
Analyzing the Performance of the
Inter-Blockchain Communication Protocol

Joāo Otávio Chervinski*☨, Jiangshan Yu*, Diego Kreutz士, Sherry Xu☨

*Monash University, Australia
☨CSIRO Data61, Australia

 士Federal University of Pampa, Brazil

83rd IFIP WG 10.4 Workshop

2

Blockchains and performance
● What forecasts say for blockchains:

○ Will grow at a rate of 85.9% from 2022 to 2030 (Triple A and Grandview Research)
○ Will reach $67.4 billion global market by 2026 (Markets and Markets)
○ Are forecasted to generate over $3.1 trillion in business value by 2030 (Gartner)

● Despite the large number of applications that are adopting
blockchains, some long-standing issues still remain:

○ Low throughput
○ High transaction confirmation latency
○ Trade-offs (security, scalability, decentralization)

● Early blockchains are known to have those problems, however,
recently developed blockchain systems also suffer from those issues,
despite existing work.

3

● In “BLOCKBENCH: A Framework for Analyzing Private Blockchains”, Dinh et
al. show that:
○ Hyperledger Fabric v0.6 is unable to scale beyond 16 nodes due to

implementation issues in its consensus protocol.

● In “Performance Benchmarking and Optimizing Hyperledger Fabric
Blockchain Platform”, Thakkar et al. show that:
○ Cryptography operations and REST API calls led to transaction validations

bottlenecks in Hyperledger Fabric v1.0. Proposed optimizations improve
throughput by 16x.

● In “Diablo: A Benchmark Suite for Blockchains”, Gramoli et. al observe:
○ There’s a large difference between claimed blockchain performance and

performance in real world scenarios (Algorand 50x lower, Solana 22x lower,
Avalanche 13x lower)

Improving blockchain performance

4

● The performance of isolated blockchains has been extensively studied.
Being researchers, we like to study new stuff!

● Given the increase in number of blockchains and services,
the ability to transfer information between them became
desirable.

● Many proposals for cross-chain communication such as relays, sidechains
and atomic swap protocols.

● Now we have generic protocols that aim to transfer arbitrary data (XCMP
and IBC). Unlike operations in isolated blockchains, the performance of
cross-chain communication has not been given much attention.

Blockchain performance

Same problem as before

XCMP Protocol IBC Protocol

Still under development

 Replaced by a resource demanding
temporary protocol for the time being

Used to connect 53 blockchains

$30.3 billion volume in 2022

Bridging Cosmos and Polkadot

Supports Interchain accounts (recent)

5

Cross-chain communication protocols

XCMP Protocol IBC Protocol

Still under development

 Replaced by a resource demanding
temporary protocol for the time being

Used to connect 53 blockchains

$30.3 billion volume in 2022

Bridging Cosmos and Polkadot

Supports Interchain accounts (recent)

6

Cross-chain communication protocols

7https://mapofzones.com/

8

Cosmos (in a nutshell)

● Blockchains are called zones

● Hubs are special types of zones
serve as a point of connection

● Any zone can also be a Hub

● Hubs reduce the need for
connections

9

Cosmos (in a nutshell)

10

Tendermint

Application

Consensus
Networking

● Cosmos blockchains are built using Tendermint and the Cosmos SDK

● Tendermint is composed by:

○ Tendermint Core
■ Tendermint BFT (consensus)
■ P2P networking protocol

○ Application BlockChain Interface (ABCI)
■ A generic interface that allows

applications to communicate with
Tendermint

● The Cosmos SDK provides the application with
modules that implement authentication, staking,
slashing, transfers, IBC and others.

11

Tendermint block structure

Data (Not validated by Tendermint)

Header

Misbehavior Evidence

Validator Signatures

12

The Inter-Blockchain Communication (IBC) Protocol
● End-to-end, connection oriented, stateful communication protocol

● IBC handles authentication, transport and ordering of opaque data packets between

IBC modules in separate ledgers

● Communication through IBC requires a channel to be established between two
communicating blockchains:

○ They require a connection established through a handshaking process
○ They work as routes for message delivery between two ledgers
○ Channels are maintained by one or more external applications called relayers

● Relayers deliver data across two ledgers by scanning the ledgers, constructing
datagrams and submitting them to the opposite ledger

○ Relaying is permissionless, all verification is performed by the ledgers

13

14

Fungible token transfer using IBC

Token transfers are composed by 3 steps:

● TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

● MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

● MsgAcknowledgement: Informs that a packet
has been processed and acknowledged in the
destination chain.

