7 MONASH -
@ University

Universidade Federal do Pampa

Analyzing the Performance of the
Inter-Blockchain Communication Protocol

Joao Otavio Chervinski* T, Jiangshan Yu*, Diego Kreutzt, Sherry Xu_

*Monash University, Australia
T CSIRO Data61, Australia
T Federal University of Pampa, Brazil

83rd IFIP WG 10.4 Workshop

Blockchains and performance

e What forecasts say for blockchains:
o Will grow at a rate of 85.9% from 2022 to 2030 (Triple A and Grandview Research)
o Will reach $67.4 billion global market by 2026 (Markets and Markets)
o Are forecasted to generate over $3.1 trillion in business value by 2030 (Gartner)

e Despite the large number of applications that are adopting
blockchains, some long-standing issues still remain:

o Low throughput ;‘%%
o High transaction confirmation latency =
o Trade-offs (security, scalability, decentralization) SECURITY o,

e Early blockchains are known to have those problems, however,
recently developed blockchain systems also suffer from those issues,
despite existing work.

Improving blockchain performance

e In “BLOCKBENCH: A Framework for Analyzing Private Blockchains”, Dinh et
al. show that:

o Hyperledger Fabric v0.6 is unable to scale beyond 16 nodes due to
implementation issues in its consensus protocol.

e In “Performance Benchmarking and Optimizing Hyperledger Fabric

Blockchain Platform”, Thakkar et al. show that:
o Cryptography operations and REST API calls led to transaction validations
bottlenecks in Hyperledger Fabric v1.0. Proposed optimizations improve
throughput by 16x.

e In “Diablo: A Benchmark Suite for Blockchains”, Gramoli et. al observe:
o There's a large difference between claimed blockchain performance and
performance in real world scenarios (Algorand 50x lower, Solana 22x lower,
Avalanche 13x lower)

Blockchain performance

The performance of isolated blockchains has been extensively studied.
Being researchers, we like to study new stuff!

Given the increase in number of blockchains and services,
the ability to transfer information between them became
desirable.

Many proposals for cross-chain communication such as relays, sidechains
and atomic swap protocols.

Same problem as before

Now we have generic protocols that aim to transfer arbitrary data (XCMP
and IBC). Unlike operations in isolated blockchains, the performance of
cross-chain communication has not been given much attention.

Cross-chain communication protocols

{Polkadot ~~ # CHSMOS

XCMP Protocol IBC Protocol
Still under development Used to connect 53 blockchains
Replaced by a resource demanding $30.3 billion volume in 2022

temporary protocol for the time being
Bridging Cosmos and Polkadot

Supports Interchain accounts (recent)

Cross-chain communication protocols

CISMOS

IBC Protocol

Used to connect 53 blockchains

Rep '?‘ by a resource demar;dlng $30.3 billion volume in 2022
tempordry protocol for the time being
Bridging Cosmos and Polkadot

Supports Interchain accounts (recent)

® Mainly Sends, $ @ Mainly Receives, $

NS
cent Network

®
=
KiChain
- _ Bostrom
4 .

Lum Network

ra _.— .
mos
MediBloc s e

Starname . o

. . Akash
®
Desmos o Microtick ! Sentinel
Juno

Altered Carbon

Sommelier (

org =177 J i
{ S, Injective : \ \ s 0 g

Space Pussy

- . @
% x Band Shemtu”«
Agor, '
@ Q) .8 :
08 . . B i §

Cronos

\ // Osmosis Zgexl
' . Konstellation @ =
. /d
e LT . . (4)
Chihuahua = . . Jackal

Comdexzama * ™ 1 - ‘ g 4
0 , (

)

AssetMantle

https://mapofzones.com/

Cosmos (in a nutshell)

e Blockchains are called zones

e Hubs are special types of zones
serve as a point of connection

e Any zone can also be a Hub

e Hubs reduce the need for
connections

Cosmos (in a nutshell)

A

A

CE—
7 j e 3 =
</ Bitcoin >)

e Cosmos blockchains are built using Tendermint and the Cosmos SDK

e Tendermint is composed by:

o Tendermint Core
m Tendermint BFT (consensus) ; Application
m P2P networking protocol /

ABCI

o Application BlockChain Interface (ABCI)
m A generic interface that allows

applications to communicate with { (\U/) , Consensus
Tendermint \\ // Networking
[

e The Cosmos SDK provides the application with
modules that implement authentication, staking,
slashing, transfers, IBC and others. 10

