MRVs: Enforcing Numeric Invariants in Parallel
Updates to Hotspots with Randomized Splitting®

Nuno Faria Jose Pereira
{nuno.f.faria, jose.o.pereira}@inesctec.pt

it INESC

Universidade do Minho

® To appear in SIGMOD 2023

Motivation: Update hotspots

* Read data access distribution is usually

highly skewed

* Consequences:
- Delays (pessimistic c.c.)

- Rollbacks (optimistic c.c.)

occurrences

- Unbalanced shards

items

(image from Wikipedia)

Motivation: Update hotspots

Focus on numeric values with a lower bound

Operations:
- Add to value

— Subtract from value if result >= 0

- Read current value
- (Overwrite value)

Part of larger, multi-operation, transactions
Applications: Pre-paid account, finite stock, ...

Goal

* Mechanism that mitigates the impact of hotspots In
numeric values

* Layered on existing transactional system
- No changes to underlying c.c.
— Preserves isolation criteria
— No additional coordination -> decentralized

Related work

Escrow locking [O’Neil, 1986]

CRDTs [Balegas et al., 2015]

RedBlue [Li et al., 2012]

Reservations [Barbara-Milla et al., 1994]
Splitting [Narula et al., 2014]

Proposal: Multi-Record Values (MRVs) are a form of
reservations / splitting

Challenge

* How to assign records to operations without
knowledge of cores / nodes / ... ?

 What if the chosen record is not enough?

 How to dynamically change the number of records for
each value?

Assumptions

Multi-item transactions

- Repeatable Read, Snapshot Isolation, (Serializabllity)

Dynamic tree-structured index
- Range queries and concurrent updates

(Query processing, views, rules, ...)
Examples:

- PostgreSQL, MongoDB, MySQL GR, Google Spanner, ...

Step 1: Randomization

Split each contended value to multiple database records
Each operation accesses a random record / out of n

In contrast to:
— phase reconciliation: 1 partition / core

— reservations: 1 partition / node

The probabllity of conflict can be made arbitrarily small
by increasing the number of partitions

Step 2: Range traversal

Use record /+1, /+2 -> not random again!
— wrap around at n to O -> circular structure

- stop at /-1

In contrast to:

— transitioning to “joined phase”

— contacting “home” node

Easy to detect termination
Avoids deadlocks

Step 3: Sparse keys

* Assign a random key to each of n records out of N (N >> n)
- lookup lowest with key >= |

 as efficient as lookup of / in tree structured indexes

e |Insertion and removal of records does not conflict with
updates of other records

 |n contrast to:

— transition to “joined phase” and back

- centralized coordination by “home” node

10

Implementation

e Maintenance of records:
- Adjusting the number of records to the workload

— Balancing the value in records

* Can be done In the background by concurrent worker
threads

* Can be approximate and decentralized

11

Results: Workloads

| 2.0
64 - 08 07 08 1.0 1.0 FHESEW 2048 - 09 08 08 09 09 09 09
32-09 08 08 10 11 S , 512-08 08 08 09 09 09 09 s
" :
¢ 16-09 08 09 1.0 12 |12 S 128-09 08 09 08 1.0 1.1 1.2
=
(=] " h) o] 3
g g-09 09 o9 FHE g 09 08 --- 1.0
1 10 B 6 mm 0w 1 - 0.9 13 A E e R ET: l
-- - , ----- .
32 64 128 512 1 32 64 128 512
Clients Clients

(b) TPC-C (c) STAMP Vacation (optimized)

Relative throughput

Products

2048
512
128

W
N

1.0
0.9
0.9
1.0
0.9
1.0
0.9

1.0
0.9
1.1
1.0
1.0
1.2

(a) Single-writer SOL
(PostgreSQL)

1.0 1.0 1.0 1.0 10 0.9

1.0 1.0 1.1 1.2 0.8

1.0 0.8
.. EIEEIERE -
EOEDERIES -
37 10.8 143 163

32 64 128 512 1
Clients

PostgreSQL

Results: DBMSs

0.8 0.8 0.9
0.8 0.8 0.9
0.8 0.8 09
0.8 0.9

0.9 11 0.9 11m

1.2 17 35

32
Clients

mongoDB

0.9 08 0.9
0.9 09 0.9
09 09 1.0
1.1 [1.3 N3

54 73

64 128 512

(b) Single-writer NoSQL
(MongoDB)

2
08 1.1 1.0 1.0 08 m 09 10 10 10 09 10 1.0
09 1.1 1.0 1.1 1.1 09 10 1.0 1.0 09 1.1

09 1.0 1.2 k) 09 11 10 -
09 1.1 1.0 Pl 12 10 10 -1

EBEg . -
1.3 36 58 77 35 23

1

R 5« [0 5+ 25

Relative throughput

19 31 102 175

mmmmm os mmmmmm os mmmmmm os mmmmm |
0

32 64 128 512 1 32 64 128 512

Clients Clients

(c) Multi-writer SQL

(d) Multi-writer cloud-native NewSQL

(MySQL Group Replication) (Google Spanner)

My

m Cloud
Spanner

13

Conclusions

* New take on a classical problem, motivated by a new
generation of database systems (NewSQL)

* Part of an ongoing project to rethink distributed
database systems architectures

14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