Blockchain A
(source)

Blockchain B
(destination)

Relayer

Commit TransferMsg

15

Fungible token transfer using IBC

Token transfers are composed by 3 steps:

● TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

● MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

● MsgAcknowledgement: Informs that a packet
has been processed and acknowledged in the
destination chain.

Blockchain A
(source)

Blockchain B
(destination)

RelayerQuery packet

16

Fungible token transfer using IBC

Token transfers are composed by 3 steps:

● TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

● MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

● MsgAcknowledgement: Informs that a packet
has been processed and acknowledged in the
destination chain.

Blockchain A
(source)

Blockchain B
(destination)

Relayer

SendPacket

17

Fungible token transfer using IBC

Token transfers are composed by 3 steps:

● TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

● MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

● MsgAcknowledgement: Informs that a packet
has been processed and acknowledged in the
destination chain.

Blockchain A
(source)

Blockchain B
(destination)

Relayer

Commit MsgRecvPacket

18

Fungible token transfer using IBC

Token transfers are composed by 3 steps:

● TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

● MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

● MsgAcknowledgement: Informs that a packet
has been processed and acknowledged in the
destination chain.

Blockchain A
(source)

Blockchain B
(destination)

RelayerQuery packet

19

Fungible token transfer using IBC

Token transfers are composed by 3 steps:

● TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

● MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

● MsgAcknowledgement: Informs that a packet
has been processed and acknowledged in the
destination chain.

Blockchain A
(source)

Blockchain B
(destination)

Relayer

MsgAcknowledgement

20

Fungible token transfer using IBC

Token transfers are composed by 3 steps:

● TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

● MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

● MsgAcknowledgement: Informs that a packet
has been processed and acknowledged in the
destination chain.

Blockchain A
(source)

Blockchain B
(destination)

Relayer

Commit
Acknowledgement

21

Our goal
● Analyze the performance of the IBC protocol when used to send fungible token

transfers between two Cosmos ecosystem blockchains:

○ Throughput: measures cross-chain transfers completed per second (transfer,
recv, ack)

○ Latency: measures the amount of time it takes for operations to be completed in
seconds

○ Relayer scalability: measures change in throughput and latency according to the
number of concurrent relayers in the same channel

● Identify performance bottlenecks

● Identify issues/challenges regarding the deployment of cross-chain
communications using IBC to help improve the protocol

22

Measuring performance
● To measure IBC performance we developed a tool to automate deployment,

workload execution and data analysis

23

Deployment configuration

● Private testnet environment:

○ 2 Cosmos Gaia v7.0.3 blockchains, each maintained by 5 validator nodes

○ Ordered cross-chain channel established using the Hermes Relayer v1.0.0

■ One of various relayers (also ibc-go, typescript relayer)
■ Larger community and more comprehensive documentation
■ More frequently updated, more discussions and issues on github

○ 5 machines (i7-9700 3GHz, 16GB 2666 MT/s RAM, 7200RPM HDDs, Debian 11) in a LAN

environment. WAN conditions simulated by enforcing 200ms round-trip latency

○ The Hermes Relayer application is connected to two full nodes
through local endpoints

24

Experiment settings
● Setup:

○ Blockchains started from genesis for every execution
○ Cross-chain channel established for every execution

● Tendermint:

○ Block interval of 5 seconds (lower bound)

● Workload:

○ Submitted transactions contain 100 (max) transfer requests to stress the
relayer

○ Multiple users submit transactions concurrently to overcome Cosmos SDK
limitation on number of submitted transactions

25

Tendermint throughput

● Tendermint TransferMsg throughput
capacity (20 execs each)

● From 250 to 14,000 transfer
requests per second

● Cross-chain relaying disabled

● 961 TransferMsg/sec peak
throughput

● Roughly 10x more transfers than the
relayer is able to complete

961 TransferMsg/sec

26

Tendermint throughput

● Tendermint TransferMsg throughput
capacity (20 execs each)

● From 250 to 14,000 transfer
requests per second

● Cross-chain relaying disabled

● 961 TransferMsg/sec peak
throughput

● Roughly 10x more transfers than the
relayer is able to complete

961 TransferMsg/sec

Due to empty blocks

27

Tendermint throughput

● Tendermint TransferMsg throughput
capacity (20 execs each)

● From 250 to 14,000 transfer
requests per second

● Cross-chain relaying disabled

● 961 TransferMsg/sec peak
throughput

● Roughly 10x more transfers than the
relayer is able to complete

Inconsistent results past peak throughput:
“failed tx: no confirmation”
“account sequence mismatch”

