School of Computer Science & Engineering
Trustworthy Systems Group

KISS: Making Dependable
Operating Systems a Reality

Gernot Heiser
gernot@unsw.edu.au

O =

Comprehensive formal verification

We Have sel 4

Provable real-time capability
World’s fastest microkernel

Present limitations

initialisation code not verified
MMU, caches modelled abstractly
Multicore not yet verified

IFIP WG 10.4 Research Update — Jan'23

O =

Confidentiality Availability

Security
Enforcement
Abstract
Model
Functional Armv/
Correctness X86
C Imple- RISC-V
mentation
Translation
Correctness Armv/
RISC-V

© Gernot Heiser 2023 -CCBY 4.0 #%

Microkernel Is Not An OS O

Modularisation: Separate components
* operating-system services
« applications

Microkernel enforces isolation — bullet-proof
« kernel code reduced to minimum Virtual
e mediates hardware resources Machine

Linux
App

OS
Resource File Net- Device Trusted Untrusted User
Mgmt System working Driver Component Component Mode
Kernel

Microkernel Mode

Hardware

IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

VVVVVV

Can We Build A Verified OS?

... Where the whole trusted computing base is proved correct?

VVVVVV

3 IFIP WG 10.4 Researc h Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

| Claim We Can! O

... if we strictly observe some fundamental principles: KISS
 Fine-grained modularity, strong separation of concerns

) L.east privilege _ Reason about security Enables verifying
« Simple abstractions modules separately

* Simple policies « “Universal” policies are complex
« Simple implementation & have pathological cases
« Better use-case-specific,
swappable policies
« Requires policy modularity

- Enabled by the above
* Enable push-button verification!

IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

Key Component: Driver Framework

"]
Control

Virtual t

Driver Device
-<-> MUX - Driver

4
Transport vjjryal NW

Approach:

« Zero-copy transport layer

« Each component simple, single-purpose
« Standard interfaces, virtlO

IFIP WG 10.4 Research Update — Jan'23

O =

© Gernot Heiser 2023 — CC BY 4.0 :n: UNSW

YYYYYY

selL4 Device Driver Framework (sDDF) Q==

» Lightweight

« Separation of concerns: driver only translates interfaces

» Simple, event-based, single-threaded drivers

» Asynchronous, zero-copy transport layer

« Bounded, lock-free, single-producer, single-consumer queues

Driver

Example: Gb/s NIC
 Linux: 3,000 LoC
« sel4:500 LoC

IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 :n: UNSW

YYYYYY

Performance Evaluation Setup O

4 kernel entries per packet 10 kernel entries per packet

=%

Driver

"D T

NIC Driver

@seld

IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0

selL4 vs Linux Networking Performance

1,000 100%

Achieved throughput (Mb/s)

Outperforms Linux
Overhead of extra
domain crossing <10%

IFIP WG 10.4 Research Update — Jan'23

750 75%

500 50%

25%

0 0%
200 400 600 800 1,000

Requested throughput (Mb/s)

@® sel4 throughput @ selL4 CPUutii @ Linuxthroughput € Linux CPU util

© Lucy Parker 2022 CC BY 4.0

O =

CPU Utilisation

vvvvvv

Full Network System O

Modules may run

VM on different cores

Client

L~ Tx
<->-<—> IR
« Copy > o> Q > >
€ > © « Client « Rx<—>
MUX

Driver NIC

Native
Client

« Each component is simple & single-threaded

« Most split into separate Tx/Rx modules

« Copy where needed for security

« |P stack is client library, only handles UPD & TCP
« Broadcasts, DHCP handled by separate modules

IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

VVVVVV

Legacy Re-Use O

« Canuse Linux drivers wrapped
into individual driver VM

Driver VM
MUX Linux
<+ .
Driver
10 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

OS = Kernel + Drivers + I/O Services O =

Aim: Verified OS for Cyberphysical/loT
» Highly modular design

« Simple component implementation
* Performant

Untrusted
Component

File Net- Device) .
System [l working [l Driver Operating « Most components just a

