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Self-Driving Cars importance

2

Self-driving cars are expected to 
reduce of 3 orders of magnitude 
the number of accidents...

…If we are able to make them 
sufficiently reliable.
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SW Problems

woman with a bike
probability < threashold

85% car

92% car

76% car
72% traffic light
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Outline

- Neutrons-induced effects in computing devices

- Evaluating neutron-induced errors probabilities

- Cross layer faults propagation in CNNs

- Some (interesting) efficient solutions

- Conclusions and Future Work
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Terrestrial Radiation Environment
Galactic cosmic rays interact with atmosphere
shower of energetic particles:
Muons, Pions, Protons, Gamma rays, Neutrons

13 n/(cm2�h) @sea level*

*JEDEC JESD89A Standard
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Neutrons induce faults in modern computing systems 
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CNNs Reliability

missing objects

inexistent object

95% elephant
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Radiation Effects - Soft Errors

• One or more bit-flips
Single Event Upset (SEU)
Multiple Bit Upset (MBU)

Soft Errors: the device is not permanently damaged, 
but the particle may generate: 
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Radiation Effects - Soft Errors

• One or more bit-flips
Single Event Upset (SEU)
Multiple Bit Upset (MBU)

Soft Errors: the device is not permanently damaged, 
but the particle may generate: 

• Transient voltage pulse
Single Event Transient (SET) 5 + 6

IONIZING
PARTICLE
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Silent Data Corruption vs Crash
Neutron-induced faults can also induce 
Application Crash or  Device Reboot

Don’t (always) blame Microsoft/Apple
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Silent Data Corruption vs Crash

$2,700

Silent Data Corruption: the application provides 
wrong answers. Silent = no flag/no indication of error. 
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Radiation Effects on Parallel Accelerators
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Cloud

Good High Very High

ARM CPU co-processor GPU FPGA/SoC

Consumer Data Center
HPC

automotive
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One device, different reliability requirements 

Reliability Requirements (*Arijit Biswas, SELSE 2018)
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Cloud

Good High Very High

ARM CPU co-processor GPU FPGA/SoC

Consumer Data Center
HPC

automotive

14

One device, different reliability requirements 

Reliability Requirements (*Arijit Biswas, SELSE 2018)

Dedicated and highly reliable HW has:
-high cost
-low performances
-slow time-to-market
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Self Driving Car
The new trend for automotive market is Self Driving Car!
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Examples of observed errors

99% person 99% person Nothing’s there
Expected Tolerable

Slight modification 
of detection

Critical
Missing an object
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Examples of observed errors

99% elephant

False positive
Unnecessary stops

*G. Li, et at SC17

Classification Error
wrong object detects
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Results – FIT*
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Crashes are always more probable than SDC.
(we know something happened => we can deal with it)

*F. F. dos Santos, et al. Trans. on Reliability 2019
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Results – FIT*
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Not all SDCs affect detection!

*F. F. dos Santos, et al. Trans. on Reliability 2019
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Faults Propagation
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-Memory has a naïve fault model: single bit flips
-Well studied for SRAM and DDR (since the 80s)
-Memory is easily protectable (ECC)

-Faults in logic have not-trivial syndrome on the output
-Largely unknown for complex devices
-No efficient protection available
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Convs errors on GPUs vs TPUs
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Convs errors on GPUs vs TPUs
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- How many elements in the convolution 
output matrix are corrupted? 

- How are they distributed?

*F. F. dos Santos, et al., Trans. on Reliability 2019
*R. L. Rech, et al., DATE 2022
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Convs errors on GPUs vs TPUs
12% line

45% square

19% random

43% single

64% single

GPU

TPU
6% line

11% square

How different is the corrupted value from the 
expected one?

*F. F. dos Santos, et al., Trans. on Reliability 2019
*R. L. Rech, et al., DATE 2022
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23

FF

Beam
experiment

Circuit/Gate 
simulation

RTL
fault injection

0   1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0   1

bit flip

we do not 
know what 

happens here

-Realistic error rate
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-All HW is exposed to neutrons
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Self-Driven Cars
Naïve (expensive) solutions in today’s self-driven cars 

2x

4x

Replication is very costly!
And it might not work always!

We need to find smarter ways to detect 
neutron-induced errors.

24
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Algorithm-Based Fault Tolerance
70% of CNN operations are GEMM-related
10% are the other kernels
20% CPUxGPU operations.

