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FRAUNHOFER IESE - SAFETY ENGINEERING DEPARTMENT

◼ Engineering of safety-related Solutions

◼ Consulting, Tooling & Doing

◼ Model-based Safety Engineering

◼ Hazard- and Riskanalyses

◼ Safetyanalyses (FMEA, FTA, CFT etc.)

◼ Safety Concepts and Safety Cases

◼ Tools and methods (in particular www.safeTbox.de; 
https://youtu.be/VE_BiN-S7jw )

◼ Research Topics

◼ Safety of collaborative autonomous systems

◼ Dynamic Risk Management

◼ Dependable AI

◼ Security for Safety

http://www.safetbox.de/
https://youtu.be/VE_BiN-S7jw
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FROM DIGITAL TO „INTELLIGENT“

◼ For specific tasks, Neural Networks show better
performance than classic software (and even
than humans)

◼ Example: Semantic segmentation of images
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NEURAL NETWORK ENGINEERING (?)

◼ A (very) different way of engineering software

◼ Neural networks are very different from source code

◼ Established methods, techniques and tools are not directly applicable

◼ There are specific techniques and tools, but

◼ there is a need for a more systematic engineering of neural networks
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SAFETY CHALLENGES

◼ Typically, a sound requirements specification is missing

◼ There will be training data and maybe a partial 
requirements specification

◼ This is not very surprising, because ML is particularly
attractive to address problems where it is hard to come
up with a sound specification (e.g. camera-based object
classification)

◼ This complicates V&V and the generation of sound
evidence for a safety argument

◼ In addition, proper analysis and verification is difficult due to
a lack of explainability

◼ BlackBox: Established WhiteBox Techniques (such as
Inspections, Walkthroughs) not applicable

◼ Apparently insignificant changes at the inputs can lead
to very significatn changes at the output

◼ Physical Hacks a problem

„BlackBox“

2.) not understandable / explainable

1.) no adequate specification
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STARTING POINTS FOR SAFETY ASSURANCE OF ML 
COMPONENTS
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STARTING POINTS FOR ASSURING ML COMPONENTS 
INTEGRATED SAFETY AND ML ENGINEERING

◼ Only use ML components when there is no acceptable conventional solution

◼ Accordingly, keep the ML part of the system as small as possible

◼ Integrate/align the activities and work products of Safety and ML Engineering

◼ At least a partial and as-good-as-possible requirements spec shall be created. Benefits:

◼ Traceability wrt. safety engineering; e.g. clear association with safety requirements broken 
down from a hazard and risk analysis

◼ Inform training data engineering, tailoring and QA of training data

◼ Argue completeness or coverage regarding important quality aspects

◼ V&V of the trained ANN against the spec

◼ The specification can be the basis for a safety supervisor or similar runtime measures
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STARTING POINTS FOR ASSURING ML COMPONENTS 
INTEGRATED SAFETY AND ML ENGINEERING

◼ Methods and techniques for analyzing and hardening (zB: XAI)

◼ In case of object classification and conv nets, you can improve the performance of the NN by using
techniques such as heatmapping or GradCAM, but you cannot assure it will always work

◼ E.g. you cannot know if every classification will be correct

◼ In general, guidance is required wrt. adequacy of techniques and generated evidence



© Fraunhofer IESE 

10

STARTING POINTS FOR ASSURING ML COMPONENTS 
INTEGRATED SAFETY AND ML ENGINEERING

◼ Ongoing research wrt ML: Assuring robustness of the learned model, enable 
predictability and integrate explainability into the ML components

◼ (Redundancy-)Measures on an architectural level; e.g.:

◼ Safety Supervisor / Simplex architecture

◼ Homogenous and diverse redundancy (e.g. parallel utilization of ML components with 
different training data, architecture etc.)

◼ Layered supervisor concept (layers of protection architecture)

◼ Validation as central element of assurance (i.e. for generating safety evidence)

◼ Challenge lies in the selection of test cases and in arguing coverage and completeness

◼ Currently a lot of research

◼ E.g. PEGASUS and V&V Methoden projects in Germany
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STARTING POINTS FOR ASSURING ML COMPONENTS 
INTEGRATED SAFETY AND ML ENGINEERING

◼ Overall there shall be a seamless
integration between ML Engineering 
and Software-, Systems- and Safety-
Engineering

◼ We recommend setting up an explicit 
and adequately specified
argumentation structure (e.g. in form 
of an assurance case) for the key
properties of the system