System few 100 LoC, sequential
« Can use push-button

N ecnmiques (ST solvers
Hardware

11 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 {«: UNSW

vvvvvv

Microkernel

O =

Trustworthiness:
Verification-Friendly Systems
Language — Pancake

Reducing Cost of Verified Systems Code O

Aim: Simplify
verifying user-level
OS components

Idea:
« Use low-level but safe
systems language with

Pancake certifying compiler
Language

» Gives many proof
obligations for free

Compiler
Systems language:

* memory safe

« not managed (no garbage collector)
 low-level (obvious translation)
 interfacing to hardware

* NO run-time system

13 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 {«: UNSW

VVVVVV

14

Approach: Re-Use CakeML Framework

CakeML:

functional language
type & memory safe
managed (garbage collector)
high-level, abstract machine

verified run time

verified compiler
mature system
active ecosystem

IFIP WG 10.4 Research Update — Jan'23

CakeML
compiler

Pancake
compiler

Approach:

Re-use lower part of
CakeML compiler stack
for imperative language

© Gernot Heiser 2023 — CC BY 4.0 7

Languages

> Introduce globals vars,
eliminate modules &
replace constructor
FlatLang: names with numbers
alanguage for -
compiling away > Global dead code elim.
high-level Turn pattem matches into
lang. features | = it-heheeise decision rees
/ > Switch to de Bruijn
indexed local variables

> Fuse function calls/apps
into multi-arg calls/apps
ClosLang: Track where closure values

last language flow & inline small functions

with closures Introduce C-style fast

(has multi-arg > calls wherever possible

C) > Remove deadcode

2> Annotate closure creations
Pancake AST) Y,
> Perform closure conv.

Flatten structs <

BVL:) Inline small functions
CrepLang: functional Fold constants and
i:npera(ive Iang:age &> shink Lets
language without Split over-sized functions
without structs closures > in't)o many small functions
Compile global vars into a
< > ica resized array
lise program <: BVI: > Optimise Let-expressions
LoopLang: one global Make some functions tail-
Reolace express:nns variable recursive using an acc.
eplace loops occur only on N / N - .
e | R er 2> Swichto mperatve style
assignment Datalang:) Reduce caller-saved vars
statements imperative Combine adjacent
language > memory allocations
. N~) Remove data abstraction

machine words,
memory and
a GC primitive

StackLang:
imperative

LabLang:
assembly lang.

Silver CPU J
Proof-producing C as HOL functions

~> Simplity program

WordLang: Select target instructions
imperative) 3
language with > Perform SSA-like renaming

> Force two-reg code (if req.)
> Remove deadcode

> Allocate register names
&> Concretise stack

) Introduce (raw) calls past
function preambles

o> Implement GC primitive

> Turn stack accesses into
memory acceses

) Rename registers to match
arch registers/conventions

2> Flatten code

> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

Silver ISA

Implements

Verilog generator Silver CPU
in Verilog

=

.

»

2

{

UNSW

SYDNEY

Verified Pancake Compiler

Pancake compiler is written in CakeML
= can use CakeML compiler to produce
verified Pancake compiler binary!

15 IFIP WG 10.4 Research Update — Jan'23

Languages

CakeML syntax)

s, exit if fail
Introduce globals vars,

() elirr||inate m(;dul;g &
replace constructor
FlatLang: names with numbers
alanguage for -
compiling away Global dead code elim.
high-level Turn pattern matches into
lang. features if-then-else decision trees
\ J Switch to de Bruijn
) indexed local variables
Fuse function calls/apps
into multi-arg calls/apps
ClosLang: Track where closure values
last language flow & inline small functions
with closures Introduce C-style fast
(has multi-arg calls wherever possible
) Remove deadcode
Annotate closure creations
(_ Pancake AST)
Perform closure conv.

