
School of Computer Science & Engineering

Trustworthy Systems Group

KISS: Making Dependable 
Operating Systems a Reality
Gernot Heiser
gernot@unsw.edu.au



© Gernot Heiser 2023 – CC BY 4.0 

Armv7
RISC-V

Armv7
RISC-V

Armv7
x86

RISC-V

1 IFIP WG 10.4 Research Update – Jan'23

We Have seL4

Proof Pr
oo

f

Proof

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Functional
Correctness

Translation
Correctness

Security
Enforcement

Present limitations
• initialisation code not verified
• MMU, caches modelled abstractly
• Multicore not yet verified

• Comprehensive formal verification
• Provable real-time capability
• World’s fastest microkernel



© Gernot Heiser 2023 – CC BY 4.0 

OS

Microkernel Is Not An OS

2 IFIP WG 10.4 Research Update – Jan'23

Kernel
Mode

User
Mode

Hardware

Trusted
Component

Untrusted 
Component

Net-
working

File
System

Virtual
Machine

Linux

Linux 
App

Resource
Mgmt

Modularisation: Separate components
• operating-system services
• applications

Device 
Driver

Microkernel enforces isolation – bullet-proof
• kernel code reduced to minimum
• mediates hardware resources

Microkernel



© Gernot Heiser 2023 – CC BY 4.0 

Can We Build A Verified OS?
… where the whole trusted computing base is proved correct?

3 IFIP WG 10.4 Research Update – Jan'23



© Gernot Heiser 2023 – CC BY 4.0 

I Claim We Can!
… if we strictly observe some fundamental principles: KISS
• Fine-grained modularity, strong separation of concerns
• Least privilege
• Simple abstractions
• Simple policies
• Simple implementation

4 IFIP WG 10.4 Research Update – Jan'23

• “Universal” policies are complex 
& have pathological cases

• Better use-case-specific, 
swappable policies

• Requires policy modularity

• Enabled by the above
• Enable push-button verification!

Enables verifying 
modules separately

Reason about security



© Gernot Heiser 2023 – CC BY 4.0 

Key Component: Driver Framework

IFIP WG 10.4 Research Update – Jan'23

Transport

MUX
Device 
Driver

Control

VM

OS Virtual
Driver

AppsAppsApps

Virtual NW

Client

Device

Aim:
• Simple model for robust drivers
• Secure, low-overhead sharing of 

devices between components
• Low overhead

Approach:
• Zero-copy transport layer
• Each component simple, single-purpose
• Standard interfaces, virtIO

5



© Gernot Heiser 2023 – CC BY 4.0 

seL4 Device Driver Framework (sDDF)

6 IFIP WG 10.4 Research Update – Jan'23

Control region DriverClient

Data region

TxA
head

tail TxF
tail

head

3 33 1 12 2 4 4

• Lightweight
• Separation of concerns: driver only translates interfaces
• Simple, event-based, single-threaded drivers
• Asynchronous, zero-copy transport layer
• Bounded, lock-free, single-producer, single-consumer queues

Example: Gb/s NIC
• Linux : 3,000 LoC
• seL4 : 500 LoC



© Gernot Heiser 2023 – CC BY 4.0 

Performance Evaluation Setup

7 IFIP WG 10.4 Research Update – Jan'23

Driver

NIC

Client IP
stack

NIC Driver

Client

NIC

IP Stack

4 kernel entries per packet 10 kernel entries per packet



© Gernot Heiser 2023 – CC BY 4.0 8 IFIP WG 10.4 Research Update – Jan'23

seL4 vs Linux Networking Performance

© Lucy Parker 2022 CC BY 4.0

• Outperforms Linux
• Overhead of extra 

domain crossing ≤10%



© Gernot Heiser 2023 – CC BY 4.0 

Full Network System

9 IFIP WG 10.4 Research Update – Jan'23

NICDriver

IRQ

Client
MUX

Copy

Tx

Rx

VM
Client

Native
Client

• Each component is simple & single-threaded
• Most split into separate Tx/Rx modules
• Copy where needed for security
• IP stack is client library, only handles UPD & TCP
• Broadcasts, DHCP handled by separate modules

Modules may run 
on different cores



© Gernot Heiser 2023 – CC BY 4.0 

Driver

Driver VM
Linux
Linux
Driver

Legacy Re-Use

10 IFIP WG 10.4 Research Update – Jan'23

MUX NIC

• Can use Linux drivers wrapped 
into individual driver VM



© Gernot Heiser 2023 – CC BY 4.0 

OS = Kernel + Drivers + I/O Services

11 IFIP WG 10.4 Research Update – Jan'23

Aim: Verified OS for Cyberphysical/IoT
• Highly modular design
• Simple component implementation
• Performant

Hardware

Untrusted 
Component

Net-
working

File
System

VM

Linux

Linux 
App

Device 
Driver

Microkernel

Operating
System

• Most components just a 
few 100 LoC, sequential

• Can use push-button 
techniques (SMT solvers)