Proposed hardening: ABFT for Matrix multiplication*
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ABFT works!
Our ABFT corrects 87% of Critical SDC
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Max-Pool

Max-Pool layer propagates just  
the element with the highest value. 

28
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If the value of the element to propagate is
not reasonable (10x max value of a fault-free 
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4 additional variables, detection in O(1)
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Max-Pool

4,5E+6

If the value of the element to propagate is
not reasonable (10x max value of a fault-free 
execution) we detect the error and discard the frame.
4 additional variables, detection in O(1)

29

Sma
rt

*F. F. dos Santos, et al. Trans. on Reliability 2019
**Range Restriction, Z. Chen, et al. DSN2021
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4,5E+6

29

If the value of the element to propagate is
not reasonable (10x max value of a fault-free 
execution) we detect the error and discard the frame.
4 additional variables, detection in O(1)

Smart-pool detects more than 
90% of critical SDCs

Max-Pool
Sma

rt
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ECC vs ABFT vs Smart Pooling*

30

99% person

99% elephant

Nothing’s there

*F. F. dos Santos, et al. Trans. on Reliability 2019
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Space-Time Correlation

31

CNN processes each frame independently from others.
We process frames correlating subsequent frames.

Frames are highly correlated. So should detection.
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Space-Time Correlation*

32

If similar frames produce uncorrelated detection 
probably an error happened

With space-time correlation 
we can detect up to
92% of critical errors

*L. K. Draghetti, et al., IOLTS 2019
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Mixed-Precision Hardening
GPUs have dedicated functional units to execute
FP64, FP32, FP16 operations and Tensor Core 

When a FP64 application is 
executed, the other units are idle.

used idle
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Mixed-Precision Hardening
GPUs have dedicated functional units to execute
FP64, FP32, FP16 operations and Tensor Core 

When a FP64 application is 
executed, the other units are idle.

Our idea is to run the same 
code, in parallel, in the available 
FP32 cores.

Reduced-Precision RP-DWC*

DWC

33

used

*F. F. dos Santos, et al. Trans. Comp. 2021
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Mixed-Precision Hardening
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RPDWC Benchmarks 
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Mixed-Precision Hardening
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Mixed-Precision Hardening
Detection goes from 57% to 76%. As expected, lower 
than traditional DWC (~80-90%) 

35

52 bits

23 bits

11 bits

8 bits

Double (64 bit)

Float (32 bit)

Undetected errors

Undetected errors fall in the less significant digits
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Can We Rely on Self-Driving Cars?
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- not all faults reach the software level
- the fault model is not naïve in modern architectures
- the corrupted value(s) depend(s) on several variables
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- not all errors are critical for CNNs
- SW/HW solutions can be efficient
- realistic fault model is necessary to 
design effective hardening



Paolo Rech
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How many errors modify
the vehicle behavior? 
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Conclusions and Future Work

-Reliability is a serious issue for safety-critical 
applications such as autonomous vehicles

-Self-driving cars will be adopted in large-scale 
only when sufficiently reliable

-We need to focus on critical errors, critical 
variables, critical resources to have efficient 
hardening

-Future work: reliability-aware training

37
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CNN Robustness and Reliability

80X X

X

30

Pig

Maintain high accuracy 
even if the input is “noisy”

Avoid adversarial attacks 
to “fool” the CNN

38
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Sharpness-Aware CNN*

Figure 2: In this illustration of the loss function, tradi-
tional optimizer prefers B with the lower loss rather than
A, because B has the lower loss. However, parameters at
point B are more vulnerable to parameter corruption, as
maxx2I0(f(x)�f(x0)) < maxx2I1(f(x)�f(x1)). Based
on our experiments, we argue that parameters that are resis-
tant to corruption, e.g., at point A, can embody potentially
better robustness and generalization.

rameters at point B demonstrate critical vulnerability to pa-
rameter corruptions, while the parameters at point A are a
better choice since larger perturbations are required to ren-
der significant loss change. It is also observed in our experi-
ments that the parameters at point A have better generaliza-
tion performance as a result of corruption-resistance.

