
Blockchain and Database
A match made in the cloud

About Me

● Senior Lecturer at Deakin University
● Previously:

○ SUTD (Assistant Professor)
○ NUS (Senior Research Fellow)

● Research interest
○ Databases
○ Security
○ Distributed systems

An Observation

● Settings:
○ Some data involved multiple users
○ Computation on the data
○ Outsourced to untrusted servers

● Example: blockchains, key management
● The blockchain way:

○ Consensus ensure that bad things do not happen
■ Given some assumption

● The certificate transparency way:
○ Servers made accountable via auditing

■ Detect bad things after the fact

Transparency

● Untrusted server
○ Publish digests over the data

● Client audits a server
● Third-party / global auditor

○ Ensure fork consistency

Transparency

● Prevention vs. detection
○ Cost:

■ Blockchains vs. databases
○ Assumptions:

■ Upper bound on failures vs. window of vulnerability
● Transparency is gaining traction!

○ Applications: key/certificate transparency
○ Systems: QLDB, LedgerDB, SQLLedger

Dynamic Pricing

● Retailers: purchase electricity from wholesale market
● Retailer sells to consumers
● Consumer pays bill based on usage

Dynamic Pricing

● Retailer’s cost is lowest if total demands spread out over the day
○ -> want consumer to shift loads to low-demand period

● Smart meters:
○ Fine-grained tracking of electricity usage

● Dynamic pricing
○ Different rates based on usage
○ Higher rate if exceeding some thresholds

Dynamic Pricing

● Pricing scheme:
○ Charged based on system-level demand
○ Peak rate applied to consumer if:

■ Individual demand exceeds t1
■ System-level demand exceeds t2

Dynamic Pricing

● Threat model
○ Retailer exaggerates system-level demand

■ More money
○ Consumer A curious about consumer B’s usage

● Goals:
○ Transparency: retailer cannot exaggerates beyond a bound

■ Defined by number of malicious/fake users
○ Privacy: does not reveal data to curious consumers

Dynamic Pricing

● Building blocks:
○ Commitments
○ ZK range proofs

● Baseline:
○ Retailer computes C for all data and sums
○ Retailer computes range proofs for all data and sums
○ Retailers sends all commitments and proofs to users, publishes hashes on bulletin boards
○ Consumer checks all proofs

■ And her data is included in C

Dynamic Pricing

● Merkle tree based solution:
○ Retailer builds Merkle tree on commitments
○ Sends inclusion proofs to consumer
○ Consumer verifies proofs
○ Auditor checks all range proofs

Transparent Data Services
● More general computation than just SUM
● SOTA: key transparency, blockchains, general ADS

Data Services

● Support rich operations: SUM, MIN/MAX, QUANTILES
● Applications: smart grids, congesting pricing, advertising
● Building blocks:

○ SUM tree + prefix tree
○ Leaves are sorted commitments

● Richer operations on top:
○ MIN
○ SUM
○ QUANTILES

Transparent Data Services

● Performance

Ledger Databases

● What is a ledger database
○ Execute user operations, maintaining a history of operations
○ Integrity: server cannot tamper with the result

■ E.g.: update x to A -> query x will return A
○ Append-only: server cannot change the history of operations

● Vast design space:
○ Threat model: consensus vs. auditing
○ Abstraction: key-value APIs vs. transaction
○ Performance: proof sizes, latency, throughput, etc.

Ledger Databases

● Current systems

Systems

● QLDB
○ Inefficient
○ Index not protected

Systems

● LedgerDB
○ Better performance
○ Verification is still expensive

Systems

● GlassDB:
○ Concurrent transactions
○ Integrity protected index

■ Structured Invariant Reusable Index
○ High performance

Going Forward

● Transparency in ML?
● Testing transparent systems

○ Anyone fuzzed CT yet?
○ Blockchain:

■ Smart contracts (seems crowded)
■ Consensus layer?
■ Storage layer?
■ Application layer (DeFi: so many incidents!)

Thank you

● Consider submitting to VDBS workshop

https://veridbsys.github.io/

