
Paolo Rech

Can we Rely on Self-Driving Cars?
Evaluation and Mitigation of Neutron-Induced Errors in

Convolutional Neural Networks for Autonomous Vehicles

Paolo Rech

20th January 2022

IFIP WG 10.4

Paolo Rech

Self-Driving Cars importance

2

Self-driving cars are expected to
reduce of 3 orders of magnitude
the number of accidents...

…If we are able to make them
sufficiently reliable.

Paolo Rech

CNNs Reliability

3

Paolo Rech

CNNs Reliability

92%

95%
91%
97% 89%

96%

92% 89% 90% 92%95%90%

92%

92%

92% 92% 85% 85%

3

Paolo Rech

CNNs Reliability

92%

95%
91%
97% 89%

96%

92% 89% 90% 92%95%90%

92%

92%

92% 92% 85% 85%
92% 89%

92%

92% person
92% person93% person73% person

65% person

3

Paolo Rech

CNNs Reliability

92%

95%
91%
97% 89%

96%

89% 90% 92%95%90%

92%

92% 92% 85% 85%

40% airplane
20% backpack

2% boat

3% cat

7% laptop

6% door
12% bird

13% car

6% mobile

7% radio

2% book

13% car

12% bird

6% door3% mobile

7% window

90%
85%92% person

92% person93% person73% person
65% person

5% dog

2% dog

2% book
92%

92%

3

Paolo Rech

SW Problems

woman with a bike
probability < threashold

85% car

92% car

76% car
72% traffic light

4

Paolo Rech

What about the HW?
Today’s self-driven cars

5

Paolo Rech

What about the HW?
Today’s self-driven cars

5

Paolo Rech

What about the HW?
Today’s self-driven cars

5

Paolo Rech

What about the HW?

5

Paolo Rech

What about the HW?

cat

5

Paolo Rech

Outline

- Neutrons-induced effects in computing devices

- Evaluating neutron-induced errors probabilities

- Cross layer faults propagation in CNNs

- Some (interesting) efficient solutions

- Conclusions and Future Work

6

Paolo Rech

Outline

- Neutrons-induced effects in computing devices

- Evaluating neutron-induced errors probabilities

- Cross layer faults propagation in CNNs

- Some (interesting) efficient solutions

- Conclusions and Future Work

Paolo Rech

Terrestrial Radiation Environment
Galactic cosmic rays interact with atmosphere
shower of energetic particles:
Muons, Pions, Protons, Gamma rays, Neutrons

13 n/(cm2�h) @sea level*

*JEDEC JESD89A Standard

7

Neutrons induce faults in modern computing systems

Paolo Rech

CNNs Reliability

missing objects
8

Paolo Rech

CNNs Reliability

missing objects

inexistent object

95% elephant

8

Paolo Rech

Radiation Effects - Soft Errors

• One or more bit-flips
Single Event Upset (SEU)
Multiple Bit Upset (MBU)

Soft Errors: the device is not permanently damaged,
but the particle may generate:

9

0110010010010011
1101001101001001
0010010010010010
1000100010000010

Paolo Rech

Radiation Effects - Soft Errors

• One or more bit-flips
Single Event Upset (SEU)
Multiple Bit Upset (MBU)

9

0110010010010011
1101001011001001
0010010100010010
1000100010000010

IONIZING PARTICLE

Soft Errors: the device is not permanently damaged,
but the particle may generate:

Paolo Rech

Radiation Effects - Soft Errors

• One or more bit-flips
Single Event Upset (SEU)
Multiple Bit Upset (MBU)

Soft Errors: the device is not permanently damaged,
but the particle may generate:

• Transient voltage pulse
Single Event Transient (SET) 5 + 6

IONIZING
PARTICLE

10

0110010010010011
1101001011001001
0010010100010010
1000100010000010

IONIZING PARTICLE

4

Paolo Rech 11

Silent Data Corruption vs Crash
Neutron-induced faults can also induce
Application Crash or Device Reboot

Don’t (always) blame Microsoft/Apple

Paolo Rech 12

Silent Data Corruption vs Crash

$2,700

Silent Data Corruption: the application provides
wrong answers. Silent = no flag/no indication of error.

