparent Data Services

e More general computation than just SUM
e SOTA: key transparency, blockchains, general ADS

monitor

user 1’s namespace

(a) System model of CT, CONIKS, and Merkle?.

m columns => O(m?) sorted trees

E hO - h2 hs i - - h:(-‘, h:'] -

D y data

]

> Server

kl k2 k3 k4 k5 kG k7
keys k;, values v;, i =1,...,7

(c) System model of IntegriDB. (d) ADS of IntegriDB and FalconDB.

“““““““““““

hy hio hu
hi: hash of identity/public key commitment + other data
(b) ADS of CONIKS.

-7 |server 1| -
/ \
/ \
! -server 2 [-_server nj!

\ /

A 7
“~.__blockchain _--~

read/write R,
query

(e) System model of FalconDB.

Data Services

e Support rich operations: SUM, MIN/MAX, QUANTILES
e Applications: smart grids, congesting pricing, advertising
e Building blocks:

o SUM tree + prefix tree
o Leaves are sorted commitments

e Richer operations on top:
o MIN
o SUM
o QUANTILES

| chronological
| prefix tree

..

‘sorted sum tree sorted sum tree
for prefix 00 for prefix 11

Transparent Data Services

Performance

runtime (s)

(a) tree construction

—
o
'S

100

10 sum trees
—@— 100 sum trees
—4— 1000 sum trees

|

0.01 e
102 10% 10* 10° 10 107

IDs

runtime (s)

(b) query execution

10 sum trees
—#— 100 sum trees
—4— 1000 sum trees

| sl

I

10% 103 10* 10° 10° 107

IDs

runtime (s)

10 sum trees
4 —— 100 sum trees
10% || —— 1000 sum trees

1

0.01 ‘
102 10% 10* 10°

4 IDs

(c) full audit

Ledger Databases

e What is a ledger database
o Execute user operations, maintaining a history of operations
o Integrity: server cannot tamper with the result
m E.g.: update x to A -> query x will return A
o Append-only: server cannot change the history of operations

e \ast design space:
o Threat model: consensus vs. auditing

o Abstraction: key-value APlIs vs. transaction
o Performance: proof sizes, latency, throughput, etc.

Ledger Databases

e Current systems

System Abstraction Threat model Append-Only Proof | Current-Value Proof | Throughput
QLDB [2] Transaction Audit O(logN) O(N) Low
LedgerDB [31] Transaction Audit O(logN) O(N) Medium
Forkbase [28] Key-value Audit O(N) O(log m) Medium
Blockchain [4] Transaction Consensus 0O(1) 0(1) Low
CreDB [20] Transaction | Trusted hardware 0O(1) 0(1) Low
Trillian [15], ECT [26], Merkle?[16] Key-value Audit O(logm) O(log m) Low
GrassDB Transaction Audit O(log B) O(log B + log m) High

Systems

QLDB

(@)

(@)

Inefficient
Index not protected

el
I

Request

Merkle tree

)

T1 >

]

T2

. Meta data

Operation
Data

T3 [

l - ”

T4 |

Indexes

g

ror

s

4 o

Systems

e LedgerDB
o Better performance
o Verification is still expensive < Prev Hash [Sequence|Digest|MPT root
J
[1 |
—— -
T1 T2 T -
0\ A >
| , : !
1 [« : 3 |e 4 | Head of P y——
| | 1 cat il
i : 5 . [T] Transaction
i ‘ I ! Head of O |)
”3 e ’ C |
1 < 2 i 3 B ”Ca ” D ue indexes
p

Systems

e (lassDB:

o Concurrent transactions
o Integrity protected index

m Structured Invariant Reusable Index
o High performance

GLASSDB

| + GlassDB > LedgerDB" -~ QLDB’

L 1 1 1 L 1 1

—— GlassDB - LedgerDB" -4~ QLDB"

w
e o O

(x103) Transaction/s
o NN W
w O

o

8 16 24 32 40 48 56 64 72 80

#Clients

o un

8 12 16
#Nodes

Client

Client

Client

Shard

Transaction Manager

Ledger Storage

Auditor

i

LA 4

g Txn Thread Shared
] H Memory
3 Txn Thread
< H i
[Txns
b
l Persisting Thread |

Verifier

“or Verification Thread

Task
Queue

N

_"

[DataRoot 0]

[DataRoot 1]

[DataRoot 2]

[DataRoot n]
A AN

Digest

D Data Block with sequence number i (Snapshot)
:] Index Node D Copy-on-write index node (with newer version) !

Auditor

i

Auditor

[

Going Forward

e Transparency in ML?

e Testing transparent systems
o Anyone fuzzed CT yet?
o Blockchain:
m Smart contracts (seems crowded)
m Consensus layer?
m Storage layer?
m Application layer (DeFi: so many incidents!)

Thank you

e Consider submitting to VDBS workshop
https://veridbsys.github.io/