28

Transfer failure rate

High req/s stresses the RPC endpoint, which is
also used to query for confirmed transactions

and increase account sequence numbers

29

Block interval vs. throughput

Avg. block interval Tendermint throughput

30

Hermes Relayer - 1 Relayer

● Cross-chain throughput (transfer,
recv, ack) for 50 consecutive blocks,
20 executions for each data point

● From 20 to 300 transfer requests per
second

● Both 0ms and 200ms latency

● Error bands depict standard
deviation

● 80 cross-chain transfers/sec peak
throughput with 200ms latency

90 TFPS

31

● Cross-chain throughput (transfer,
recv, ack) for 50 consecutive blocks,
20 executions for each data point

● From 20 to 300 transfer requests per
second

● Both 0ms and 200ms latency

● Error bands depict standard
deviation

● 80 cross-chain transfers/sec peak
throughput with 200ms latency

11% difference
in TFPS

Hermes Relayer - 1 Relayer

32

● Cross-chain throughput (transfer,
recv, ack) for 50 consecutive blocks,
20 executions for each data point

● From 20 to 300 transfer requests per
second

● Both 0ms and 200ms latency

● Error bands depict standard
deviation

● 80 cross-chain transfers/sec peak
throughput with 200ms latency

11% difference
in TFPS

Hermes Relayer - 1 Relayer

Can we increase throughput by
increasing the number of relayers?

33

● Peak throughput:
○ 77 TFPS with 0ms
○ 53 TFPS with 200ms

● 33% lower throughput for 200ms

compared to one relayer. Why?

● Several “Packet messages are
redundant” errors, 23k for 100 RPS

● No coordination between relayers in
the same channel

● What about two different channels?
○ Different denominations, i.e,

non-fungible

Hermes Relayer - 2 Relayers

33% lower than one
relayer

Lower performance but maintains liveness

34

IBC Messages committed - 1 Relayer

● Less transfers completed with
larger workloads (more pending
messages)

● Transactions are completed
after the experiment interval (50
blocks)

● Why do transfers take so long to
complete?

○ Look at completion
latency next

35

Operation latency (5k transfers)

36

Operation latency (5k transfers)

37

Operation latency (5k transfers)

38

Operation latency (5k transfers)

39

Operation latency (5k transfers)

40

Operation latency (5k transfers)

41

Operation latency (5k transfers)

207 seconds (45%)110 seconds
(24%)

42

Operation latency (5k transfers)

207 seconds (45%)110 seconds
(24%)

Several minutes
completion latency

~7MB of data

43

● Can we improve completion
latency? What’s the best strategy?

● Divide 5k transfer submissions
across increasing number of blocks

● 1 block: 455 sec
● 2 blocks: 286 sec
● 4 blocks: 219 sec
● 8 blocks: 143 sec
● 16 blocks: 138 sec
● 32 blocks: 240 sec
● 64 blocks: 441 sec

● Submission in large batches is

easier but severely increases
completion latency

Completion latency (5k transfers)

1 block ->

16 blocks ->

70% reduction from 1 block (455s) to 16 blocks (138s)

44

Deployment challenges
● Timestamp mismatch: Events registered by the blockchain are “in the past” compared to the

relayer, e.g, transaction committed before being broadcast

● Account sequence mismatch: Unable to submit transactions sequentially within a single
block, requires transfers to be accumulated or multiple user accounts

● Websocket space limit: The Tendermint websocket has a maximum message size of 16MB.
Blocks with more than 16MB crash the relayer as it tries to collect all events at once.

● Transaction data collection: The endpoints offer no query to retrieve only tx hashes. Queries
return substantial amount of data and slow data analysis (579,919 lines of output
and 5.7 seconds for 20 txs with 100 MsgRecvPacket each)

● Incomplete logging for blockchain data retrieval: Only a fraction of the data pull
operations are recorded in the relayer’s logs if transactions span many blocks. Only data retrieval
from the first block is recorded.

45

Contribution summary
● Provided an analysis on the performance of the IBC protocol and identified

bottlenecks that impair relayer performance and lead to high transaction
confirmation latency

● Developed an open source tool to facilitate performance measurement of
cross-chain communication using Cosmos and the IBC protocol

● Identified challenges/issues in the process of deploying and using the
relayer and the IBC protocol

● Generated a dataset with 158GB of execution logs to aid in future research

46

Thank you!
Email: joao.massarichervinski@monash.edu