Tendermint block structure

T
Header —) E <
=

Data (Not validated by Tendermint) — g

dence

Misbehavior Evidence —p

Ev

Version | ChainlD | Height | Time | LastBlockID | LastCommitHash
DataHash | ValidatorHash | NextValidatorHash | ConsensusHash
AppHash | LastResultHash EvidenceHash ProposerAddress

Transaction Array (Application-specific)

Misbehavior Evidence List

Validator Signatures —)

Last Commit

Height

Round

BlockID

Commit Signature (BlockIDFlag, ValidatorAddr, Timestamp, Signature)

Commit Signature (BlockIDFlag, ValidatorAddr, Timestamp, Signature)

11

The Inter-Blockchain Communication (IBC) Protocol

End-to-end, connection oriented, stateful communication protocol

IBC handles authentication, transport and ordering of opaque data packets between
IBC modules in separate ledgers

Communication through IBC requires a channel to be established between two
communicating blockchains:

o They require a connection established through a handshaking process
o They work as routes for message delivery between two ledgers
o Channels are maintained by one or more external applications called relayers

Relayers deliver data across two ledgers by scanning the ledgers, constructing
datagrams and submitting them to the opposite ledger

o Relaying is permissionless, all verification is performed by the ledgers
12

IBC is the Inter-Blockchain A visualization of an IBC packet

Communication Protocol I B C traveling between two blockchains
Blockchain A

IBC Module 8

7

=

2 IBC Module

Blockchain B
CHAIN CHAIN

Ae® e © e e o e o B

Fungible token transfer using IBC

Commit TransferMsg

Blockchain A
(source)

[Relayer]

Blockchain B
(destination)

Token transfers are composed by 3 steps:

TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

MsgAcknowledgement: Informs that a packet

has been processed and acknowledged in the
destination chain.

14

Fungible token transfer using IBC

Blockchain A
(source)

Query packet [Relayer]

Blockchain B
(destination)

Token transfers are composed by 3 steps:

TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

MsgAcknowledgement: Informs that a packet

has been processed and acknowledged in the
destination chain.

15

Fungible token transfer using IBC

Blockchain A
(source)

SendPacket

[Relayer]

y

Blockchain B
(destination)

Token transfers are composed by 3 steps:

TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

MsgAcknowledgement: Informs that a packet

has been processed and acknowledged in the
destination chain.

16

Fungible token transfer using IBC

Commit MsgRecvPacket

Blockchain A
(source)

[Relayer]

Blockchain B
(destination)

Token transfers are composed by 3 steps:

TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

MsgAcknowledgement: Informs that a packet

has been processed and acknowledged in the
destination chain.

17

Fungible token transfer using IBC

Blockchain A
(source)

Query packet [Relayer]

Blockchain B
(destination)

Token transfers are composed by 3 steps:

TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

MsgAcknowledgement: Informs that a packet

has been processed and acknowledged in the
destination chain.

18

Fungible token transfer using IBC

Blockchain A
(source)

A

MsgAcknowledgement

[Relayer]

Blockchain B
(destination)

Token transfers are composed by 3 steps:

TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

MsgAcknowledgement: Informs that a packet

has been processed and acknowledged in the
destination chain.

19

Fungible token transfer using IBC

Commit
Acknowledgement

Blockchain A
(source)

A

[Relayer]

Blockchain B
(destination)

Token transfers are composed by 3 steps:

TransferMsg: Requests a fungible token
transfer. Stores a commitment to the packet
data and timeout in the source chain.

MsgRecvPacket: Informs that a packet has
been received and processed after verification
of its commitment proof in the source chain.
Stores a proof of packet acknowledgement in
the destination chain.

MsgAcknowledgement: Informs that a packet

has been processed and acknowledged in the
destination chain.

20

e Analyze the performance of the IBC protocol when used to send fungible token
transfers between two Cosmos ecosystem blockchains:

o Throughput: measures cross-chain transfers completed per second (transfer,
recv, ack)

o Latency: measures the amount of time it takes for operations to be completed in
seconds

o Relayer scalability: measures change in throughput and latency according to the
number of concurrent relayers in the same channel

AN
e Identify performance bottlenecks

e Identify issues/challenges regarding the deployment of cross-chain
communications using IBC to help improve the protocol

Measuring performance

To measure IBC performance we developed a tool to automate deployment,

workload execution and data analysis

Blockchain config:
- # nodes

- # user accounts

- block interval

Workload config:
- # transactions

- # IBC transfers

- # users

- transfer timeout

Test environment

—— Deploy .l
* Execute Ba
Benchmarking * (O
i !
Arialysis Querydata|[Relayer
! Q

[

Benchmarking
Report

b -

22

Deployment configuration

Private testnet environment:

