
Software Dependability Modeling
with A Data-Driven AI Paradigm

Michael R. Lyu
Department of Computer and Engineering
The Chinese University of Hong Kong
January 20, 2022

IFIP WG 10.4 Winter Meeting

Background

• Modern software systems are serving many aspects of our life

2

...

...

Search
Engine

Cloud
Service

Operating
Systems

Office
Software

Most of these software systems are expected to be available on a 24 × 7 basis.

Software dependability modeling

• Dependability definition

The trustworthiness of a computer system such that
reliance can justifiably be placed on the service it delivers

to its users.

3

Software dependability modeling

• Dependability modeling

4

Dependability attributes

describe quantitatively

Analytical models

Software dependability modeling

• The life of a system is perceived by its users as:
• Correct service
• Incorrect service

• The basic approach
• Model past failure data to predict future behavior

5

Correct-incorrect service
alternation quantification

Reliability to be defined as
a measure of dependability

1 Failures per time period 2 Time between failures

enables

Software Reliability Engineering

6

Present

Present

Objective

Additional Time

Execution Time t

Total Failures

Failure
Intensity

Fault
Avoidance

Fault
Removal

Fault
Tolerance

Fault
Prediction

Service-oriented systems

Composed by distributed Web services

7

Hotel Web
Services

Airline Web
Services

Credit Card
Web

Services

Travel Agency Web Site 1

Travel Agency Web Site 2

Reliability prediction for service-oriented systems

• It is difficult to model the reliability of service-oriented systems
• Reliability of the system is highly dependent on the invoked Web

services
• Web services are provided by third-party organizations
• The Internet environment is unpredictable

8

1

1
t1

t5

t2 t6
t3 t4

GetWeather

Service Candidates

Service-Oriented System

Internet

Target: determine the optimal Web
service from a set of functionally
equivalent candidates.

Reliability prediction of Web services

9

• Key idea: Using past usage
data to find similar users and
Web services to predict the
reliability of a given service.

Service user 1 in Asia

Unreliable

Web service
in US

Service user 2 in US

Reliable

Service-Oriented System
?

[ICSE’10, ACM SIGSOFT Distinguished Paper Award]

Reliability is extended to Quality-of-
Service (QoS)

Zheng and Lyu, “Collaborative Reliability
Prediction of Service-Oriented Systems”.

Meaning of dependability modeling

10

An airplane typically has nine nines of reliability,
i.e., 99.9999999%.

Only one crash every 3,000 weeks!

Self-driving cars have a better reliability figure
than human drivers. Yet, we still cannot fully use
them.

A single reliability figure is losing its practical
significance…

Dependability modeling: new challenges

11

Modern software systems Traditional dependability
modeling

pose

Dependability modeling: new challenges

• Complex modern software system architecture

12

• Microservices architectures in clouds
• Complicated service dependencies

• Load balancing
• Fault tolerance
• Self-healing ability

Dependability modeling: new challenges

• More subtle software failures
• Gray failures

• Transient failures

• Failure cascading effects

13

Multi-location

failure failure failure failure failure failure

Multi-source

Network

VMStorage

SQL failure

failure
failure

failure

Multi-layer

Different from fail-stop failures, the manifestations of gray failures
are fairly subtle and thus defy fast and definitive detection.

Transient failures disappear quickly and thus are hard to detect,
e.g., temporary timeout or unavailability of a service.

Dependability modeling evolution

14

Data-driven software dependability modeling

Black-box to white-box

Model-centric to data-centric

Macro-level to micro-level

Static analysis to dynamic analysis

15

BLACKBOX

Data-driven software dependability modeling

Black-box to white-box

Model-centric to data-centric

Macro-level to micro-level

Static analysis to dynamic analysis

16

BLACKBOX

Black-box dependability modeling

• Traditional software systems (standalone, shrink-wrapped)

17

Homogeneity Low complexity Stable failure patterns

 Easy data collection

 Single point of failure

 Simple functionalities

 Easy failure patterns
 Infrequent software updates
 The learned models remain

valid

Dependability modeling

White-box dependability modeling

• Modern software systems (distributed systems, clouds)

18

Heterogeneous scale High complexity Unstable failure patterns

 Hard to collect comprehensive
failure data

 Non single point of failure

 Component dependencies

 Complex failure patterns

 Frequent software updates

 Concept drifts

https://arstechnica.com/gadgets/2020/10/sourcegraph-devs-are-managing-100x-more-code-now-than-they-did-in-2010/

Services are distributed worldwide to
serve a large number of customers.