Flatten structs < —_—

Inline small functions
CrepLang: Fold constants and
imperative shrink Lets
language Split over-sized functions
without structs into many small functions
Comopile global vars into a
\ J dynamically resized array
program C Optimise Let-expressions
LoopLang: Make some functions tail-
expressions recursive using an acc.
Replace loops occur only on i . .
wﬁ e < ASIor Switch to imperative style
assignment Reduce caller-saved vars
statements Combine adjacent
\ J memory allocations
u Remove data abstraction
Simplify program

Select target instructions

|a:g$:;:me“h Perform SSA-like renaming

machine words, Force two-reg code (if req.)
memory and

a GC primitive Remove deadcode

Allocate register names
Concretise stack
Introduce (raw) calls past

StackLang: function preambles
imperative Implement GC primitive
wi::re‘agrlr‘:ﬁﬁke Turn stack accesses into
] menmory acceses
optional GC Rename registers to match

arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

VA EVEVAVEVEV AV A VARV AV VAV VY VRV AV AV VARV VAV VIV VARVAV Y,

2
€
Nk
Hardware below this line E
Silver CPU o
— . as HOL functions |~ £
Verilog generator <

© Gernot Heiser 2023 — CC BY 4.0

SYDNEY

Summary O

I’m confident we can build an seL4-based OS that:

« has sufficient functionality for real-world loT/cyberphysical systems
 outperforms Linux

 has a verified trusted computing base

16 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

School of Computer Science & Engineering
Trustworthy Systems Group

Time Protection: Principled Prevention
of Microarchitectural Timing Channels

Gernot Heiser
gernot@unsw.edu.au

@:eld Covert Timing Channels

Spectre attack shows
@D/ Trojans can even be

constructed in .
QUL innocent code! ekl

18 IFIP WG 10.4 Research Update — Jan'23

May hide in any code
not proved correct!

© Gernot Heiser 2023 — CC BY 4.0

YYYYYY

Microarchitectural Timing Channels O

Microarchitectural timing channels:
Contention for shared hardware
resources affects execution speed

% High Low
Patch & Pray

High affects Low'’s progress
* Information leakage
« Confidentiality violation

19 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

ssssss
el

Time Protection: Principled Prevention = Q=

Temporally

High || Low B partition ol High || Low |

Spatially
partition
Idea: Prevent channels

Low by temporal or spatial
partitioning of all HW
[Ge et al, EuroSys’'19]

YYYYYY

20 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

Temporal Partitioning: Flush on Switch ~ O=re=

Must remove any
history dependence!

Latency depends

1. Ty = current_time() on prior execution!

2. Switch user context

3. Flush on-core state

4. while (Typ+WCET < current_time()) ; Time padding
5. Reprogram timer to remove
6. return dependency

21 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

Proving Temporal Partitioning O

Must remove any Prove: flush all non-partitioned HW
history dependence! « Needs model of stateful HW
 Somewhat idealised on present HW
... but matches RISC-V prototype

1. T, = current_time()
2. Switch user context Prove: access to shared
5 EUE GreeE e Sl data is deterministic

_ . « Each access sees
4. while (Tyg+WCET < current_time()) ; same cache state
5. Reprogram timer * Needs cache model
6. return

Prove: padding is correct

22 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

23

Padding: Use Minimal Clock Abstraction Q=

Abstract clock = monotonically increasing counter
Operations:

« Add constant to clock value

« Compare clock values

To prove: padding loop terminates as soon as clock = TO+WCET
* Functional property!

IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

VVVVVV

24

Time Protection Verification: Status O

1. [Done] Specify isolation property

2. [Done] Prove enforcement on high-level model

3. [In progress] Connect to selL4 proofs
1. [Done] Update sel4 abstract specification to account for memory accesses
2. Prove these accesses are bounded according to security policy

3. Connect 3.1-3.2 to high-level model to prove isolation property
4. Prove preservation of 3.1-3.3 by refinement to lower-level seL4 specifications

IFIP WG 10.4 Research Update-Jap23 ~ ©Gernot Heiser 2023 - CC BY 4.0 [#&5| UINOV

Hardware Support for Time Protection Qe

Hardware Reality:

Mainstream processors do not allow

resetting all history-dependent state!
[Ge et al., APSys'18]

1. Tg=current_time()

2. Switch user context

3. Flush on-core state RISC-V to the rescue!

4. while (Tog+WCET < current_time()) ; « Add instruction to clean state
5. Reprogram timer * Also help with padding

6. return [Wistoff et al, DATE'21]

25 IFIP WG 10.4 Research Update — Jan'23 © Gernot Heiser 2023 — CC BY 4.0 UNSW

VVVVVV

el

Defining the state of the art in
trustworthy systems since 2009