Equipped with the proposed indicator, we are able to sys-
tematically analyze the parameter robustness and probe the
vulnerability of different components in a deep neural net-
work via observing the accuracy degradation after applying
corruptions to its parameters. Furthermore, the comparisons
between the gradient-based and the random corruption for
estimating the indicator suggest that the neighborhood of the
learned parameters on the loss surface is generally flattish
except for certain steep directions. If we can push the pa-
rameters away from the steep directions, the robustness of
the parameters can be improved significantly. Therefore, we
propose to conduct adversarial corruption-resistant training
that incorporates virtual parameter corruptions to find pa-
rameters without steep directions in the neighborhood. Ex-
perimental results show that the proposed method not only
improves the parameter robustness of deep neural networks
but also elevates their accuracy in application tasks.

Our main contributions are as follows:

• To understand the parameter vulnerability of deep neural
networks, which is fundamentally related to model robust-
ness and generalization, we propose an indicator that mea-
sures the maximum loss change if small perturbations are
applied on parameters, i.e., parameter corruptions. The
proposed gradient-based estimation is far more effective
in exposing the vulnerability than random corruption tri-
als, validated by both theoretical and empirical results.

• The indicator is used to probe the vulnerability of dif-
ferent kinds of parameters with diverse structural char-
acteristics in a trained neural network. Through system-
atic analyses of representative architectures, we summa-
rize divergent vulnerability of neural network parameters,
especially bringing attention to normalization layers.

• To improve the robustness of the models with respect to

parameters, we propose to enhance the training of deep
neural networks by taking the parameter vulnerability into
account and introduce the adversarial corruption-resistant
training that can improve the accuracy and the generaliza-
tion performance of deep neural networks.

Parameter Corruption

In this section, we introduce the problem of parameter cor-
ruption and the proposed indicator. Then, we describe the
Monte-Carlo estimation and the gradient-based estimation
of the indicator backed with theoretical support.

Before delving into the specifics, we first introduce our
notations. Let N denote a neural network, w 2 Rk de-
note a k-dimensional subspace of its parameter space, and
L(w;D) denote the loss function of N on the dataset D,
regarding to the specific parameter subspace w. Taking a k-
dimensional subspace allows a more general analysis on a
specific group of parameters.

To expose the vulnerability of model parameters, we pro-
pose to adopt the approach of parameter corruption. To for-
mally analyze its effect on neural networks and eliminate
trivial corruption, we formulate the parameter corruption as
a small perturbation a 2 Rk to the parameter vector w. The
corrupted parameter vector becomes w + a. The small per-
turbation requirement is realized as a constraint set of the
parameter corruptions.
Definition 1 (Corruption Constraint). The corruption con-

straint is specified by the set

S = {a : kakp = ✏ and kak0  n}, (1)

where k · k0 denotes the number of non-zero elements in a

vector and 1  n  k denotes the maximum number of

corrupted parameters. ✏ is a small positive real number and

k · kp denotes the Lp-norm where p � 1 such that k · kp is a

valid distance in Euclidean geometry.

For example, the set S = {a : kak2 = ✏} specifies that
the corruption should be on a hypersphere with a radius of ✏
and no limit on the number of corrupted parameters.

Suppose �L(w,a;D) = L(w + a;D) � L(w;D) de-
notes the loss change. To evaluate the effect of parameter
corruption, it is most reasonable to consider the worst-case
scenario and thus, we propose the indicator as the maximum
loss change under the corruption constraints. The optimal
parameter corruption is defined accordingly.
Definition 2 (Indicator and Optimal Parameter Corruption).
The indicator �maxL(w, S,D) and the optimal parameter

corruption a⇤ are defined as:

�maxL(w, S,D) = max
a2S

�L(w,a,D), (2)

a⇤ = argmax
a2S

�L(w,a,D). (3)

Let g denote @L(w;D)/@w and H denote the Hessian ma-
trix; suppose kgk2 = G > 0. Using the second-order Taylor
expansion, we estimate the loss change and the indicator:

�L(w,a;D) = aTg+
1

2
aT

Ha+o(✏2) = f(a)+o(✏). (4)

*Sun, et al. 2021
*Foret, et al. 2021
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Figure 2: In this illustration of the loss function, tradi-
tional optimizer prefers B with the lower loss rather than
A, because B has the lower loss. However, parameters at
point B are more vulnerable to parameter corruption, as
maxx2I0(f(x)�f(x0)) < maxx2I1(f(x)�f(x1)). Based
on our experiments, we argue that parameters that are resis-
tant to corruption, e.g., at point A, can embody potentially
better robustness and generalization.

rameters at point B demonstrate critical vulnerability to pa-
rameter corruptions, while the parameters at point A are a
better choice since larger perturbations are required to ren-
der significant loss change. It is also observed in our experi-
ments that the parameters at point A have better generaliza-
tion performance as a result of corruption-resistance.