More than half of the developers report
that they manage over 100 times more
code than they did in 2010!

Vscode, in one month, 64 authors pushed
1,203 commits. 37,546 line of code is inserted
and 20,551 line of code is removed.

https://azure.microsoft.com/en-us/global-infrastructure/global-network/

Open the black box of software systems
for dependability modeling!

Cloud system architecture

On-call
Engineer

Incident
Ticket

Infrastructure Layer
Compute Networking Storage

Virtual Machine Physical Machine

Platform Layer
Container Orchestration Database

Meter
Data

Alert

Application Layer
Microservice Application Function

Users

Log

Topology

Knowledge graph construction for cloud system

20

The multi-layer architecture of a cloud
system:
• Infrastructure layer
• Instance layer
• Microservice layer
• Cloud service layer

An excerpt of cloud knowledge graph:
• Physical machine connections
• Network communications
• Placement relationships
• Microservices dependencies

Knowledge graph for cloud system failure
detection

• Target
• Prompt failure detection for cloud

systems
• Method

• Heterogeneous graph representation
learning

• Detect abnormal state change for nodes
based on their feature vectors

21

Key direction: to examine the system internal structure and capture
the details of the system failure mechanism with a KG.

Data-driven software dependability modeling

Black-box to white-box

Model-centric to data-centric

Macro-level to micro-level

Static analysis to dynamic analysis

22

BLACKBOX

Model-centric dependability modeling

23

Distributional
model selection

Analytical models assuming statistical distributions
• Exponential
• Weibull
• …

Failure intensity function for
Musa’s basic execution model

Program hazard rate
function for Weibull

Assumptions behind model-centric dependability modeling
• Simple and predictable software behaviors
• Failure data follow specific distributions
• No extensive software changes

Assumptions

Data-centric dependability model

• Incorrect assumptions on data distribution
• Failure data alone is insufficient

• Failures per time period/time between failures too high level
• Other monitoring data characterize the system better

24

Data-centric dependability model

25

Log Meter Data Topology Alert Incident Ticket

Failure
Prediction

Root Cause
Analysis

Failure
Diagnosis

Anomaly
Detection

Fault
Prediction

Fault
Removal

Fault
Tolerance

Data-centric dependability model

26

Log Meter Data Topology Alert Incident Ticket

Fault
Avoidance

Root Cause
Analysis

Software reliability engineering tasks

27

Anomaly
Detection

Failure
Diagnosis

Failure
Prediction

Log Meter Data Topology Alert Incident Ticket

Log-based problem identification

• Impactful system problems:
• Can lead to the degradation

of service KPI.
• Target:

• Identify clusters that are
highly correlated with service
KPI’s changes.

• Method:
• Model the relation between

cluster sizes and KPI values

28He et al., “Identifying impactful service system problems via log analysis,” FSE 2018.

Log-based problem identification

• Evaluation on real Microsoft Azure data

29He et al., “Identifying impactful service system problems via log analysis,” FSE 2018.

Semantic log parsing for log analysis

• Semantics in log parsing
• Many parameters in a log message

have technical meaning, which provide
extra information for log analysis

• Target
• Identify meaningful tokens and the

corresponding categories

• Method
• Iteratively update the concept-instance

knowledge base, based on which to
identify new instances

30

Semantic log parsing for log analysis

• Experimental results

31

Data-driven software dependability modeling

Black-box to white-box

Model-centric to data-centric

Macro-level to micro-level

Static analysis to dynamic analysis

32

BLACKBOX

Macro-level dependability modeling

• Macro perspective is insufficient

• Micro perspective
• Profile software reliability from multiple aspects
• Dynamic interactions in microservices
• Automated data collection process

33

Atomic
S21 S21

S21S2

 Atomic systems
 Oversimplified interactions

for systems with components

 A single failure number
for behavior prediction

 Too course-grained for
dependability modeling

 Manual failure data
collection

Micro-level dependability modeling

• Profile software reliability from multiple facets

34

Anomaly

 Abnormal runtime status

 Early signal for failures

 Fine-grained information

 Rendered by monitors

 Detailed failure description

 Contain human knowledge

Incident

 Failure statistics over a period

 Derive system vulnerability

Failure report

Micro-level dependability modeling

35

Monolith Microservices

• Dynamic interactions in microservices
• Loosely-coupled and collaborating microservices
• Dependencies are hard to capture
• Interactions are always changing

vs

The criticality of service dependencies

5 out of 13 AWS outages are related to service dependency!
36

https://aws.amazon.com/premiumsupport/technology/pes/

Cascading failure

https://aws.amazon.com/premiumsupport/technology/pes/

Prediction of aggregated intensity of dependency

37

A trace log with 6 spans.