©)

2 Cosmos Gaia v7.0.3 blockchains, each maintained by 5 validator nodes
Ordered cross-chain channel established using the Hermes Relayer v1.0.0

m One of various relayers (also ibc-go, typescript relayer)
m Larger community and more comprehensive documentation
m More frequently updated, more discussions and issues on github

5 machines (i7-9700 3GHz, 16GB 2666 MT/s RAM, 7200RPM HDDs, Debian 11) in @ LAN
environment. WAN conditions simulated by enforcing 200ms round-trip latency

The Hermes Relayer application is connected to two full nodes
through local endpoints

23

Experiment settings

"
e Setup: ~Q)QN

Py S

o Blockchains started from genesis for every execution s\(LA A

o Cross-chain channel established for every execution NNy

e Tendermint:

o Block interval of 5 seconds (lower bound)

e Workload:

o Submitted transactions contain 100 (max) transfer requests to stress the
relayer

o Multiple users submit transactions concurrently to overcome Cosmos SDK
limitation on number of submitted transactions

24

Tendermint throughput

e Tendermint TransferMsg throughput
capacity (20 execs each)

e From 250 to 14,000 transfer
requests per second

e Cross-chain relaying disabled

e 961 TransferMsg/sec peak
throughput

e Roughly 10x more transfers than the
relayer is able to complete

1,200
1,100

=N
o
o
o

900
800
700
600
500
400
300
200
100

0

Throughput (transfers/sec)

/v 961 TransferMsg/sec

: l

Input rate (requests/sec)

25

Tendermint throughput

e Tendermint TransferMsg throughput
capacity (20 execs each)

e From 250 to 14,000 transfer
requests per second

e Cross-chain relaying disabled

e 961 TransferMsg/sec peak
throughput

e Roughly 10x more transfers than the
relayer is able to complete

1,200
1,100

=N
o
o
o

900
800
700
600
500
400
300
200
100

Throughput (transfers/sec)

961 TransferMsg/sec

| ¥ \‘ Due to empty blocks
[

| | | | | | | | | | | | | | | |
S, LELEEELESLEL,SESLSL S
QP B A Q (1/0 on b‘Q (OQ ‘b ,\Q %Q QQ \QQ N Q f], Q

Input rate (requests/sec)

26

Tendermint throughput

e Tendermint TransferMsg throughput
capacity (20 execs each)

e From 250 to 14,000 transfer
requests per second

e Cross-chain relaying disabled

e 961 TransferMsg/sec peak
throughput

e Roughly 10x more transfers than the
relayer is able to complete

Throughput (transfers/sec)

1,200

1,100

=N

o

o

o
T

900 |-

800 -
700 - % é
600 -

300 $

8 %
400 +

200 =
100 -
0 L 1 |

Input rate (requests/sec)

Inconsistent results past peak throughput:
“failed tx: no confirmation”
“account sequence mismatch”

27

Transfer failure rate

Input rate Requests made Submitted to Committed
(requests/sec) to Hermes blockchain (from submitted)
250 to 9,000 18,750 to 675,000 >99% >99%

10,000 750,000 601,300 (80.17%) 591,450 (98.3%)
11,000 825,000 319,152 (38.6%) 292,424 (91.6%)
12,000 900,000 160,343 (17.8%) 119,733 (74.6%)
13,000 975,000 100,688 (10.3%) 51,436 (51%)

14,000 1,050,000 90,000 (8.5%) 26,360 (29.2%)

High req/s stresses the RPC endpoint, which is
also used to query for confirmed transactions
and increase account sequence numbers

Block interval (sec)

Block interval vs. throughput

Avg. block interval

Tendermint throughput

70 1,200
65 1,100 |
60
1 -
= ,000
50 1 900 |-
45 - 800 -
40 + 700 -
35 600 -
30 - 500 - &
=2 400
20 - ¥
15 + é 300 +
10 - . é 200 ==
5L ! Al e -5 100 L
0 | | | 1 l | | | | | | | | | l | O | | | |
Q Q Q Q Q Q Q Q Q Q Q Q Q Q \) Q) O) O
PR SSS (OQQ 690 /\QQ LSS D S A9 &

Input rate (requests/sec)

| |

O ® & & & & &

S O S & & O

P T TS
Input rate (requests/sec)

29

Hermes Relayer - 1 Relayer

e Cross-chain throughput (transfer,
recv, ack) for 50 consecutive blocks,
20 executions for each data point

e From 20 to 300 transfer requests per
second

e Both Oms and 200ms latency

e Error bands depict standard
deviation

e 80 cross-chain transfers/sec peak
throughput with 200ms latency

Throughput (transfers/sec)