Equipped with the proposed indicator, we are able to sys-
tematically analyze the parameter robustness and probe the
vulnerability of different components in a deep neural net-
work via observing the accuracy degradation after applying
corruptions to its parameters. Furthermore, the comparisons
between the gradient-based and the random corruption for
estimating the indicator suggest that the neighborhood of the
learned parameters on the loss surface is generally flattish
except for certain steep directions. If we can push the pa-
rameters away from the steep directions, the robustness of
the parameters can be improved significantly. Therefore, we
propose to conduct adversarial corruption-resistant training
that incorporates virtual parameter corruptions to find pa-
rameters without steep directions in the neighborhood. Ex-
perimental results show that the proposed method not only
improves the parameter robustness of deep neural networks
but also elevates their accuracy in application tasks.

Our main contributions are as follows:

• To understand the parameter vulnerability of deep neural
networks, which is fundamentally related to model robust-
ness and generalization, we propose an indicator that mea-
sures the maximum loss change if small perturbations are
applied on parameters, i.e., parameter corruptions. The
proposed gradient-based estimation is far more effective
in exposing the vulnerability than random corruption tri-
als, validated by both theoretical and empirical results.

• The indicator is used to probe the vulnerability of dif-
ferent kinds of parameters with diverse structural char-
acteristics in a trained neural network. Through system-
atic analyses of representative architectures, we summa-
rize divergent vulnerability of neural network parameters,
especially bringing attention to normalization layers.

• To improve the robustness of the models with respect to

parameters, we propose to enhance the training of deep
neural networks by taking the parameter vulnerability into
account and introduce the adversarial corruption-resistant
training that can improve the accuracy and the generaliza-
tion performance of deep neural networks.

Parameter Corruption

In this section, we introduce the problem of parameter cor-
ruption and the proposed indicator. Then, we describe the
Monte-Carlo estimation and the gradient-based estimation
of the indicator backed with theoretical support.

Before delving into the specifics, we first introduce our
notations. Let N denote a neural network, w 2 Rk de-
note a k-dimensional subspace of its parameter space, and
L(w;D) denote the loss function of N on the dataset D,
regarding to the specific parameter subspace w. Taking a k-
dimensional subspace allows a more general analysis on a
specific group of parameters.

To expose the vulnerability of model parameters, we pro-
pose to adopt the approach of parameter corruption. To for-
mally analyze its effect on neural networks and eliminate
trivial corruption, we formulate the parameter corruption as
a small perturbation a 2 Rk to the parameter vector w. The
corrupted parameter vector becomes w + a. The small per-
turbation requirement is realized as a constraint set of the
parameter corruptions.
Definition 1 (Corruption Constraint). The corruption con-

straint is specified by the set

S = {a : kakp = ✏ and kak0  n}, (1)

where k · k0 denotes the number of non-zero elements in a

vector and 1  n  k denotes the maximum number of

corrupted parameters. ✏ is a small positive real number and

k · kp denotes the Lp-norm where p � 1 such that k · kp is a

valid distance in Euclidean geometry.

For example, the set S = {a : kak2 = ✏} specifies that
the corruption should be on a hypersphere with a radius of ✏
and no limit on the number of corrupted parameters.

Suppose �L(w,a;D) = L(w + a;D) � L(w;D) de-
notes the loss change. To evaluate the effect of parameter
corruption, it is most reasonable to consider the worst-case
scenario and thus, we propose the indicator as the maximum
loss change under the corruption constraints. The optimal
parameter corruption is defined accordingly.
Definition 2 (Indicator and Optimal Parameter Corruption).
The indicator �maxL(w, S,D) and the optimal parameter

corruption a⇤ are defined as:

�maxL(w, S,D) = max
a2S

�L(w,a,D), (2)

a⇤ = argmax
a2S

�L(w,a,D). (3)

Let g denote @L(w;D)/@w and H denote the Hessian ma-
trix; suppose kgk2 = G > 0. Using the second-order Taylor
expansion, we estimate the loss change and the indicator:

�L(w,a;D) = aTg+
1

2
aT

Ha+o(✏2) = f(a)+o(✏). (4)

*Sun, et al. 2021
*Foret, et al. 2021
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Fault-Injection during Training*

