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• CEO and co-founder of KeyByte, a blazing fast cloud computing company
• Assistant Professor, specializing in data engineering and applied ML, at Purdue
• Training in Computational Genomics (BME) and Computer Science 
• Lead the Innovatory for Cells and Neural Machines (ICAN) at Purdue

– ICAN innovates at the nexus of computer vision and mobile systems [Thrust 1], on one 
hand, and at the interface of machine learning and genomics [Thrust 2], on the other.

• Funding from NIH (R01), DOD (ARL), NSF (CISE), USDA, as well as private 
industries like Amazon, Microsoft, and Adobe Research. 

• Won the NSF-CAREER award from CISE on streaming analytics for IoT and 
computer vision in January 2022, which is shaping up its cyber nook here: 
https://schaterji.io/projects/sirius.html [mobile computer vision, serverless, 
drone analytics]

About Me

https://schaterji.io/research/thrust1.html
https://schaterji.io/research/thrust2.html
https://schaterji.io/projects/sirius.html
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Sirius (NSF-CAREER): I am hiring [Undergrads, Grads, Postdocs, Software 
Engineers, Interns]

Affiliations
• Assured Autonomy Innovation Institute (A2I2)
• KeyByte (keybyte.xyz)
• ICAN Data Engineering Fellow
• Purdue’s College of Engineering (Rank #4)
• Purdue’s ABE (Rank #1), CoE and CoA
• Purdue’s ECE (Rank #9), CoE
• WHIN Leadership (Lilly Endowment)

Projects (https://schaterji.io/projects/sirius.html)
• Computer vision
• Serverless
• Drones
• Computational genomics (Thrust 2)
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I will tell you about WiseFuse [Sigmetrics 2022], which performs end-to-end 
optimization of serverless DAG workflows, driven by our analysis of real 
serverless cloud computing workloads from Microsoft Azure. Concretely, our 
work introduces two optimizations: horizontal colocation or bundling of parallel 
invocations of a function and vertical fusion of in-series functions, while 
rightsizing the VMs hosting these functions.

WiseFuse for Serverless
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WISEFUSE: Workload Characterization and
DAG Transformation for Serverless DAG 

Workflows
Sigmetrics 2022

Best Paper Award
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Introduction: Serverless Computing
• Attractive model: 

o Users write the code, and platform deploys and executes the function
o Pay-as-you-go model

Input Frame

Person

Car
Output

Classify
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Introduction: Serverless DAG
Serverless Chain Example: a sequence of functions executed as in-series functions

Exit

q One function’s output becomes the input to next function

Start Extract ClassifySplit

Video 
Chunk
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Frame
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Introduction: Serverless DAG
• Serverless DAG Example: Video Analytics Pipeline

Exit

1:1

1:30

q DAG latency: elapsed time from start to end (after all functions finish execution)
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Introduction: Serverless DAG Execution
Example: Video Analytics Pipeline

ExitStart

VM# 2

q Current FaaS platforms execute each function in a separate VM (total of 61 VMs)
q Users need to specify the VM size for each function
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VM# 32
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1. Communication latency between in-series functions

2. Computation skew among in-parallel invocations within the same stage

Problems: Performance Bottlenecks

Extracted
Frame

Short Execution 
Time 

Long Execution 
Time 

Extract Classify
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Workload Characterization from Microsoft Azure
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ØDAG structure: wide and shallow
qMax Width: 10.9K in-parallel invocations
qMax Depth: 47 in-series stages

Workload Characterization (1/3): DAG Structure
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Real workload traces from Azure Durable Functions
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ØTop 5% most frequent DAGs:
qConstitute 95% of all DAG invocations
qInvocation rate ≥ 1.6K/day

Workload Characterization (2/3): DAG frequency
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Log scale

Workload Characterization (3/3): Intermediate Data & Skew Impact

• DAGs with intermediate data size ≥ 1MB have 
9.5× higher median latency than DAGs with 
size < 1MB.

