Michael Lyu - Software Dependability Modeling with A Data-Driven AI Paradigm

Starts from a recap on the "traditional" software dependability modelling

• fault avoidance - removal - tolerance - prediction

Then question its relevance to model modern software systems, from serviceoriented systems until cloud systems

• e.g., more subtle software failures, complex dynamic interactions, etc.

And it presents a paradigm shift towards "data"

In the evolution of dependability modeling, the paradigm shift to a data-driven approach is an inevitable modeling effort, and AI techniques such as machine learning are called for. Data-driven software dependability modeling moves:

- from black box to white box: white-box is preferable for modern software systems (distributed systems, clouds), because of their complex dependencies and failure patterns (which are also very unstable e.g., because of frequent software updates).
- from model centric to data centric: data centric models can mitigate incorrect assumptions on data distribution. We can use the output of monitoring of system logs and of log traces, topology at different layers, alerts

 \rightarrow anomaly detection - failure detection - root cause analysis - failure prediction

- from macro-level to micro-level: the macro perspective is too coarse-grained (e.g., to capture dynamic interactions of microservices). Micro-level allows profiling the system and identifying anomalies.
- *from static analysis to dynamic analysis*: static analysis-based dependability modeling highly relies on historical failure data. But now we can use new data that we can collect and process: e.g., anomaly detector updates automatically with zero-shot/transfer learning.

Lionel Briand: Trustworthy Machine Learning-Enabled Systems

The talk reviews, from a personal perspective and experience, several challenges and techniques for automated testing of *software systems enabled by machine learning*, especially for their use in safety-critical systems

• Testing is still the main mechanisms to which gain trusts, but:

- Various testing levels: test not just the DNN (as done by most research) but also the whole system, AND in the relevant scenario (e.g., as requested by SOTIF).
 - Scalability, realisms?
- Huge input space (and labelling effort) and test suite adequacy
 - when is it good enough? (in dimension and sequences of inputs)
 - how can simulator be exploited/guided?
- Information access: white-box and data-box are often not available. Test adequacy criteria require access to the DNN internals, often not applicable in practical settings
 - This way, we cannot rely on coverage criteria as neuron coverage

- Functional safety: is the uncertainty associated to the ML model acceptable?
 - Explaining test results (XAI)
- Failures
 - MLs failures result from both ML mispredictions and the effectiveness of countermeasures
- Robustness: adversarial attacks studied for robustness
 - but they are not realistic: adversarial "natural" inputs should be researched
- ...
- Research directions:
 - Measure diversity of test inputs: the more diverse, the more likely to reveal faults (correlation between geometric diversity and faults is higher than surprise adequacy coverage and faults)
 - Cluster mispredictions to estimate faults on the DNN