
MRVs: Enforcing Numeric Invariants in Parallel
Updates to Hotspots with Randomized Splitting(*)

Nuno Faria José Pereira
{nuno.f.faria,jose.o.pereira}@inesctec.pt

(*) To appear in SIGMOD 2023

2

Motivation: Update hotspots
● Read data access distribution is usually

highly skewed
● Consequences:

– Delays (pessimistic c.c.)
– Rollbacks (optimistic c.c.)
– Unbalanced shards

items

oc

cu
rr

en
ce

s

Hotspots

(image from Wikipedia)

3

Motivation: Update hotspots
● Focus on numeric values with a lower bound
● Operations:

– Add to value
– Subtract from value if result >= 0
– Read current value
– (Overwrite value)

● Part of larger, multi-operation, transactions
● Applications: Pre-paid account, finite stock, ...

4

Goal
● Mechanism that mitigates the impact of hotspots in

numeric values
● Layered on existing transactional system

– No changes to underlying c.c.
– Preserves isolation criteria
– No additional coordination -> decentralized

5

Related work
● Escrow locking [O’Neil, 1986]
● CRDTs [Balegas et al., 2015]
● RedBlue [Li et al., 2012]
● Reservations [Barbará-Milla et al., 1994]
● Splitting [Narula et al., 2014]

● Proposal: Multi-Record Values (MRVs) are a form of
reservations / splitting

6

Challenge
● How to assign records to operations without

knowledge of cores / nodes / ... ?
● What if the chosen record is not enough?
● How to dynamically change the number of records for

each value?

7

Assumptions
● Multi-item transactions

– Repeatable Read, Snapshot Isolation, (Serializability)
● Dynamic tree-structured index

– Range queries and concurrent updates
● (Query processing, views, rules, ...)
● Examples:

– PostgreSQL, MongoDB, MySQL GR, Google Spanner, ...

8

Step 1: Randomization
● Split each contended value to multiple database records
● Each operation accesses a random record i out of n
● In contrast to:

– phase reconciliation: 1 partition / core
– reservations: 1 partition / node

● The probability of conflict can be made arbitrarily small
by increasing the number of partitions

9

Step 2: Range traversal
● Use record i+1, i+2 -> not random again!

– wrap around at n to 0 -> circular structure
– stop at i-1

● In contrast to:
– transitioning to “joined phase”
– contacting “home” node

● Easy to detect termination
● Avoids deadlocks

10

Step 3: Sparse keys
● Assign a random key to each of n records out of N (N >> n)

– lookup lowest with key >= i
● as efficient as lookup of i in tree structured indexes

● Insertion and removal of records does not conflict with
updates of other records

● In contrast to:
– transition to “joined phase” and back
– centralized coordination by “home” node

11

Implementation
● Maintenance of records:

– Adjusting the number of records to the workload
– Balancing the value in records

● Can be done in the background by concurrent worker
threads

● Can be approximate and decentralized

12

Results: Workloads

more conflicts

13

Results: DBMSs

14

Conclusions
● New take on a classical problem, motivated by a new

generation of database systems (NewSQL)
● Part of an ongoing project to rethink distributed

database systems architectures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

