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• Find safety defects in 
testing stage
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Safety Context Specification and Learning

• Safety Context Specification (SCS)
• Control-theoretic Hazard Analysis Method

• A Formal Framework to Generate SCS
• Formalization with Signal Temporal Logic
• Optimization of STL Formulas

• Tight Mean Exponential loss function (TMEE)

• Learn tight thresholds that
• Under-approximate the safe region
• Over-approximate the unsafe region
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Case Studies
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Results
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MPC: Model Predictive Control 
Guideline: Medical Guideline with fixed non-patient-specific threshold
CAWT: Context-aware with refined thresholds
CAWOT: Context-aware without refined thresholds



Training with Custom Loss Functions

• ML model for anomaly detection

• Control action sequence Ut

• System state sequence Xt
• Binary output  yt: safe (0) or unsafe (1):

• Custom loss function 

• Indicates whether any of the STL formulas are satisfied over the measurement window
• Enforces the satisfaction of safety properties also helps with interpretability of ML-based 

monitors
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HYBRID KNOWLEDGE AND DATA DRIVEN SYNTHESIS OF RUNTIME MONITORS FOR CYBER-PHYSICAL SYSTEMS 5

3.4 Knowledge and Data-Driven SCS Learning
The STL formulas generated for SCS can be further inte-
grated with the data collected from the closed-loop cyber-
physical system to design the monitor logic. In this section,
we present two different methods based on STL parameter
optimization and machine learning with customized loss
functions that enable the integration of data with knowledge
for monitoring safety properties.

3.4.1 Optimization of STL Formulas
We develop an approach for learning the unknown bound-
ary parameters �i in the STL formulas (Eq. 1) using actual
or simulated data collected from the system using ML
methods [45] [46]. Then the final STL formulas with the
estimated parameters will be synthesized into logic for run-
time monitoring. Specifically, we use software fault injection
(FI) on a closed-loop CPS to generate example hazardous
data traces that satisfy the STL formulas for UCAS and
use them for learning unknown STL parameters and for
adversarial training of the monitor. As shown in Fig. 2, data
traces from real system operation can also be used for the
development of simulation models and faulty data traces
and the active learning in an actual application.

We solve the problem of learning unknown thresholds
�i from a set of data traces D by formulating the following
optimization problem:

minimize
X

H

loss(r); s.t. (3)

r = µi(d(t))� �i > 0, 8d 2 H : d |= �h

If the STL formula �h (Eq. 1) is satisfied (denoted by |=
operator that takes a binary value from {True, False})
by a subset of hazardous traces H ⇢ D, the degree of
satisfiability of �h for a data trace d 2 H at time t can
be measured by a robustness metric r = µi(d(t)) � �i

(for predicate µi(xt) � �i). The goal of optimization is to
minimize the absolute value of r as a loss function over all
traces in H to achieve tight properties [47]. In this paper,
we designed a Tight Mean Exponential Error (TMEE) loss
function, as shown below:

loss(r) = E[e�r + r �
1

r + e�2r
], r = µi(d(t))� �i (4)

which learns tight thresholds while ensuring that the faulty
data traces satisfy the UCAS STL formulas. We adopted a
quasi-Newton optimization method, called L-BFGS-B [48],
for learning the unknown thresholds. This algorithm uses
the gradient of the proposed loss function (Eq. 4) and the
estimated inverse Hessian matrix, which is calculated using
two-loop recursion [49], to guide the optimization.

Although our STL learning approach is similar to a
previous work TeLEx [47], the proposed TMEE loss function
achieves a faster convergence in learning unknown thresh-
olds for the STL formulas. Specifically, our preliminary
experiments involving 50 simulation runs of APS controller
with the data from a simulated diabetic patient showed that,
on average, our optimization method could lead to conver-
gence within a very short time (0.02s vs. 21.79s) with a much
smaller loss value (1.15 compared to �100) compared to
TeLEX, leading to learning tighter thresholds. Further, the

safety monitor synthesized based on the tight thresholds
learned using our approach had a higher accuracy than the
monitor rules learned using TeLEx (F1-score of 0.94 vs. 0.60).

3.4.2 ML Optimization with Customized Loss Functions
Another data-driven approach to integrating the SCS STL
formulas into the safety monitor is to train an ML model
using data traces collected from the cyber-physical system
and guide the learning process using a custom loss function
[50]. Specifically, we model the task of detecting a UCA as a
context-specific conditional event, as shown below:

yt = p(9t0 2 [t, t+ T ] : xt0 2 Xh|f(Xt), f(Ut)) (5)

Given the control action sequence Ut executed under
the system state sequence Xt, the ML model outputs a
binary yt that classifies Ut to safe or unsafe. Section 5.3.3
will present different neural-network architectures for im-
plementing such ML-based monitor.

We encode the STL formulas generated for UCAS as a
custom loss function that penalizes the ML model during
the training process if the prediction does not match the
specified safety properties:

loss = lossex+w

������
yt � I

0

@
_

�h2UCAS

f(µ(Xt)) |= �h

1

A

������
(6)

where, lossex is the baseline ML model loss function (e.g.,
cross-entropy loss), w is a weight parameter, yt is the output
prediction of the ML model, and I(·) is an indicator function
indicating whether the aggregated values of the estimated
state variables for a measurement window, f(µ(Xt)), satisfy
any of the UCAS STL formulas �h (with unrefined thresh-
olds). The specific value of weight parameter w depends on
the design requirements and system scenarios. The larger
the weight parameter is, the more the system context and
safety specification would interfere with the training pro-
cess. In this work, we choose a value so that the additional
loss is comparable to the original loss of the output layer of
the ML model. And the proposed custom loss function can
help with improving the interpretability of the ML-based
safety monitors.