100
90
80
70
60
50

i
o

30
20
10

200ms

90 TFPS
—O— Om‘sx

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Input rate (requests/sec)

30

Hermes Relayer - 1 Relayer

e Cross-chain throughput (transfer,
recv, ack) for 50 consecutive blocks,
20 executions for each data point

e From 20 to 300 transfer requests per
second

e Both Oms and 200ms latency

e Error bands depict standard
deviation

Throughput (transfers/sec)

e 80 cross-chain transfers/sec peak
throughput with 200ms latency

100
90
80
70
60
50

i
o

30
20
10

—O0— 0Oms 200ms

11% difference
in TFPS

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Input rate (requests/sec)

31

Hermes Relayer - 1 Relayer

e Cross-chain throughput (transfer,
recv, ack) for 50 consecutive blocks,
20 executions for each data point

e From 20 to 300 transfer requests per
second

e Both Oms and 200ms latency

e Error bands depict standard
deviation

Throughput (transfers/sec)

e 80 cross-chain transfers/sec peak
throughput with 200ms latency

Can we increase throughput by
increasing the number of relayers?

100
90
80
70
60
50
40
30
20
10

—_—O0— (0ms 200ms

11% difference
in TFPS

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Input rate (requests/sec)

32

Hermes Relayer - 2 Relayers

e Peak throughput:
o 77 TFPS with Oms
o 53 TFPS with 200ms

e 33% lower throughput for 200ms
compared to one relayer. Why?

e Several “Packet messages are
redundant” errors, 23k for 100 RPS

e No coordination between relayers in
the same channel

e What about two different channels?
o Different denominations, i.e,
non-fungible

Throughput (transfers/sec)

100
90
80
70
60
50
40
30
20
10

—0—— 0ms 200ms

33% lower than one
relayer

20 40 ©60 80 100 120 140 160 180 200 220 240 260 280 300
Input rate (requests/sec)

Lower performance but maintains liveness
33

IBC Messages committed - 1 Relayer

Less transfers completed with
larger workloads (more pending
messages)

Transactions are completed
after the experiment interval (50
blocks)

Why do transfers take so long to
complete?

o Look at completion
latency next

cross-chain transfers

Completed (transfer, recv, ack) == Initiated (transfer)

Partial (transfer, recv) B Not commited

1T T T 17T 17T 17T 17T 1T 1T 1T 1T T°T1

W

%%%ll

R

20 40 60 80 100 120 140 160 180 200 220 240 260 280
Input rate (requests/sec)

w
(@)

0

3

N

Operation latency (5k transfers)

1 | Transfer broadcast | 2 | Transfer msg. extraction |8 | Transfer confirmation n Transfer data pull

5 | Recvbuild | 6 | Recvbroadcast | 7 | Recv msg. extraction | 8 | Recv confirmation .Recv data pull

10 | Ack build 11 | Ack broadcast - Ack msg. extraction m Ack confirmation
7 10

Completed (%)
(€)]
i

O P & L P L LRSS S P

Time Elapsed (seconds) 35

Operation latency (5k transfers)

1 | Transfer broadcast | 2 | Transfer msg. extraction | Transfer confirmation n Transfer data pull

5 | Recvbuild | 6 | Recvbroadcast | 7 | Recv msg. extraction | 8 | Recv confirmation .Recv data pull

10 | Ack build 11 | Ack broadcast - Ack msg. extraction m Ack confirmation
7 10

=N

100

Completed (%)
(€)]
T

O P & L P L LRSS S P

Time Elapsed (seconds) 36

Operation latency (5k transfers)

1 | Transfer broadcast | 2 | Transfer msg. extraction | Transfer confirmation n Transfer data pull

5 | Recvbuild | 6 | Recvbroadcast | 7 | Recv msg. extraction | 8 | Recv confirmation .Recv data pull

10 | Ack build 11 | Ack broadcast - Ack msg. extraction m Ack confirmation

2 7 10
100 : .

Completed (%)
(€)]
T

O P & L P L LRSS S P

Time Elapsed (seconds) 37

Operation latency (5k transfers)

1 | Transfer broadcast | 2 | Transfer msg. extraction | Transfer confirmation n Transfer data pull

5 | Recvbuild | 6 | Recvbroadcast | 7 | Recv msg. extraction | 8 | Recv confirmation .Recv data pull

10 | Ack build 11 | Ack broadcast - Ack msg. extraction m Ack confirmation

2 7 10
100 : .

