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Motivation: Update hotspots

* Read data access distribution is usually

highly skewed

* Consequences:
- Delays (pessimistic c.c.)

- Rollbacks (optimistic c.c.)

# occurrences

- Unbalanced shards

items

(image from Wikipedia)



Motivation: Update hotspots

Focus on numeric values with a lower bound

Operations:
- Add to value

— Subtract from value if result >= 0

- Read current value
- (Overwrite value)

Part of larger, multi-operation, transactions
Applications: Pre-paid account, finite stock, ...



Goal

* Mechanism that mitigates the impact of hotspots In
numeric values

* Layered on existing transactional system
- No changes to underlying c.c.
— Preserves isolation criteria
— No additional coordination -> decentralized




Related work

Escrow locking [O’Neil, 1986]

CRDTs [Balegas et al., 2015]

RedBlue [Li et al., 2012]

Reservations [Barbara-Milla et al., 1994]
Splitting [Narula et al., 2014]

Proposal: Multi-Record Values (MRVs) are a form of
reservations / splitting




Challenge

* How to assign records to operations without
knowledge of cores / nodes / ... ?

 What if the chosen record is not enough?

 How to dynamically change the number of records for
each value?



Assumptions

Multi-item transactions

- Repeatable Read, Snapshot Isolation, (Serializabllity)

Dynamic tree-structured index
- Range queries and concurrent updates

(Query processing, views, rules, ...)
Examples:

- PostgreSQL, MongoDB, MySQL GR, Google Spanner, ...



Step 1: Randomization

Split each contended value to multiple database records
Each operation accesses a random record / out of n

In contrast to:
— phase reconciliation: 1 partition / core

— reservations: 1 partition / node

The probabllity of conflict can be made arbitrarily small
by increasing the number of partitions



Step 2: Range traversal

Use record /+1, /+2 -> not random again!
— wrap around at n to O -> circular structure

- stop at /-1

In contrast to:

— transitioning to “joined phase”

— contacting “home” node

Easy to detect termination
Avoids deadlocks



Step 3: Sparse keys

* Assign a random key to each of n records out of N (N >> n)
- lookup lowest with key >= |

 as efficient as lookup of / in tree structured indexes

e |Insertion and removal of records does not conflict with
updates of other records

 |n contrast to:

— transition to “joined phase” and back

- centralized coordination by “home” node
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Implementation

e Maintenance of records:
- Adjusting the number of records to the workload

— Balancing the value in records

* Can be done In the background by concurrent worker
threads

* Can be approximate and decentralized
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Results: Workloads
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Products
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Conclusions

* New take on a classical problem, motivated by a new
generation of database systems (NewSQL)

* Part of an ongoing project to rethink distributed
database systems architectures
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