Paolo Rech

Radiation Effects on Parallel Accelerators

SM

CUDA GPU

DRAM

Blocks Scheduler and Dispatcher

L2 Cache

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

Streaming Multiprocessor

Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

core

core core

core
…

core

core

Shared Memory / L1 Cache

core

core

Warp Scheduler

Dispatch Unit

X

coreX

13

Paolo Rech

Radiation Effects on Parallel Accelerators

SM

CUDA GPU

DRAM

Blocks Scheduler and Dispatcher

L2 Cache

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

Streaming Multiprocessor

Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

core

core core

core
…

core

core

Shared Memory / L1 Cache

core

core

Warp Scheduler

Dispatch Unit

X

core

X

core

core core

core

core

core

core

X

X

13

Paolo Rech

Radiation Effects on Parallel Accelerators

SM

CUDA GPU

DRAM

Blocks Scheduler and Dispatcher

L2 Cache

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

Streaming Multiprocessor

Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

core

core core

core
…

core

core

Shared Memory / L1 Cache

core

core

Warp Scheduler

Dispatch UnitSM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

X

X

core

X

core

core core

core

core

core

core

X

X

X

13

Paolo Rech

Cloud

Good High Very High

ARM CPU co-processor GPU FPGA/SoC

Consumer Data Center
HPC

automotive

14

One device, different reliability requirements

Reliability Requirements (*Arijit Biswas, SELSE 2018)

Paolo Rech

Cloud

Good High Very High

ARM CPU co-processor GPU FPGA/SoC

Consumer Data Center
HPC

automotive

14

One device, different reliability requirements

Reliability Requirements (*Arijit Biswas, SELSE 2018)

Paolo Rech

Cloud

Good High Very High

ARM CPU co-processor GPU FPGA/SoC

Consumer Data Center
HPC

automotive

14

One device, different reliability requirements

Reliability Requirements (*Arijit Biswas, SELSE 2018)

Dedicated and highly reliable HW has:
-high cost
-low performances
-slow time-to-market

Paolo Rech

Outline

- Neutrons-induced effects in computing devices

- Evaluating neutron-induced errors probabilities

- Cross layer faults propagation in CNNs

- Some (interesting) efficient solutions

- Conclusions and Future Work

Paolo Rech

Experiment @ChipIR

16

Paolo Rech

Experiment @ChipIR

16

Paolo Rech

Experiment @ChipIR

16

Paolo Rech

Experiment @ChipIR

AMD
16

Paolo Rech

Experiment @ChipIR

AMD
16

Paolo Rech

Self Driving Car
The new trend for automotive market is Self Driving Car!

17

Paolo Rech

Examples of observed errors

99% person 99% person Nothing’s there
Expected Tolerable

Slight modification
of detection

Critical
Missing an object

18

Paolo Rech

Examples of observed errors

99% elephant

False positive
Unnecessary stops

18

Paolo Rech

Examples of observed errors

99% elephant

False positive
Unnecessary stops

*G. Li, et at SC17

Classification Error
wrong object detects

18

Paolo Rech

Results – FIT*

19

1

10

100

1000

Tegra X1 K40 Unhardened K40 ECC Titan X
Unhardened

SDC FIT SDC Wrong Detection Crash

N
or

m
al

iz
ed

 F
IT

 [a
.u

.]

Crashes are always more probable than SDC.
(we know something happened => we can deal with it)

*F. F. dos Santos, et al. Trans. on Reliability 2019

Paolo Rech

Results – FIT*

19

1

10

100

1000

Tegra X1 K40 Unhardened K40 ECC Titan X
Unhardened

SDC FIT SDC Wrong Detection Crash

N
or

m
al

iz
ed

 F
IT

 [a
.u

.]

Not all SDCs affect detection!

*F. F. dos Santos, et al. Trans. on Reliability 2019

Paolo RechFernando Fernandes ± Thesis defense

Convolutional Neural Networks

92%

8%

39%

61%

95%

5%

75%

25%

92%

8%

84%

16%

ECC
OFF

ECC
ON

FYOLOV1 FFASTER R-CNN FRESNET

Tolerable SDC Critical SDC

156

Tolerable or Critical?

20

Paolo RechFernando Fernandes ± Thesis defense

Convolutional Neural Networks

92%

8%

39%

61%

95%

5%

75%

25%

92%

8%

84%

16%

ECC
OFF

ECC
ON

FYOLOV1 FFASTER R-CNN FRESNET

Tolerable SDC Critical SDC

156

Tolerable or Critical?

