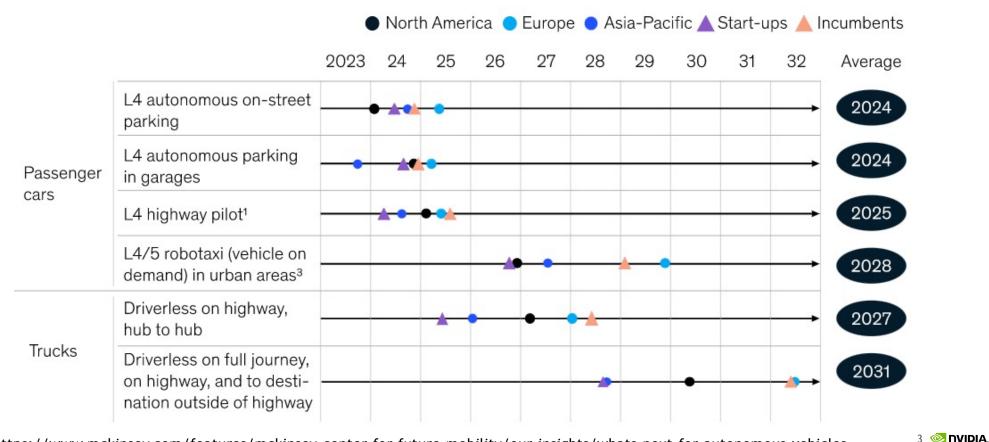
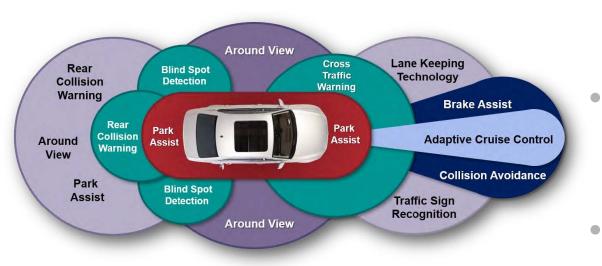
What Safety Challenges for Autonomous Systems Would Benefit from Research?

Timothy Tsai 2022-01-21 IFIP WG 10.4 Winter Workshop


Tremendous Interest in Autonomous Vehicles

2 📀 nvidia.


AVs Are Imminent

Most survey respondents expect L4 use cases to emerge by 2024 or 2025.

https://www.mckinsey.com/features/mckinsey-center-for-future-mobility/our-insights/whats-next-for-autonomous-vehicles

Functionality vs. Safety

- Functionality ("drive to there") and safety ("don't hit anything") are closely related
 - Need correct perception and planning
- Full functionality is still lacking (e.g., for corner cases)

4 🕺 NVIDIA

Today's Commercial AVs

Level 2

Level 3

"Level 3"

Level 4

- Level 3 and beyond are starting to be sold
- Safety/liability is important!

Waymo Disengagement Reports

• From 2020 California DMV AV disengagement reports

Disengagement reason			
A <u>perception</u> discrepancy for which a component of the vehicle's perception system failed to detect an object correctly	8		
Adverse weather conditions experienced during testing	3		
Incorrect behavior prediction of other traffic participants	1		
A recklessly behaving road user	1		
Unwanted maneuver of the vehicle that was undesirable under the circumstances	8		

Perception is a challenge \rightarrow How can we improve perception?

Disengagement-based HW FIT Estimate

• From 2020 California DMV AV disengagement reports

Disengagement reason	#
Hardware diagnostic caused software kickout	25
Hardware Issue: Smart camera stop working	3
Hardware diagnostic detected hardware health issue	3
Hardware Issue: Wrong GPS state	2
Hardware discrepancy or system fault	1

- HW-related Disengagements: 34 / 3695 over ~2e6 miles (assuming avg 30mph) = about 5e5 FIT (!!!)
- Need to read disparate logs with different methodologies cautiously!
 - All 34 reports from 3 companies representing ~1% of all miles

Random Hardware Faults

- ISO 26262 requirements
 - Single-Point Fault Metric (SPFM): Diagnostic coverage
 - Probabilistic Metric for random Hardware Failures (PMHF)

	ASIL-D	ASIL-C	ASIL-B	ASIL-A
SPFM	≥ 99 %	≥ 97 %	≥ 90 %	
PMHF	<10 FIT	<100 FIT	<100 FIT	<1000 FIT

- Companies spent a lot of money and time on this
 - Vendors like Nvidia can't assume specific SW when evaluating HW error propagation
 - FMEDA requires time and assumptions
 - What SW?
 - How to measure error propagation? Fidelity vs. efficiency trade-off

\rightarrow How can we find the expected error propagation for different modules?

Very High Error Masking for AVs

Low error propagation for ...

- DNNs (SC'17)
 - Low propagation for LSBs and early layers
- AV perception (Internal FI on Nvidia DriveWorks)
 - Tolerance via smoothing and fusion
- Arch \rightarrow actuators and car behavior (DSN'19)
 - Must corrupt many frames to make a difference
- Closed-loop control system (DSN'19)
 - Braking/throttle and steering compensate
- Typical scenarios
 - E.g., most drunk and texting drivers don't have accidents (dumb luck nothing to hit)

Do random hardware faults matter?

- Low error propagation through entire AV stack.
- Few reports of random hardware faults in disengagement reports.
 - Like HW faults on Windows, would we blame the SW because SW FIT rate is higher?
- Transient faults seem to largely get masked out.
- Permanent faults tend to result in DUEs. AVs are fail-safe with minimum risk maneuvers.

\rightarrow Do random hardware faults matter?

Do random hardware faults matter? (cont.)

$\rightarrow \frac{\text{How can we demonstrate this (random MW faults don't matter)?} }{\text{HW faults don't matter)?} }$

- FMEDA for diagnostic coverage takes a lot of time, people, and assumptions
 - Don't know which SW runs
 - Full-system simulation is expensive
 - Low error propagation requires a lot of FI runs
- Can we ...
 - Do importance sampling?
 - Use higher-level FI (e.g., PINFI, NVBitFI) by modeling lowerlevel propagation from the fault?

Do random hardware faults matter? (cont.)

- By avoiding low-level error detection and mitigation, can we
 - Save time and money?
 - Avoid unnecessary DUEs?
- Sales view is absolutely no, because we need certification.
 Especially true for vendors, like Nvidia.
- But what is the engineering view?

→ What modules should we focus on (biggest bang for the buck)?

Safety-Critical Scenarios

- Most scenarios are not safety critical
- Scenario coverage metric?
 - SOTIF is emerging but relies on a HARA enumeration of scenarios
 - Relies on engineering expertise \rightarrow May not be repeatable
 - How do we know the HARA analysis is complete?
- Benchmark of safety-critical scenarios?
 - NCAP (list others) exist, but how comprehensive are they?
 I.e., what do they miss?
 - How about a scalable benchmark that yields a quantitative metric? E.g., if a system can handle one scenario, adjust scenario parameters to find breaking point.

→ How can we find the safety critical scenarios?

→ <u>Is there a metric for</u> <u>scenario coverage?</u>

→ <u>Can we produce a</u> <u>benchmark of safety-</u> <u>critical scenarios?</u>

13 💿 NVIDIA

Conclusion

- Safety will improve as functionality improves
- How do we figure out which random hardware faults matter and which don't?
- How do we figure out which scenarios matter and which don't (for safety)?