Bit Error Robustness for Energy-Efficient DNN Accelerators
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Figure 5: Random Bit Error Training (RANDBET). We illustrate the data-flow for RANDBET as in Alg. 1. Here, BErrp
injects random bit errors in the quantized weights v(t) = Q(w(t)), resulting in ṽ(t), while the forward pass is performed on
the de-quantized perturbed weights w̃(t)

q = Q�1(ṽ(t)), i.e., fixed-point arithmetic is not emulated. The weight update during
training is not affected by bit errors and computed in floating point.

ators (Kim et al., 2018; Koppula et al., 2019) and in work
on quantization robustness (Murthy et al., 2019; Merolla
et al., 2016; Sung et al., 2015). This yields our robust
quantization (Sec. 4.1). On top, we propose aggressive
weight clipping as regularization during training (Sec. 4.2).
Weight clipping enforces a more uniformly distributed, i.e.,
redundant, weight distribution, improving robustness. We
show that this is due to minimizing the cross-entropy loss,
enforcing large logit differences. Finally, in addition to ro-
bust quantization and weight clipping, we perform random
bit error training (RANDBET) (Sec. 4.3): in contrast to
the fixed bit error patterns in (Kim et al., 2018; Koppula
et al., 2019), we train on completely random bit errors and,
thus, generalize across chips and voltages. Generalization
is measured using average robust test error (RErr), the test
error after injecting bit errors, wrt. to our error model from
Sec. 3 as well as real, profiled bit error patterns. Robustness
against bit error rate p has to induce robustness for p0  p
(i.e., higher voltage), as well.

4.1 Robust Fixed-Point Quantization

We consider quantization-aware training (Jacob et al., 2018;
Krishnamoorthi, 2018) using a generic, deterministic fixed-
point quantization scheme commonly used in DNN acceler-
ators (Chandramoorthy et al., 2019). However, we focus on
the impact of quantization schemes on robustness against
random bit errors, mostly neglected so far (Murthy et al.,
2019; Merolla et al., 2016; Sung et al., 2015). We find
that quantization affects robustness significantly, even if
accuracy is largely unaffected.

Fixed-Point Quantization: Let f(x; w) be a DNN taking
an example x 2 [0, 1]D, e.g., an image, and weights w 2
RW as input. Quantization determines how weights are rep-
resented in memory, e.g., on SRAM. In a fixed-point quanti-
zation scheme, m bits allow to represent 2m distinct values.

A weight wi 2 [�qmax, qmax] is represented by a signed
m-bit integer vi = Q(wi) corresponding to the underlying
bits. Here, [�qmax, qmax] is the symmetric quantization range
and signed integers use two’s complement representation.
Then, Q : [�qmax, qmax] 7! {�2m�1 � 1, . . . , 2m�1 � 1} is
defined as

Q(wi) =
jwi

�

k
, Q�1(vi) = �vi, � =

qmax

2m�1 � 1
(1)

Flipping the most significant bit (MSB, i.e., sign bit) leads
to an absolute error of half the quantization range, i.e., qmax
(yellow in Fig. 4). Flipping the least significant bit (LSB)
incurs an error of �, cf. Eq. (1). Thus, the impact of bit
errors “scales with” qmax.

Global and Per-Layer Quantization: qmax can be chosen
to accommodate all weights, i.e., qmax = maxi |wi|. This is
called global quantization. However, it has become standard
to apply quantization per-layer allowing to adapt qmax to
each layer. As in PyTorch (Paszke et al., 2017), we consider
weights and biases of each layer separately. By reducing
the quantization range for each layer individually, the er-
rors incurred by bit flips are automatically minimized, cf.
Fig. 4. The per-layer, symmetric quantization is our de-
fault reference, referred to as NORMAL. However, it turns
out that it is further beneficial to consider arbitrary quanti-
zation ranges [qmin, qmax] (allowing qmin > 0). In practice,
we first map [qmin, qmax] to [�1, 1] and then quantize [�1, 1]
using Eq. (1). Overall, per-layer asymmetric quantization
has the finest granularity, i.e., lowest � and approximation
error. Nevertheless it is not the most robust quantization.

Robust Quantization: Quantization as in Eq. (1) does not
provide optimal robustness against bit errors. First, the
floor operation bwi/�c is commonly implemented as float-
to-integer conversion. Using proper rounding dwi/�c in-
stead has negligible impact on accuracy, even though ap-
proximation error improves slightly. In stark contrast, bit

*Stutz, et al. 2021

inject errors during training…

…forcing the CNN to still 
detect objects correctly
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