20

Paolo Rech

Outline

- Neutrons-induced effects in computing devices

- Evaluating neutron-induced errors probabilities

- Cross layer faults propagation in CNNs

- Some (interesting) efficient solutions

- Conclusions and Future Work

Paolo Rech

Faults Propagation

21

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

GPU

TPU

FPGA

Paolo Rech

Faults Propagation

21

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

-Memory has a naïve fault model: single bit flips
-Well studied for SRAM and DDR (since the 80s)
-Memory is easily protectable (ECC)

-Faults in logic have not-trivial syndrome on the output
-Largely unknown for complex devices
-No efficient protection available

Paolo Rech

Convs errors on GPUs vs TPUs

GPU

TPU
Systolic array

.

.

.

. . .

+ + + +

. . .
.
.
.

Data flow

Partial sums

Final
output

Output
accumulators

Input
buffers

Control

22

Paolo Rech

Convs errors on GPUs vs TPUs

GPU

TPU
Systolic array

.

.

.

. . .

+ + + +

. . .
.
.
.

Data flow

Partial sums

Final
output

Output
accumulators

Input
buffers

Control

- How many elements in the convolution
output matrix are corrupted?

- How are they distributed?

*F. F. dos Santos, et al., Trans. on Reliability 2019
*R. L. Rech, et al., DATE 2022

22

Paolo Rech

Convs errors on GPUs vs TPUs
12% line

45% square

43% single

GPU

TPU

22

Paolo Rech

Convs errors on GPUs vs TPUs
12% line

45% square

19% random

43% single

64% single

GPU

TPU
6% line

11% square

22

Paolo Rech

Convs errors on GPUs vs TPUs
12% line

45% square

19% random

43% single

64% single

GPU

TPU
6% line

11% square

How different is the corrupted value from the
expected one?

*F. F. dos Santos, et al., Trans. on Reliability 2019
*R. L. Rech, et al., DATE 2022

22

Paolo Rech

Convs errors on GPUs vs TPUs

GPU

TPU

relative error
0.0%

0.2%

0.4%

<10-8 10-6 10-4 10-2 10 >102

wide distribution of
corrupted values

22

Paolo Rech

Convs errors on GPUs vs TPUs

GPU

TPU

relative error
0.0%

0.2%

0.4%

<10-8 10-6 10-4 10-2 10 >102

wide distribution of
corrupted values

INT8

91% of errors are +/- 1

80
79 81

22

Paolo Rech

Faults Propagation

23

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

we do not
know what

happens here

-Realistic error rate
-Realistic fault model
-All HW is exposed to neutrons

Paolo Rech

Faults Propagation

23

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip
-Unrealistic fault ra

te

-Synthetic fault m
odel

-Limited injection space

Paolo Rech

Faults Propagation

23

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

Characterization of the
effects on micro-instructions

fault
model

FlexGrip+ GPU model (F. F. dos Santos, DSN 2021)
GeFIN ARM model (P. Bodmann, Trans. Comp. 2021)

Paolo Rech

Faults Propagation

23

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

fault
model

FlexGrip+ GPU model (F. F. dos Santos, DSN 2021)
GeFIN ARM model (P. Bodmann, Trans. Comp. 2021)

Paolo Rech

Faults Propagation

23

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

fault
model

Beam experiments
on micro-instructions
(F. F. dos Santos, IPDPS 2021)

FlexGrip+ GPU model (F. F. dos Santos, DSN 2021)
GeFIN ARM model (P. Bodmann, Trans. Comp. 2021)

Paolo Rech

Faults Propagation

23

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

FlexGrip+ GPU model (Esteban + Matteo)
GeFIN ARM model (Dimitris @UAthens)

fault
model

Beam experiments
on micro-instructions
(F. F. dos Santos, IPDPS 2021)

Paolo Rech

Outline

- Neutrons-induced effects in computing devices

- Evaluating neutron-induced errors probabilities

- Cross layer faults propagation in CNNs

- Some (interesting) efficient solutions

- Conclusions and Future Work

Paolo Rech

Self-Driven Cars
Naïve (expensive) solutions in today’s self-driven cars

2x

4x

Replication is very costly!
And it might not work always!

We need to find smarter ways to detect
neutron-induced errors.

24

Paolo Rech

Algorithm-Based Fault Tolerance
70% of CNN operations are GEMM-related
10% are the other kernels
20% CPUxGPU operations.

Proposed hardening: ABFT for Matrix multiplication*

26

xA B

checksum

ch
ec

ks
um

∑

∑ M=
col-check

ro
w

-c
he

ck

col-sum

ro
w

-s
um

X

X

X

*Freivalds ’79

* Huang and Abraham 1984
Rech et al., TNS 2013
S. Hari et al., TDSC 2021

Paolo Rech

ABFT works!
N

or
m

al
iz

ed
 F

IT
 [a

.u
.]

