

Universidade Federal

de Campina Grande

Strengthening the SPIRE id provisioning workflow

andrey@computacao.ufcg.edu.br 82nd IFIP WG 10.4 Meeting June 26th, 2022

> LABORATORIO DE **SISTEMAS** DISTRIBUÍDOS

Zero Trust - Motivation

Permeable perimeters

Zero Trust - Principles

Identity

• All data sources and computing elements are resources

Authorization

- Communication is secured regardless of location
- Access is granted on a per-session basis
- Authentication and authorization are enforced

Monitoring

- Relevant assets are monitored
- Access is determined by a dynamic policy
- Monitoring is used to improve the security posture

Robust Identity Provisioning

Root of the Zero Trust approach

Goals:

- Continuously evaluate workloads and infrastructure
- Automatically issue short-term identities
- Identities bound to software/environment (not to other identities or secrets)
- Have "adequate" verification mechanisms

Challenges: automated, simple to bootstrap, compatible with the threat model

The SPIFFE Standard (CNCF)

SPIFFE ID

<u>SPIFFE Verifiable Identity</u> <u>Document (SVID)</u>

SPIFFE Workload API

spiffe://example.org/app1/client

Domain + Workload Id

Id is opaque or human-friendly

X.509 with ID in URI SAN

Locally cached certs and bundles

Solving the Bottom Turtle (2020, link)

Properties for Workload Attestation (Examples)

unix:uid	unix:path	docker:label	k8s:ns	k8s:pod-uid
unix:user	unix:sha256	docker:env	k8s:sa	k8s:pod-name
unix:gid		<pre>docker:image_id</pre>	k8s:container-image	k8s:pod-image
unix:group			k8s:container-name	k8s:pod-image-count
unix:supplementary_gid			k8s:node-name	k8s:pod-init-image
			k8s:pod-label	k8s:pod-init-image-count
unix:supplementary_group			k8s:pod-owner	
			k8s:pod-owner-uid	

Threat model and research demands

Currently (by the community):

- Code audits and security evaluation done
- Evaluated different attacker capabilities, but no focus on internal attacks

Demands (expand attacker capabilities):

- Support new types of plugins considering TEEs
- Protecting agent and server processing and temporary space with TEEs

Opportunities:

- Protecting storage against Sybil and rollback
- Trusted time
- Fulfilling Zero Trust goals: richer dynamic/behavior verification

Thank you!

andrey@computacao.ufcg.edu.br

Acknowledgements: ZTPO Project (UFCG, CEEI/EMBRAPII & HPE) SPIFFE/SPIRE Community TU Dresden

> LABORATORIO DE **SISTEMAS** DISTRIBUÍDOS