◼ Argumentation patterns can be re-
used

https://www.omg.org/spec/SACM/2.0/About-SACM/
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STARTING POINTS FOR ASSURING ML COMPONENTS 
INTEGRATED SAFETY AND ML ENGINEERING – SUMMARY

Requirements

ML 
Requirements

Data 
Engineering

Analysis

-SR gap
-Uncertainties

-ML req + SSV req Safety Su
p

erviso
r (SSV

)

Data 
Engineering

ITERATE (if needed)
ML Component

(+ SSV)
ML component 

+ SSV

H&R Analysis
Safety requirements 

ML Hardening Cycle
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DYNAMIC RISK MANAGEMENT
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DYNAMIC RISK MANAGEMENT VISION

Field Evidence &

Environmental 
Changes

Assured Runtime 
Safety Models  + 

Inference Mechanisms 

Model-
based safety 
engineering 

@ Design 
Time

Dynamic Risk  
Management 

@ Runtime

https://www.youtube.com/watch?v=HY9NrJHLxRI
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Automated Driv ing Function

Nominal Function

DRM RUNTIME ARCHITECTURE

Safety Supervisor 

Plan Act

Prediction 
Horizon

Assess 
Behavior Risk

Assess Safety 
Capabilities

Control 
Residual 

Risk

Assess 
System Limits

Safety

Performance

Safe 
Sense

Safety-relevant features

Performance-relevant features

Safe & Performant Behavior



© Fraunhofer IESE 

16

DYNAMIC RISK MANAGEMENT EXAMPLE

Automated Driv ing Function

Nominal Function

Safety Supervisor 

Sense Plan Act

Assess 
Behavior Risk

Assess Safety 
Capabilities

Control 
Residual 

Risk

Assess 
System Limits

monitors 
behavior of

https://www.youtube.com/watch?v=Vdn-TCGxzgA

https://www.youtube.com/watch?v=Vdn-TCGxzgA
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Automated Driv ing Function

Nominal Function

FRAUNHOFER IESE TOPICS

Safety Supervisor 

Plan Act

Prediction 
Horizon

Assess 
Behavior Risk

Assess Safety 
Capabilities

Control 
Residual 

Risk

Assess 
System Limits

Safety

Performance

Safe 
Sense

Safety-relevant features

Performance-relevant features

Safe & Performant Behavior

Situation-
Aware DRA

Conditional Safety
Certificates + V2X

Uncertainty
Wrappers

SafeML
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SAFE (ML-POWERED) SENSING
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Uncertainty Wrapper (Uw)

◼ Challenge: Uncertainty is inherent in data-based 
solutions and cannot be ignored

◼ Approach: "Uncertainty Wrapper" as a holistic, 
model-agnostic approach for the identification and 
situational reliable prognosis of uncertainty in AI-
based components

◼ Benefits

◼ Control of data management, model 
development and quality assurance

◼ Expand the scope of action and reliably assure 
decision making at run-time when using the 
results of AI-based components

◼ Setting up a convincing safety case (e.g., using 
GSM (goal-structuring notation) within the 
framework of Dynamic Risk Management

project-internal19

Data-Driven Component (DDM) : Pedestrian Detection Component

Uncertainty Wrapper: Wrapper for Pedestrian Detection

Existing Data-Driven Model (DDM) : Yolo-based object detection 

Confidence

(e.g., 95%)

(e.g., GPS and 

rain senor,

distance of 

interest)

(e.g. Camera  

Image)

Outcome

(e.g., corners of 

bounding box 

for a person)

Dependable

Uncertainty

Estimate

(e.g., < 8%)C
o

m
b

in
a

ti
o

n

Quality Model

Scope Model Scope Compliance Model

Quality-Impact Model

Data-Driven 

Component 

Input

uncertainty.wrapper

uncertainty.wrapper.ddm

uncertainty.wrapper.scm

uncertainty.wrapper.qim

uncertainty.wrapper.sm

uncertainty.wrapper.qm qfer

sfer

UQ

USC

Module developed in Python realizing scikit-learn estimator interface

Uncertainty?

0.02 / 0.40

Outcome?

No Stop Sign

Confidence?