1

10

100

1000

Tegra X1 K40
Unhardened

K40 ABFT K40 ECC Titan X
Unhardened

Titan X ABFT

SDC FIT SDC Wrong Detection Crash

27

Paolo Rech

N
or

m
al

iz
ed

 F
IT

 [a
.u

.]

1

10

100

1000

Tegra X1 K40
Unhardened

K40 ABFT K40 ECC Titan X
Unhardened

Titan X ABFT

SDC FIT SDC Wrong Detection Crash

ABFT works!
Our ABFT corrects 87% of Critical SDC

27

Paolo Rech

Max-Pool

Max-Pool layer propagates just
the element with the highest value.

28

Paolo Rech

Max-Pool

4,5E+6

If the value of the element to propagate is
not reasonable (10x max value of a fault-free
execution) we detect the error and discard the frame.
4 additional variables, detection in O(1)

29

Sma
rt

Paolo Rech

Max-Pool

4,5E+6

If the value of the element to propagate is
not reasonable (10x max value of a fault-free
execution) we detect the error and discard the frame.
4 additional variables, detection in O(1)

29

Sma
rt

*F. F. dos Santos, et al. Trans. on Reliability 2019
**Range Restriction, Z. Chen, et al. DSN2021

Paolo Rech

4,5E+6

29

If the value of the element to propagate is
not reasonable (10x max value of a fault-free
execution) we detect the error and discard the frame.
4 additional variables, detection in O(1)

Smart-pool detects more than
90% of critical SDCs

Max-Pool
Sma

rt

Paolo Rech
Fernando Fernandes ± Thesis defense

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 e

rr
or

s

Critical SDC Tolerable SDC

ABFT

Algorithm Based Fault Tolerance

164

Smart
Pooling

ECC

ECC vs ABFT vs Smart Pooling*

30

99% person

99% elephant

Nothing’s there

*F. F. dos Santos, et al. Trans. on Reliability 2019

Paolo Rech

Space-Time Correlation

31

CNN processes each frame independently from others.
We process frames correlating subsequent frames.

Frames are highly correlated. So should detection.

Paolo Rech

Space-Time Correlation*

32

If similar frames produce uncorrelated detection
probably an error happened

With space-time correlation
we can detect up to
92% of critical errors

*L. K. Draghetti, et al., IOLTS 2019

Paolo Rech

Mixed-Precision Hardening
GPUs have dedicated functional units to execute
FP64, FP32, FP16 operations and Tensor Core

When a FP64 application is
executed, the other units are idle.

used idle

33

Paolo Rech

Mixed-Precision Hardening
GPUs have dedicated functional units to execute
FP64, FP32, FP16 operations and Tensor Core

When a FP64 application is
executed, the other units are idle.

Our idea is to run the same
code, in parallel, in the available
FP32 cores.

Reduced-Precision RP-DWC*

DWC

33

used

*F. F. dos Santos, et al. Trans. Comp. 2021

Paolo Rech

Mixed-Precision Hardening

34

Paolo RechFernando Fernandes ± Thesis defense

RPDWC Benchmarks

72%

95%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

120%

De
te

ct
io

n
%

O
ve

rh
ea

d
%

RPDWC DWC RPDWC DWC RPDWC DWC RPDWC DWC RPDWC DWC

BlackScholes FWTMXM Lava Average

Energy Time Detection

185

Mixed-Precision Hardening

35

Paolo Rech

Mixed-Precision Hardening

Fernando Fernandes ± Thesis defense

RPDWC Benchmarks

19%

75%

45%

100%

72%

95%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

120%

De
te

ct
io

n
%

O
ve

rh
ea

d
%

RPDWC DWC RPDWC DWC RPDWC DWC RPDWC DWC RPDWC DWC

BlackScholes FWTLava Average

Energy Time Detection

188

MXM

35

Paolo Rech

Mixed-Precision Hardening
Detection goes from 57% to 76%. As expected, lower
than traditional DWC (~80-90%)

35

52 bits

23 bits

11 bits

8 bits

Double (64 bit)

Float (32 bit)

Undetected errors

Undetected errors fall in the less significant digits

Paolo Rech

Outline

- Neutrons-induced effects in computing devices

- Evaluating neutron-induced errors probabilities

- Cross layer faults propagation in CNNs

- Some (interesting) efficient solutions

- Conclusions and Future Work

Paolo Rech

Can We Rely on Self-Driving Cars?

36

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

- not all faults reach the software level
- the fault model is not naïve in modern architectures
- the corrupted value(s) depend(s) on several variables

Paolo Rech

Can We Rely on Self-Driving Cars?