Completed (%)
(€)]
T

O P & L P L LRSS S P

Time Elapsed (seconds) 38

Operation latency (5k transfers)

Completed (%)

5 | Recvbuild | 6 | Recv broadcast

100

1 | Transfer broadcast | 2 | Transfer msg. extraction - Transfer confirmation n Transfer data pull

7 | Recv msg. extraction - Recv confirmation - Recv data pull

10 | Ack build 11 | Ack broadcast - Ack msg. extraction kM Ack confirmation

7 10

90
80+
70+
60
50+
40
30
201
10+

0

O o

Time Elapsed (seconds)

39

Operation latency (5k transfers)

Completed (%)

5 | Recv build

10 | Ack build

100
904
80-
i1k
60 -
50-
404
30+
204
10+

0

1 | Transfer broadcast

1"

Ack broadcast - Ack msg. extraction kM Ack confirmation

) 10

2 | Transfer msg. extraction - Transfer confirmation n Transfer data pull

7 | Recv msg. extraction - Recv confirmation - Recv data pull

1"

G
P

Time Elapsed (seconds)

Q O o O H O Ao
S P LS PP K

40

Operation latency (5k transfers)

Completed (%)

1 | Transfer broadcast 2 | Transfer msg. extraction - Transfer confirmation n Transfer data pull
5 | Recvbuid | 6 7 | Recv msg. extraction - Recv confirmation - Recv data pull
10 | Ack build 11 | Ack broadcast - Ack msg. extraction kM Ack confirmation
o 7 10
6 1
90 -
80
707
60 -
850
404
o 110 d
il seconas
20 . 207 seconds (45%)
10 (24%)
0

Time Elapsed (seconds)

41

Operation latency (5k transfers)

Completed (%)

1 | Transfer broadcast j Transfer msg. extraction - Transfer confirmation n Transfer data pull
5 | Recvbuild | 6 | Recv broadcast Recv msg. extraction - Recv confirmation - Recv data pull
10 | Ack build | 11 | Ack broadcast - Ack msg. extraction &M Ack confirmation Several minutes
2 7 10 completion latency
100
1 5|6 1
90
80
704
60- ~7MB of data
504
40
304
20- 110 seconds 17 cecands (2
10- (24%)
0

Q(ﬁDQDQ,\@

Time Elapsed (seconds) ”

Completion latency (5k transfers)

e Can we improve completion

\ — 1 block 2 blocks 4 blocks —— 8 blocks
latency? What's the best strategy? — bt s— 35 biosis A i
100 *
e Divide 5k transfer submissions ool 16 blocks ->
across increasing number of blocks 8ol
e 1 block: 455 sec 3 Gl
e 2blocks: 286 sec o OF
e 4hblocks: 219 sec g S0F
e 8blocks: 143 sec £ 40r
e 16 blocks: 138 sec < 30
e 32 blocks: 240 sec ¢ 201
e 64 blocks: 441 sec 4 o J 1 block ->
o II L I I I I I I I
e Submission in large batches is 0 50 100 150 200 250 300 350 400 450
easier but severely increases Time Elapsed (seconds)

completion latency 70% reduction from 1 block (455s) to 16 blocks (138s)

43

Deployment challenges

Timestamp mismatch: Events registered by the blockchain are “in the past” compared to the
relayer, e.g, transaction committed before being broadcast

Account sequence mismatch: Unable to submit transactions sequentially within a single
block, requires transfers to be accumulated or multiple user accounts

Websocket space limit: The Tendermint websocket has a maximum message size of 16MB.
Blocks with more than 16MB crash the relayer as it tries to collect all events at once.

Transaction data collection: The endpoints offer no query to retrieve only tx hashes. Queries
return substantial amount of data and slow data analysis (579,919 lines of output
and 5.7 seconds for 20 txs with 100 MsgRecvPacket each)

Incomplete logging for blockchain data retrieval: Only a fraction of the data pull
operations are recorded in the relayer’s logs if transactions span many blocks. Only data retrieval
from the first block is recorded.

44

Contribution summary

Provided an analysis on the performance of the IBC protocol and identified
bottlenecks that impair relayer performance and lead to high transaction
confirmation latency

Developed an open source tool to facilitate performance measurement of
cross-chain communication using Cosmos and the IBC protocol

Identified challenges/issues in the process of deploying and using the
relayer and the IBC protocol

Generated a dataset with 158GB of execution logs to aid in future research

45

Thank you!

Email: joao.massarichervinski@monash.edu

46