3.5 Run-time Cyber-Physical Context Inference
The SCS STL formulas for the synthesis of the monitor are
described in terms of high-level and human-interpretable
estimated states (e.g., Headway Time (HWT)) and control
actions (e.g., acceleration in ADS) and might be different
from the low-level sensor measurements (e.g., RADAR data)
and output control commands (e.g., the amount of gas or
brake) executed on the actuators.

In order to close the semantic gap between human-
interpretable safety requirements and low-level measure-
ments observed by the safety monitor and map the system’s
state to the STL formulas, the monitor needs to be equipped
with capabilities for run-time inference of the cyber and
physical states. Specifically, the monitor will infer the high-
level control actions issued by the control software based
on the low-level control commands sent to the actuators
and the non-observable physical states used by the control
algorithm based on the sensor measurements. This can
be considered a partial replication of the controller’s state
estimation and control algorithms inside the monitor.

Xu, J., Zhang, Z., Friedman, T., Liang, Y. and Broeck, G., ”A semantic loss function for deep learning with symbolic knowledge,” International conference on machine learning (PMLR), 2018.
X. Zhou, B. Ahmed, J. H. Aylor, P. Asare, H. Alemzadeh, “Hybrid Knowledge and Data Driven Synthesis of Runtime Monitors for Cyber-Physical Systems,” Under Review
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Strategic Safety-Critical Attacks
• Technical Problem
• Find the most salient safety-critical scenarios from the fault/attack parameter 

space (e.g., activation time, duration, error value) as efficiently and realistically
as possible. 

• Limitations of Existing Solutions on AV Safety
• Real road testing is time and resource consuming with high risk
• More efficient works relying on simulation 

• Focus on level 3+
• Without considering driver intervention
• Without using realistic control software
• Require a large amount of training data (ML-based approach)

13



Contributions
• Propose a context-aware safety-critical attack strategy that can find the most critical 

contexts and attack types to corrupt the ADAS (L2) outputs:
• Goals:

• Maximize the chance of hazards
• Cause hazards as soon as possible without being detected

• Merits:
• Exploring the fault parameter space which is impossible to mine using random techniques
• Model-based method, less training data requirements than ML-based approaches

• Applications:
• Safety checking for validation 

• Develop a closed-loop simulation platform with “a real ADAS control software” and 
“a driver simulator” to assess the resilience of a widely-used L2 ADAS, OpenPilot.
• Demonstrate the effectiveness of the proposed attack strategy in comparison to 

several random attacks.
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Approach: Attack Model

• Assumptions
• Access to the sensor measurements
• The capability of modifying the actuator commands with faulty values

• Possible Entries
• Wireless networks (e.g., over-the-air updates)
• In-vehicle networks (CAN, FlexRay, Ethernet, Bluetooth, or telematics devices)
• Vehicle to everything communication
• Vulnerable components supplied by different vendors

16



Experiment Setup: Open-source Research 
Platform 
• Real ADAS control software
• Panda is not activated

• CARLA urban driving simulator
• Radar is not integrated

• Driver behavior simulator 
• Fault-injection engine

17
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Experiment Setup: Driver Reaction Simulator

18 Figure Source: J. G. Gaspar and D. V. McGehee, “Driver brake response to sudden unintended acceleration while parking,” Transportation Research Interdisciplinary Perspectives, vol. 2, p. 100039, 2019.

Activation Condition
• ADAS Safety Warnings
• Hard brake

• Unexpected increase in acceleration 
• Unexpected increase in steering angle 
• Unsafe cruising speed 

Driver Reaction 

Stop brake, output regular gas amount, 
without changing the steering angle

Reaction Time
2.5 seconds
(the average 
driver reaction 
time reported in 
AV literature)

Emergency brake for FCW 

Emergency brake (gas=0) 



Results: Overall Performance

• Random-ST+DUR: Random Start Time and Duration
• Random-ST: Random Start Time and Fixed Duration
• Random-DUR: Random Duration with Context-aware Start time
• Context-Aware: Context-aware Start Time and Duration

19



Key Observations

• Lane invasions happen without any attacks. 
• Forward collision warning does not get activated.
• Human intervention helps prevent hazards and accidents.
• Steering angle is the most vulnerable attack target.
• The Context-Aware attack strategy is efficient in
• Exploring safety critical states in the fault space. 
• Evading human driver detection and ADAS safety checks through strategic 

value corruption.

• Broader Impact:
• Help improve safety checks of ADAS.

20
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Thank you!
xugui@virginia.edu
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Test Platform Available Online:
https://github.com/UVA-DSA/openpilot-CARLA/
https://github.com/UVA-DSA/ContextSafetyMonitorAPS

https://github.com/UVA-DSA/openpilot-CARLA/
https://github.com/UVA-DSA/ContextSafetyMonitorAPS