36

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

99% person

Nothing’s there

- not all errors are critical for CNNs
- SW/HW solutions can be efficient
- realistic fault model is necessary to
design effective hardening

Paolo Rech

Can We Rely on Self-Driving Cars?

36

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

99% person

Nothing’s there

Paolo Rech

Can We Rely on Self-Driving Cars?

36

FF

Beam
experiment

Circuit/Gate
simulation

RTL
fault injection

0 1

Memory
Caches/Reg

Scheduler
Control Units

ALU
pipelines

0111000101

syndrome

operation, input

add r2 r3
mul r4 r2

…
…

sta r8

SW fault injection

more realistic more efficient

-Masked
-SDC
-DUE

fault source fault effect

Microarch.
fault injection

0 1

bit flip

99% person

Nothing’s there

How many errors modify
the vehicle behavior?

Paolo Rech

Conclusions and Future Work

-Reliability is a serious issue for safety-critical
applications such as autonomous vehicles

-Self-driving cars will be adopted in large-scale
only when sufficiently reliable

-We need to focus on critical errors, critical
variables, critical resources to have efficient
hardening

-Future work: reliability-aware training

37

Paolo Rech

CNN Robustness and Reliability

80X X

X

30

Pig

Maintain high accuracy
even if the input is “noisy”

Avoid adversarial attacks
to “fool” the CNN

38

Paolo Rech

Sharpness-Aware CNN*

Figure 2: In this illustration of the loss function, tradi-
tional optimizer prefers B with the lower loss rather than
A, because B has the lower loss. However, parameters at
point B are more vulnerable to parameter corruption, as
maxx2I0(f(x)�f(x0)) < maxx2I1(f(x)�f(x1)). Based
on our experiments, we argue that parameters that are resis-
tant to corruption, e.g., at point A, can embody potentially
better robustness and generalization.

rameters at point B demonstrate critical vulnerability to pa-
rameter corruptions, while the parameters at point A are a
better choice since larger perturbations are required to ren-
der significant loss change. It is also observed in our experi-
ments that the parameters at point A have better generaliza-
tion performance as a result of corruption-resistance.

Equipped with the proposed indicator, we are able to sys-
tematically analyze the parameter robustness and probe the
vulnerability of different components in a deep neural net-
work via observing the accuracy degradation after applying
corruptions to its parameters. Furthermore, the comparisons
between the gradient-based and the random corruption for
estimating the indicator suggest that the neighborhood of the
learned parameters on the loss surface is generally flattish
except for certain steep directions. If we can push the pa-
rameters away from the steep directions, the robustness of
the parameters can be improved significantly. Therefore, we
propose to conduct adversarial corruption-resistant training
that incorporates virtual parameter corruptions to find pa-
rameters without steep directions in the neighborhood. Ex-
perimental results show that the proposed method not only
improves the parameter robustness of deep neural networks
but also elevates their accuracy in application tasks.

Our main contributions are as follows:

• To understand the parameter vulnerability of deep neural
networks, which is fundamentally related to model robust-
ness and generalization, we propose an indicator that mea-
sures the maximum loss change if small perturbations are
applied on parameters, i.e., parameter corruptions. The
proposed gradient-based estimation is far more effective
in exposing the vulnerability than random corruption tri-
als, validated by both theoretical and empirical results.

• The indicator is used to probe the vulnerability of dif-
ferent kinds of parameters with diverse structural char-
acteristics in a trained neural network. Through system-
atic analyses of representative architectures, we summa-
rize divergent vulnerability of neural network parameters,
especially bringing attention to normalization layers.

• To improve the robustness of the models with respect to

parameters, we propose to enhance the training of deep
neural networks by taking the parameter vulnerability into
account and introduce the adversarial corruption-resistant
training that can improve the accuracy and the generaliza-
tion performance of deep neural networks.

Parameter Corruption

In this section, we introduce the problem of parameter cor-
ruption and the proposed indicator. Then, we describe the
Monte-Carlo estimation and the gradient-based estimation
of the indicator backed with theoretical support.

Before delving into the specifics, we first introduce our
notations. Let N denote a neural network, w 2 Rk de-
note a k-dimensional subspace of its parameter space, and
L(w;D) denote the loss function of N on the dataset D,
regarding to the specific parameter subspace w. Taking a k-
dimensional subspace allows a more general analysis on a
specific group of parameters.