• DAGs with skew ≥ 100 have 17× higher 
median latency than DAGs with skew < 100

Log scale
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WISEFUSE Design
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VM 2VM 1

Fusion (1/2)

qDirect communication between serverless functions is infeasible

qAccordingly, asynchronous communication through remote storage is used
qCan add significant delay to the DAG latency

Remote
Storage (S3)

Start End
Upload DownloadExtract Classify
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Fusion (2/2)

Our solution: Fusion
– We can execute the sending and receiving functions in one VM and leverage local 

data passing à reduce DAG latency

Start End

Same VM

qChallenges:
qWhich functions to fuse?
qFusion increases cost if the functions have different resource requirements

Extract Classify
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Bundling

qEach invocation executes in a separate VM
qStraggler dominates the end-to-end latency

Separate VMs

VM 1

VM 2 

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒚𝟏

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒚𝟐

t2 = 12 sec

t1 = 6 sec
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WISEFUSE’sOverall Design
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• Optimizer uses fusion and bundling to generate the DAG execution plan
• Execution Plan describes:

1. Which stages to be Fused together
2. How many parallel invocations within a stage to be bundled together
3. The VM size to allocate for each function or function bundle
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• Workload Characterization:
– Top 5% most frequent DAGs constitute 95% of all DAG invocations
– Serverless DAGs are short but wide

• Two important optimizations:
(1) Fusion: Reduces communication latency between 
in-series functions 

(2) Bundling: Reduces computation skew among 
in-parallel invocations 

Summary of Main Insights

Extract Classify
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Evaluation
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• We evaluate WISEFUSE on three applications on AWS Lambda
qVideo Analytics
qApproximate SVD
qML Pipeline

• Profiling is fast and cheap (using 300 profiling runs): 
qError in P95 E2E latency: ≤ 13%
qError in estimating the impact of Fusion or Bundling ≤ 7%

• Recall that 95% of all invocations are for the top 5% most frequent DAGs 
qInvocation rate ≥ 1.6 K per day

Evaluation
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Evaluation: Comparison to Baselines and Related Works
We evaluate the following approaches on AWS Lambda:

1. Baselines:
1. User-Max: user-provided DAG using maximum VM sizes (lowest latency)
2. User-Min: user-provided DAG using minimum VM sizes (lowest cost)

2. Related works: SONIC (ATC’21), Photons (SoCC’20), and FaastLane (ATC’21)

3. Three latency target settings for WISEFUSE (1.5X, 2.5X, 5X of the best theoretical 
latency)
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Evaluation with Video Analytics Application (1/5)

WISEFUSE achieves 63% lower cost than User-Max and 61% lower P95 latency than User-Min
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Evaluation with Video Analytics Application (2/5)

SONIC (ATC’21): considers fusing in-series functions only to leverage data locality. It does not 
perform bundling and does not consider the latency distribution
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Evaluation with Video Analytics Application (3/5)

Photons (SoCC’20):  performs Bundling mainly to improve memory utilization. It bundles as 
many parallel invocations as possible based on the functions’ memory footprint.
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Evaluation with Video Analytics Application (4/5)

Ø Faastlane (ATC’21):  uses a fixed bundle size of 6 workers (to match the 6 vCPUs that are 
provided by AWS Lambda’s Max VM size).



28

Evaluation with Video Analytics Application (5/5)

WISEFUSE adjusts the execution plan based on the user specified latency target
q Higher latency target à Lower cost

Latency Target

Cost
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Contributions
q Workload characterization for real-world serverless DAGs in Azure Durable Functions

q Two important optimizations:
qFusion: Communication latency between in-series functions
qBundling: Computation skew among in-parallel function invocations 

q WISEFUSE performs Fusion and Bundling to derive an optimized execution plan that meets a 
user-defined latency SLO with low cost

q Experimental evaluation on AWS Lambda 
qOur performance model answers What-If questions (e.g., impact of Fusion or Bundling, 

or impact of changing the Bundle size). 
qWISEFUSE generates different execution plans to meet different tail latency targets
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LiteReconfig [EuroSys 2022] performs principled approximation in streaming 
video analytics so that it can run on mobile or embedded devices and keep up with 
the video rate. It performs the approximation in a cost-benefit and video content-
aware manner. We have also created a frontend called ApproxLive that makes 
our innovation available to end users.

LiteReconfig for Mobile Computer Vision
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LiteReconfig: Cost and Content Aware 
Reconfiguration of Video Object Detection 
Systems for Mobile GPUs

EuroSys 2022

31
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Overall Takeaways
• Serverless for complex data analytics

• Can reduce latencies for latency-sensitive applications.
• Increases the applicability of serverless to non-traditional workloads such as 

heavyweight ML and recommendation systems.
• We drive our optimizations using real workloads for Microsoft Azure.
• We also show how to use our tools on the side of the cloud provider and on the 

side of the clients, say, IoT company or in e-commerce.
• Approximate computing for streaming video analytics

• Can be used in a data-driven manner to drive latency-sensitive, energy-aware 
computing on mobile devices.

• This paradigm is extensible to a wide range of computer vision backends and 
can be used as plug and play tools for different AR/VR applications.

32
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