Yang et al., “AID: Efficient Prediction of Aggregated Intensity of Dependency in Large-scale Cloud Systems”, ASE 2021

Prediction of aggregated intensity of dependency

Method
• Select the candidate invocation pairs

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
• Three aspects of indicators of service status

• Number of Invocations
• Durations of Invocations
• Error of Invocations

38
Yang et al., “AID: Efficient Prediction of Aggregated Intensity of Dependency in Large-scale Cloud Systems”, ASE 2021

Prediction of aggregated intensity of dependency

Method
• Select the candidate invocation pairs

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
• Three aspects of indicators of service status

• Number of Invocations
• Durations of Invocations
• Error of Invocations

39
Yang et al., “AID: Efficient Prediction of Aggregated Intensity of Dependency in Large-scale Cloud Systems”, ASE 2021

Data-driven software dependability modeling

Black-box to white-box

Model-centric to data-centric

Macro-level to micro-level

Static analysis to dynamic analysis

40

BLACKBOX

Static analysis-based dependability modeling

41

Highly rely on historical failure data
• The software is assumed to be mature enough
• Model selection
• Model training

Poor performance if the software changes considerably
• New capabilities exercised
• Different testing methodology/environment

employed

Dynamic analysis-based dependability modeling

• Consider both historical and on-going data
• Models have online learning capabilities

• Online machine learning
• Zero-shot learning
• Transfer learning
• …

42

Root Cause
Analysis

Anomaly
Detection

Failure
Diagnosis

Failure
Prediction

Adaptive KPI anomaly detection

• Target
• KPI anomaly detection with online adaptability

• Method
• Identify abnormal KPI patterns based on historical

occurrences
• Add new patterns based on the similarity to known

patterns
• Human knowledge can be incorporated

43
Chen et al., “Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching”, ICSE 2022

Summary and Conclusion

• Traditional dependability modeling is losing its practical
significance and relevance

• Modern software systems make dependability modeling
more challenging

• Data-driven dependability modeling with AI
• From black-box to white-box
• From model-centric to data-centric
• From macro-level to micro-level
• From static analysis to dynamic analysis

44

In the evolution of dependability modeling, the paradigm shift to
a data-driven approach is an inevitable modeling effort, and AI

techniques such as machine learning are called for.

Thank you!

	Software Dependability Modeling with A Data-Driven AI Paradigm
	Background
	Software dependability modeling
	Software dependability modeling
	Software dependability modeling
	Software Reliability Engineering
	Service-oriented systems
	Reliability prediction for service-oriented systems
	Reliability prediction of Web services
	Meaning of dependability modeling
	Dependability modeling: new challenges
	Dependability modeling: new challenges
	Dependability modeling: new challenges
	Dependability modeling evolution
	Data-driven software dependability modeling
	Data-driven software dependability modeling
	Black-box dependability modeling
	White-box dependability modeling
	Cloud system architecture
	Knowledge graph construction for cloud system
	Knowledge graph for cloud system failure detection
	Data-driven software dependability modeling
	Model-centric dependability modeling
	Data-centric dependability model
	Data-centric dependability model
	Data-centric dependability model
	Software reliability engineering tasks
	Log-based problem identification
	Log-based problem identification
	Semantic log parsing for log analysis
	Semantic log parsing for log analysis
	Data-driven software dependability modeling
	Macro-level dependability modeling
	Micro-level dependability modeling
	Micro-level dependability modeling
	The criticality of service dependencies
	Prediction of aggregated intensity of dependency
	Prediction of aggregated intensity of dependency
	Prediction of aggregated intensity of dependency
	Data-driven software dependability modeling
	Static analysis-based dependability modeling
	Dynamic analysis-based dependability modeling
	Adaptive KPI anomaly detection
	Summary and Conclusion
	Slide Number 45