To expose the vulnerability of model parameters, we pro-
pose to adopt the approach of parameter corruption. To for-
mally analyze its effect on neural networks and eliminate
trivial corruption, we formulate the parameter corruption as
a small perturbation a 2 Rk to the parameter vector w. The
corrupted parameter vector becomes w + a. The small per-
turbation requirement is realized as a constraint set of the
parameter corruptions.
Definition 1 (Corruption Constraint). The corruption con-

straint is specified by the set

S = {a : kakp = ✏ and kak0 n}, (1)

where k · k0 denotes the number of non-zero elements in a

vector and 1 n k denotes the maximum number of

corrupted parameters. ✏ is a small positive real number and

k · kp denotes the Lp-norm where p � 1 such that k · kp is a

valid distance in Euclidean geometry.

For example, the set S = {a : kak2 = ✏} specifies that
the corruption should be on a hypersphere with a radius of ✏
and no limit on the number of corrupted parameters.

Suppose �L(w,a;D) = L(w + a;D) � L(w;D) de-
notes the loss change. To evaluate the effect of parameter
corruption, it is most reasonable to consider the worst-case
scenario and thus, we propose the indicator as the maximum
loss change under the corruption constraints. The optimal
parameter corruption is defined accordingly.
Definition 2 (Indicator and Optimal Parameter Corruption).
The indicator �maxL(w, S,D) and the optimal parameter

corruption a⇤ are defined as:

�maxL(w, S,D) = max
a2S

�L(w,a,D), (2)

a⇤ = argmax
a2S

�L(w,a,D). (3)

Let g denote @L(w;D)/@w and H denote the Hessian ma-
trix; suppose kgk2 = G > 0. Using the second-order Taylor
expansion, we estimate the loss change and the indicator:

�L(w,a;D) = aTg+
1

2
aT

Ha+o(✏2) = f(a)+o(✏). (4)

*Sun, et al. 2021
*Foret, et al. 2021

er
ro

r

39

This is more accurate
(lower error)

Paolo Rech

Sharpness-Aware CNN*

Figure 2: In this illustration of the loss function, tradi-
tional optimizer prefers B with the lower loss rather than
A, because B has the lower loss. However, parameters at
point B are more vulnerable to parameter corruption, as
maxx2I0(f(x)�f(x0)) < maxx2I1(f(x)�f(x1)). Based
on our experiments, we argue that parameters that are resis-
tant to corruption, e.g., at point A, can embody potentially
better robustness and generalization.

rameters at point B demonstrate critical vulnerability to pa-
rameter corruptions, while the parameters at point A are a
better choice since larger perturbations are required to ren-
der significant loss change. It is also observed in our experi-
ments that the parameters at point A have better generaliza-
tion performance as a result of corruption-resistance.

Equipped with the proposed indicator, we are able to sys-
tematically analyze the parameter robustness and probe the
vulnerability of different components in a deep neural net-
work via observing the accuracy degradation after applying
corruptions to its parameters. Furthermore, the comparisons
between the gradient-based and the random corruption for
estimating the indicator suggest that the neighborhood of the
learned parameters on the loss surface is generally flattish
except for certain steep directions. If we can push the pa-
rameters away from the steep directions, the robustness of
the parameters can be improved significantly. Therefore, we
propose to conduct adversarial corruption-resistant training
that incorporates virtual parameter corruptions to find pa-
rameters without steep directions in the neighborhood. Ex-
perimental results show that the proposed method not only
improves the parameter robustness of deep neural networks
but also elevates their accuracy in application tasks.

Our main contributions are as follows:

• To understand the parameter vulnerability of deep neural
networks, which is fundamentally related to model robust-
ness and generalization, we propose an indicator that mea-
sures the maximum loss change if small perturbations are
applied on parameters, i.e., parameter corruptions. The
proposed gradient-based estimation is far more effective
in exposing the vulnerability than random corruption tri-
als, validated by both theoretical and empirical results.

• The indicator is used to probe the vulnerability of dif-
ferent kinds of parameters with diverse structural char-
acteristics in a trained neural network. Through system-
atic analyses of representative architectures, we summa-
rize divergent vulnerability of neural network parameters,
especially bringing attention to normalization layers.

• To improve the robustness of the models with respect to

parameters, we propose to enhance the training of deep
neural networks by taking the parameter vulnerability into
account and introduce the adversarial corruption-resistant
training that can improve the accuracy and the generaliza-
tion performance of deep neural networks.

Parameter Corruption

In this section, we introduce the problem of parameter cor-
ruption and the proposed indicator. Then, we describe the
Monte-Carlo estimation and the gradient-based estimation
of the indicator backed with theoretical support.