© Gernot Heiser 2023 – CC BY 4.0 

Trustworthiness:
Verification-Friendly Systems 
Language – Pancake

12 IFIP WG 10.4 Research Update – Jan'23



© Gernot Heiser 2023 – CC BY 4.0 

Reducing Cost of Verified Systems Code

13 IFIP WG 10.4 Research Update – Jan'23

Aim: Simplify 
verifying user-level 
OS components

Compiler

Binary

Pancake 
Language

Idea:
• Use low-level but safe 

systems language with 
certifying compiler

• Gives many proof 
obligations for free

Systems language:
• memory safe
• not managed (no garbage collector)
• low-level (obvious translation)
• interfacing to hardware
• no run-time system

Pr
oo

f



© Gernot Heiser 2023 – CC BY 4.0 

Approach: Re-Use CakeML Framework

14 IFIP WG 10.4 Research Update – Jan'23

CakeML:
• functional language
• type & memory safe
• managed (garbage collector)
• high-level, abstract machine
• verified run time
• verified compiler
• mature system
• active ecosystem

CakeML
compiler

Approach:
Re-use lower part of 
CakeML compiler stack 
for imperative language

Great, but too 
high-level!

Pancake
compiler



© Gernot Heiser 2023 – CC BY 4.0 

Verified Pancake Compiler

15 IFIP WG 10.4 Research Update – Jan'23

Pancake compiler is written in CakeML
⇒ can use CakeML compiler to produce 

verified Pancake compiler binary!

Status: 
• Mostly done: Toy (serial) driver 

verification to explore semantics
• Prototype done: Parser
• Almost done: Verification of link 

to CakeML compiler:
• In progress: Binary compiler 

bootstrap
• Not started: Shared-memory

driver-device, driver-client



© Gernot Heiser 2023 – CC BY 4.0 

Summary
I’m confident we can build an seL4-based OS that:
• has sufficient functionality for real-world IoT/cyberphysical systems
• outperforms Linux
• has a verified trusted computing base

16 IFIP WG 10.4 Research Update – Jan'23



School of Computer Science & Engineering

Trustworthy Systems Group

Time Protection: Principled Prevention
of Microarchitectural Timing Channels
Gernot Heiser
gernot@unsw.edu.au



© Gernot Heiser 2023 – CC BY 4.0 18 IFIP WG 10.4 Research Update – Jan'23

Covert Timing Channels

Attacker

Secret

Trojan

Spectre attack shows 
Trojans can even be 
constructed in 
innocent code!

May hide in any code 
not proved correct!



© Gernot Heiser 2023 – CC BY 4.0 

Microarchitectural Timing Channels

19 IFIP WG 10.4 Research Update – Jan'23

Shared resources

High Low

Microarchitectural timing channels: 
Contention for shared hardware 
resources affects execution speed

Standard approach: 
Patch & Pray

High affects Low’s progress
• Information leakage
• Confidentiality violation



© Gernot Heiser 2023 – CC BY 4.0 

Time Protection: Principled Prevention

20 IFIP WG 10.4 Research Update – Jan'23

Aim: Provably prevent 
information flow through 
micro-architectural 
timing channels

Idea: Prevent channels 
by temporal or spatial 
partitioning of all HW

[Ge et al, EuroSys’19]

High Low

Cache Flush

Temporally 
partition

Spatially 
partition

High Low

Cache

High Low

Cache



© Gernot Heiser 2023 – CC BY 4.0 

Must remove any 
history dependence!

Temporal Partitioning: Flush on Switch

IFIP WG 10.4 Research Update – Jan'23

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Latency depends
on prior execution!

Time padding 
to remove

dependency

21



© Gernot Heiser 2023 – CC BY 4.0 

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Must remove any 
history dependence!

Proving Temporal Partitioning

IFIP WG 10.4 Research Update – Jan'23

Prove: flush all non-partitioned HW
• Needs model of stateful HW
• Somewhat idealised on present HW

… but matches RISC-V prototype
• Functional property

Prove: access to shared 
data is deterministic
• Each access sees 

same cache state
• Needs cache model
• Functional property

Prove: padding is correct

22



© Gernot Heiser 2023 – CC BY 4.0 

Padding: Use Minimal Clock Abstraction

23 IFIP WG 10.4 Research Update – Jan'23

Abstract clock = monotonically increasing counter
Operations:
• Add constant to clock value
• Compare clock values

To prove: padding loop terminates as soon as clock ≥ T0+WCET
• Functional property!



© Gernot Heiser 2023 – CC BY 4.0 

Time Protection Verification: Status

24 IFIP WG 10.4 Research Update – Jan'23

1. [Done] Specify isolation property
2. [Done] Prove enforcement on high-level model
3. [In progress] Connect to seL4 proofs

1. [Done] Update seL4 abstract specification to account for memory accesses
2. Prove these accesses are bounded according to security policy
3. Connect 3.1-3.2 to high-level model to prove isolation property
4. Prove preservation of 3.1-3.3 by refinement to lower-level seL4 specifications



© Gernot Heiser 2023 – CC BY 4.0 

Hardware Support for Time Protection

IFIP WG 10.4 Research Update – Jan'23

1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Hardware Reality:
Mainstream processors do not allow 
resetting all history-dependent state!

[Ge et al., APSys’18]

RISC-V to the rescue!
• Add instruction to clean state
• Also help with padding

[Wistoff et al, DATE’21]

25



© Gernot Heiser 2023 – CC BY 4.0 26 IFIP WG 10.4 Research Update – Jan'23

Defining the state of the art in 
trustworthy systems since 2009