0.9999

Scope
Compliance

Input 

Quality

Model

Fit
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Scope Compliance

Uncertainty caused by mismatch between
target/test context and application context

Additional

Data Quality

Uncertainty caused by data quality
limitations during model application

Additional

CAUSES FOR UNCERTAINTIES

Model Fit

Uncertainty caused by (inherent) 
limitations of the learned model
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Developing Uncertainty Wrappers

◼ Require representative dataset of ML model under control

◼ Intended function and outcomes should be known i.e. 
supervised learning and labeled dataset

◼ Definition of correctness per each outcome known

◼ Quality Impact model specification

◼ Determines how input quality across each input feature 
affects uncertainty of ML model outcome

◼ Scope compliance model specification

◼ Specifies how to test whether we’re inside or outside target 
application scope

◼ Governed by scope factor models, which can be external ML 
models as well

◼ Available as Python library, compliant to scikit-learn interface

◼ Can be integrated into ML QA process Source: http://klaes.org/Z-files/Klaes-2020-WAISE.pdf

Quality Impact 
Model 

(Decision Tree)

http://klaes.org/Z-files/Klaes-2020-WAISE.pdf


© Fraunhofer IESE 

22

SafeML

◼ Challenge: How do we know we’re operating in 
the intended context ?

◼ Our Approach: SafeML uses statistical distance 
measures to evaluate ‘how far’ from our trained 
context are we currently operating in. If exceeding 
user-specified thresholds, alternative actions can then 
be employed.

◼ Customer Benefits

◼ Monitor uncertainty of operational context 
compliance

◼ Maintain safe state by not trusting ML when 
out of intended context

https://github.com/ISorokos/SafeML
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Dataset Shift

◼ Multiple definitions / similar terms over time

◼ Dataset/Concept shift/drift

◼ Common theme

◼ The data you originally trained with no longer 
applies

◼ Can happen during training, but also during 
operation

◼ Specific topics include

◼ Shift detection

◼ Shift explanation/analysis

◼ Shift response
https://www.section.io/engineering-
education/correcting-data-shift/

Covariate shift: input distribution 
changed

https://www.section.io/engineering-education/correcting-data-shift/
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SafeML: Example Workflow

◼ Two stages: 

◼ Setup during ML Training 

◼ Deploy during ML Operation

◼ During training, store ECDF descriptors

◼ During operation

◼ Sample from operational data

◼ Form operational ECDF

◼ Compare with stored

◼ If distance > threshold 
-> alarm/user intervention/…
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FOCUS ON DYNAMIC RISK ASSESSMENT



© Fraunhofer IESE 

26

Dynamic Risk Assessment Research @ IESE

E

𝜷𝒎𝒊𝒏 RSS 𝜷𝒎𝒂𝒙

Situation-aware Dynamic Risk Assessment of Autonomous Vehicles (SINADRA)

◼ How can kinematic-based risk metrics be extended with situational awareness?

◼ How to quantify relationship between feature presence and risk?

◼ How can perception uncertainties be propagated to risk estimate?

◼ Formal relation to design time safety engineering (HARA) and safety case

https://www.youtube.com/watch?v=fso4pAIcoUw
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FOCUS ON DYNAMIC CAPABILITY ASSESSMENT
CONSERTS
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Dynamic Safety Capability Assessment Research @ IESE - ConSerts

E

𝜷𝒎𝒊𝒏 RSS 𝜷𝒎𝒂𝒙

Brake System 
Monitor

Vehicle Platform 
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Monitor

Emergency 
Braking Capability 
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with confidence z
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Conditional Safety Certificate (ConSert) Model

◼ ConSerts are preassured modular 
safety concept variant runtime
models

◼ Algorithms for runtime composition
and safety guarantee evaluation

◼ Supports heterarchically structured
systems

◼ Evaluation and Improvement since
2013 in various research and 
industry projects and domains: 
automotive, agricultural, smart 
manufacturing, medical

public28



© Fraunhofer IESE 

29

◼ Using ML components in (safety-critical) systems has huge potential, quality assurance (and safety assurance in 
particular) is a big challenge

◼ There is no single silver bullet for assuring safety of systems with ML-components, a specific concept is always 
required

◼ There is no commonly accepted state of the practice or even a sound understanding with respect to suitable 
engineering methods, techniques and tools

◼ This talk gave an (selective) overview on challenges and solution ideas along an envisioned integrated safety and 
ML engineering lifecycle

◼ General solution approaches, recommendations, DRM, dealing with uncertainty!

SUMMARY
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Contact:

Dr. Daniel Schneider
daniel.schneider@iese.fraunhofer.de
Tel.: +49 (0) 631 / 6800-2187
Fax.: +49 (0) 631 / 6800-9-2187
Mobile: +49 (0) 151 / 649 530 70

Thank you for your interest