Before delving into the specifics, we first introduce our
notations. Let N denote a neural network, w 2 Rk de-
note a k-dimensional subspace of its parameter space, and
L(w;D) denote the loss function of N on the dataset D,
regarding to the specific parameter subspace w. Taking a k-
dimensional subspace allows a more general analysis on a
specific group of parameters.

To expose the vulnerability of model parameters, we pro-
pose to adopt the approach of parameter corruption. To for-
mally analyze its effect on neural networks and eliminate
trivial corruption, we formulate the parameter corruption as
a small perturbation a 2 Rk to the parameter vector w. The
corrupted parameter vector becomes w + a. The small per-
turbation requirement is realized as a constraint set of the
parameter corruptions.
Definition 1 (Corruption Constraint). The corruption con-

straint is specified by the set

S = {a : kakp = ✏ and kak0 n}, (1)

where k · k0 denotes the number of non-zero elements in a

vector and 1 n k denotes the maximum number of

corrupted parameters. ✏ is a small positive real number and

k · kp denotes the Lp-norm where p � 1 such that k · kp is a

valid distance in Euclidean geometry.

For example, the set S = {a : kak2 = ✏} specifies that
the corruption should be on a hypersphere with a radius of ✏
and no limit on the number of corrupted parameters.

Suppose �L(w,a;D) = L(w + a;D) � L(w;D) de-
notes the loss change. To evaluate the effect of parameter
corruption, it is most reasonable to consider the worst-case
scenario and thus, we propose the indicator as the maximum
loss change under the corruption constraints. The optimal
parameter corruption is defined accordingly.
Definition 2 (Indicator and Optimal Parameter Corruption).
The indicator �maxL(w, S,D) and the optimal parameter

corruption a⇤ are defined as:

�maxL(w, S,D) = max
a2S

�L(w,a,D), (2)

a⇤ = argmax
a2S

�L(w,a,D). (3)

Let g denote @L(w;D)/@w and H denote the Hessian ma-
trix; suppose kgk2 = G > 0. Using the second-order Taylor
expansion, we estimate the loss change and the indicator:

�L(w,a;D) = aTg+
1

2
aT

Ha+o(✏2) = f(a)+o(✏). (4)

*Sun, et al. 2021
*Foret, et al. 2021

which is more reliable?

er
ro

r

39

This is more accurate
(lower error)

Paolo Rech

Sharpness-Aware CNN
er

ro
r

er
ro

r

traditional training sharpness-aware training

*Sun, et al. 2021
*Foret, et al. 2021

40

Paolo Rech

Sharpness-Aware CNN
er

ro
r

er
ro

r
small variations
lead to high error
(mis-detection)

traditional training sharpness-aware training

small variations
can still have an
acceptable error

41

Paolo Rech

Fault-Injection during Training*

Bit Error Robustness for Energy-Efficient DNN Accelerators

ݒሺ௧ሻ ൌ ݒሺݎݎܧܤ ௧ ሻ ݓ
ሺ௧ሻ ൌ ܳିଵሺݒሺ௧ሻሻݒሺ௧ሻ ൌ ܳ ሺ௧ሻݓ

Inject errorsQuantize

Dequantize

ȟሺ௧ሻ ൌ ௪

ܮ ݂ ݓǡݔ
ሺ௧ሻ ǡ ݕ

Forward and backward pass for
unperturbed & perturbed models

weight update with average of
gradients

ሺ௧ାଵሻݓ ሺ௧ሻݓ = െ ሺȟሺ௧ሻߛ ෩ȟሺ௧ሻሻ

෩ȟሺ௧ሻ ൌ ௪

ܮ ݂ ǡݔ ݓ
௧ ǡ ݕ

ݓ
௧ ൌ ܳିଵሺ ݒሺ௧ሻሻ

ሺ௧ሻݓ

Figure 5: Random Bit Error Training (RANDBET). We illustrate the data-flow for RANDBET as in Alg. 1. Here, BErrp
injects random bit errors in the quantized weights v(t) = Q(w(t)), resulting in ṽ(t), while the forward pass is performed on
the de-quantized perturbed weights w̃(t)

q = Q�1(ṽ(t)), i.e., fixed-point arithmetic is not emulated. The weight update during
training is not affected by bit errors and computed in floating point.

