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Present limitations
• initialisation code not verified
• MMU, caches modelled abstractly
• Multicore not yet verified

• Comprehensive formal verification
• Provable real-time capability
• World’s fastest microkernel
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OS

Microkernel Is Not An OS
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Modularisation: Separate components
• operating-system services
• applications

Device 
Driver

Microkernel enforces isolation – bullet-proof
• kernel code reduced to minimum
• mediates hardware resources

Microkernel
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Can We Build A Verified OS?
… where the whole trusted computing base is proved correct?
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I Claim We Can!
… if we strictly observe some fundamental principles: KISS
• Fine-grained modularity, strong separation of concerns
• Least privilege
• Simple abstractions
• Simple policies
• Simple implementation
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• “Universal” policies are complex 
& have pathological cases

• Better use-case-specific, 
swappable policies

• Requires policy modularity

• Enabled by the above
• Enable push-button verification!

Enables verifying 
modules separately

Reason about security
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Key Component: Driver Framework
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Aim:
• Simple model for robust drivers
• Secure, low-overhead sharing of 

devices between components
• Low overhead

Approach:
• Zero-copy transport layer
• Each component simple, single-purpose
• Standard interfaces, virtIO

5
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seL4 Device Driver Framework (sDDF)
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• Lightweight
• Separation of concerns: driver only translates interfaces
• Simple, event-based, single-threaded drivers
• Asynchronous, zero-copy transport layer
• Bounded, lock-free, single-producer, single-consumer queues

Example: Gb/s NIC
• Linux : 3,000 LoC
• seL4 : 500 LoC
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Performance Evaluation Setup
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4 kernel entries per packet 10 kernel entries per packet
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seL4 vs Linux Networking Performance

© Lucy Parker 2022 CC BY 4.0

• Outperforms Linux
• Overhead of extra 

domain crossing ≤10%
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Full Network System
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• Each component is simple & single-threaded
• Most split into separate Tx/Rx modules
• Copy where needed for security
• IP stack is client library, only handles UPD & TCP
• Broadcasts, DHCP handled by separate modules

Modules may run 
on different cores
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Driver

Driver VM
Linux
Linux
Driver

Legacy Re-Use
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MUX NIC

• Can use Linux drivers wrapped 
into individual driver VM
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OS = Kernel + Drivers + I/O Services
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Aim: Verified OS for Cyberphysical/IoT
• Highly modular design
• Simple component implementation
• Performant
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Microkernel

Operating
System

• Most components just a 
few 100 LoC, sequential

• Can use push-button 
techniques (SMT solvers)
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Trustworthiness:
Verification-Friendly Systems 
Language – Pancake
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Reducing Cost of Verified Systems Code
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Aim: Simplify 
verifying user-level 
OS components

Compiler

Binary

Pancake 
Language

Idea:
• Use low-level but safe 

systems language with 
certifying compiler

• Gives many proof 
obligations for free

Systems language:
• memory safe
• not managed (no garbage collector)
• low-level (obvious translation)
• interfacing to hardware
• no run-time system

Pr
oo

f
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Approach: Re-Use CakeML Framework
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CakeML:
• functional language
• type & memory safe
• managed (garbage collector)
• high-level, abstract machine
• verified run time
• verified compiler
• mature system
• active ecosystem

CakeML
compiler

Approach:
Re-use lower part of 
CakeML compiler stack 
for imperative language

Great, but too 
high-level!

Pancake
compiler
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Verified Pancake Compiler
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Pancake compiler is written in CakeML
⇒ can use CakeML compiler to produce 

verified Pancake compiler binary!

Status: 
• Mostly done: Toy (serial) driver 

verification to explore semantics
• Prototype done: Parser
• Almost done: Verification of link 

to CakeML compiler:
• In progress: Binary compiler 

bootstrap
• Not started: Shared-memory

driver-device, driver-client
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Summary
I’m confident we can build an seL4-based OS that:
• has sufficient functionality for real-world IoT/cyberphysical systems
• outperforms Linux
• has a verified trusted computing base
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Covert Timing Channels

Attacker

Secret

Trojan

Spectre attack shows 
Trojans can even be 
constructed in 
innocent code!

May hide in any code 
not proved correct!
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Microarchitectural Timing Channels
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Shared resources

High Low

Microarchitectural timing channels: 
Contention for shared hardware 
resources affects execution speed

Standard approach: 
Patch & Pray

High affects Low’s progress
• Information leakage
• Confidentiality violation
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Time Protection: Principled Prevention
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Aim: Provably prevent 
information flow through 
micro-architectural 
timing channels

Idea: Prevent channels 
by temporal or spatial 
partitioning of all HW

[Ge et al, EuroSys’19]

High Low

Cache Flush

Temporally 
partition

Spatially 
partition

High Low

Cache

High Low

Cache
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Must remove any 
history dependence!

Temporal Partitioning: Flush on Switch
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1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Latency depends
on prior execution!

Time padding 
to remove

dependency
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1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Must remove any 
history dependence!

Proving Temporal Partitioning
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Prove: flush all non-partitioned HW
• Needs model of stateful HW
• Somewhat idealised on present HW

… but matches RISC-V prototype
• Functional property

Prove: access to shared 
data is deterministic
• Each access sees 

same cache state
• Needs cache model
• Functional property

Prove: padding is correct

22
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Padding: Use Minimal Clock Abstraction
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Abstract clock = monotonically increasing counter
Operations:
• Add constant to clock value
• Compare clock values

To prove: padding loop terminates as soon as clock ≥ T0+WCET
• Functional property!
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Time Protection Verification: Status
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1. [Done] Specify isolation property
2. [Done] Prove enforcement on high-level model
3. [In progress] Connect to seL4 proofs

1. [Done] Update seL4 abstract specification to account for memory accesses
2. Prove these accesses are bounded according to security policy
3. Connect 3.1-3.2 to high-level model to prove isolation property
4. Prove preservation of 3.1-3.3 by refinement to lower-level seL4 specifications
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Hardware Support for Time Protection
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1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. while (T0+WCET < current_time()) ;
5. Reprogram timer
6. return

Hardware Reality:
Mainstream processors do not allow 
resetting all history-dependent state!

[Ge et al., APSys’18]

RISC-V to the rescue!
• Add instruction to clean state
• Also help with padding

[Wistoff et al, DATE’21]
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Defining the state of the art in 
trustworthy systems since 2009