ators (Kim et al., 2018; Koppula et al., 2019) and in work
on quantization robustness (Murthy et al., 2019; Merolla
et al., 2016; Sung et al., 2015). This yields our robust
quantization (Sec. 4.1). On top, we propose aggressive
weight clipping as regularization during training (Sec. 4.2).
Weight clipping enforces a more uniformly distributed, i.e.,
redundant, weight distribution, improving robustness. We
show that this is due to minimizing the cross-entropy loss,
enforcing large logit differences. Finally, in addition to ro-
bust quantization and weight clipping, we perform random
bit error training (RANDBET) (Sec. 4.3): in contrast to
the fixed bit error patterns in (Kim et al., 2018; Koppula
et al., 2019), we train on completely random bit errors and,
thus, generalize across chips and voltages. Generalization
is measured using average robust test error (RErr), the test
error after injecting bit errors, wrt. to our error model from
Sec. 3 as well as real, profiled bit error patterns. Robustness
against bit error rate p has to induce robustness for p0 p
(i.e., higher voltage), as well.

4.1 Robust Fixed-Point Quantization

We consider quantization-aware training (Jacob et al., 2018;
Krishnamoorthi, 2018) using a generic, deterministic fixed-
point quantization scheme commonly used in DNN acceler-
ators (Chandramoorthy et al., 2019). However, we focus on
the impact of quantization schemes on robustness against
random bit errors, mostly neglected so far (Murthy et al.,
2019; Merolla et al., 2016; Sung et al., 2015). We find
that quantization affects robustness significantly, even if
accuracy is largely unaffected.

Fixed-Point Quantization: Let f(x; w) be a DNN taking
an example x 2 [0, 1]D, e.g., an image, and weights w 2
RW as input. Quantization determines how weights are rep-
resented in memory, e.g., on SRAM. In a fixed-point quanti-
zation scheme, m bits allow to represent 2m distinct values.

A weight wi 2 [�qmax, qmax] is represented by a signed
m-bit integer vi = Q(wi) corresponding to the underlying
bits. Here, [�qmax, qmax] is the symmetric quantization range
and signed integers use two’s complement representation.
Then, Q : [�qmax, qmax] 7! {�2m�1 � 1, . . . , 2m�1 � 1} is
defined as

Q(wi) =
jwi

�

k
, Q�1(vi) = �vi, � =

qmax

2m�1 � 1
(1)

Flipping the most significant bit (MSB, i.e., sign bit) leads
to an absolute error of half the quantization range, i.e., qmax
(yellow in Fig. 4). Flipping the least significant bit (LSB)
incurs an error of �, cf. Eq. (1). Thus, the impact of bit
errors “scales with” qmax.

Global and Per-Layer Quantization: qmax can be chosen
to accommodate all weights, i.e., qmax = maxi |wi|. This is
called global quantization. However, it has become standard
to apply quantization per-layer allowing to adapt qmax to
each layer. As in PyTorch (Paszke et al., 2017), we consider
weights and biases of each layer separately. By reducing
the quantization range for each layer individually, the er-
rors incurred by bit flips are automatically minimized, cf.
Fig. 4. The per-layer, symmetric quantization is our de-
fault reference, referred to as NORMAL. However, it turns
out that it is further beneficial to consider arbitrary quanti-
zation ranges [qmin, qmax] (allowing qmin > 0). In practice,
we first map [qmin, qmax] to [�1, 1] and then quantize [�1, 1]
using Eq. (1). Overall, per-layer asymmetric quantization
has the finest granularity, i.e., lowest � and approximation
error. Nevertheless it is not the most robust quantization.

Robust Quantization: Quantization as in Eq. (1) does not
provide optimal robustness against bit errors. First, the
floor operation bwi/�c is commonly implemented as float-
to-integer conversion. Using proper rounding dwi/�c in-
stead has negligible impact on accuracy, even though ap-
proximation error improves slightly. In stark contrast, bit

*Stutz, et al. 2021

inject errors during training…

…forcing the CNN to still
detect objects correctly

42

Paolo Rech

Acknowledgments
Caio Lunardi
Daniel Oliveira
Fernando Santos
Lucas Klein
Pedro Pimenta
Philippe Navaux
Luigi Carro

Chris Frost
Carlo Cazzaniga
Philip King
ISIS User Office

Heather Quinn
Elizabeth Auden
Thomas Fairbanks
Nathan DeBardeleben
Sean Blanchard
Steve Wender
Gus Sinnis

Timothy Tsai
Siva Hari
Michael Sullivan
Steve Keckler

Matteo Sonza Reorda
Luca Sterpone
DAUIN

Pete Harrold
Balaji Venu
Reiley Jeyapaul

