IFIP WG 10.4 Winter Meeting

Teaid
4

Software Dependability Modeling
with A Data-Driven Al Paradigm

Michael R. Lyu

Department of Computer and Engineering
The Chinese University of Hong Kong
January 20, 2022

5, il B ‘:F ~ L
4oy HATIREF
_ ._:‘-‘ i ~ Automated Reliable Intelligent
m H_} Software Engineering

Background

* Modern software systems are serving many aspects of our life

A

Googe ofipen] @
| pe -
e W -

Search Cloud Office Operating
Engine Service Software Systems

Most of these software systems are expected to be available on a 24 x 7 basis.

Software dependability modeling

* Dependability definition

The trustworthiness of a computer system such that
reliance can justifiably be placed on the service it delivers
to its users.

L#

Software dependability modeling

e Dependability modeling

4 Testing

phase | Useful life E __‘__.-"- S
T :: E Obsolescence ﬂ/ :
-y § describe quantitatively
— Time ——» ”
Analytical models Dependability attributes

Software dependability modeling

* The life of a system iIs perceived by its users as:
e Correct service
e Incorrect service

[| E
enables %
Correct-incorrect service Reliability to be defined as
alternation quantification a measure of dependability

e The basic approach
* Model past failure data to predict future behavior

D Failures per time period D Time between failures

Software Reliability Engineering

Failure

Intensity Total Failures

A(t)

Present} - - -

Objectivelf -+ - —

Pr

— D |- -

sent Execution Time t

| Y
Additional Time

Fault Fault Fault Fault
Avoidance ' Removal ' Tolerance ' Prediction

Service-oriented systems

Composed by distributed Web services

gtamteBE M.N wice Hotel Selel Lo by Bk
s . Hotel Web
1.Location 1. Date 3. Travelier info SerViceS
PR R 7"—*5:_11—3 ?'"'J_Z:__ 4 |l >
e =) |

Travel Agency Web Site 1

e =

- -:: o ":'_:w« e
=== —1 “| Credit Card
Travel Agency Web Site 2 | Web

Services

Reliability prediction for service-oriented systems

Service-Oriented System —
ts
— 1
@ t > b Sl Tt @
@ e |
Q ServiceC@dates Q
& 50 O

Target: determine the optimal Web
service from a set of functionally
equivalent candidates.

o It is difficult to model the reliability of service-oriented systems
 Reliability of the system is highly dependent on the invoked Web

services

* Web services are provided by third-party organizations
* The Internet environment is unpredictable

Reliability prediction of Web services

Unreliable
e Key idea: Using past usage i
data to find similar users and Service u5fr 1 in Asia
Web services to predict the Reliable)
_ Web service
reliability of a given service. i<—> in US

Service user 2 in US

Reliability is extended to Quality-of-
Service (QoS)

Service-Oriented System

v ?
Zheng and Lyu, “Collaborative Reliability Q@%&?@@
Prediction of Service-Oriented Systems”.

[ICSE’10, ACM SIGSOFT Distinguished Paper Award]

Meaning of dependability modeling

An airplane typically has nine nines of reliability,
l.e., 99.9999999%.

Only one crash every 3,000 weeks!

Self-driving cars have a better reliability figure
than human drivers. Yet, we still cannot fully use
them.

A single reliability figure is losing its practical
significance...

10

Dependability modeling: new challenges

4 Testing

T

Time ———»

pose

Modern software systems Traditional dependability
modeling

11

Dependability modeling: new challenges

« Complex modern software system architecture

©
: ® g . ® * Microservices architectures in clouds
o000 e « Complicated service dependencies
0®00 ®
)0 ® ©

ssssss

Load Balancer

» Load balancing
Fault tolerance
« Self-healing ability

At

12

Dependability modeling: new challenges

» More subtle software failures
» Gray failures

! Different from fail-stop failures, the manifestations of gray failures
! are fairly subtle and thus defy fast and definitive detection. :

! Transient failures disappear quickly and thus are hard to detect,
! e.g., temporary timeout or unavailability of a service. :

* Failure cascading effects

failure failure failure failure failure failure SQL failure
failure /\
Storage vMm failure
1\/7
Network
x failure
Multi-location Multi-source Multi-layer

13

Dependability modeling evolution

Data-driven Software
Dependability Modeling

Data-driven software dependability modeling

"' @ > Black-box to white-box

BLACKBOX WHITEBOX

‘F@l > Model-centric to data-centric
®

f‘i > Macro-level to micro-level
N

Static analysis to dynamic analysis

15

Data-driven software dependability modeling

L"' @ > Black-box to White—box]

LACKBOX WHITEBOX

Model-centric to data-centric

vV

¢

Macro-level to micro-level

¥

VA
@7
%

y /

i 3) > Static analysis to dynamic analysis

Black-box dependability modeling

' Dependability modeling Fa]ure
' rate

Useful life

1
! Obsolescence

Time ——»

 Traditional software systems (standalone, shrink-wrapped)

————————————— N
AR |{ P !
P ey L e
-l £ U NI !
GRSl Ceied (I e R =
— B &S0 L/
o st
A I /

Homogeneity Low complexity
= Easy data collection = Simple functionalities
= Single point of failure = Easy failure patterns

Stable failure patterns

Infrequent software updates

The learned models remain
valid

17

White-box dependability modeling

* Modern software systems (distributed systems, clouds)

N
';1"75 =%
28— N

Heterogeneous scale High complexity Unstable failure patterns

Y] 3
SR, J cawoup U
) ‘I) COMPUTING N
\:_,:__/"I

» Hard to collect comprehensive = Component dependencies
failure data

Complex failure patterns
= Non single point of failure

& microsoft / vscode
| L]

June 22, 2021 - July 22, 2021

i Vscode, in one month, 64 authors pushed
}546 line of code is inserted

ode is removed.

. ding merge -ISJ authors have pushed 1,203 commiti"
— e Rl ——
20,551 deletions
18
https://arstechrirasofndgadiaisi2 01020 /atrastegcaple ddobakeebanaging-100x-more-code-now-than-they-did-in-2010/

Cloud system architecture

Log

@

Meter
Data

;”;l
;”;l

Topology

Incident
Ticket

B & E

O 24

Users - :I ‘a '
] M —)ZI m M
Application Layer

Application Microservice Function
S SN |;|] e I;J;'
oo)

Platform Layer
Container Orchestration Database

Compute

EO | B

Virtual Machine

Infrastructure Layer

O,

Networking

|;'|;|
|;'|;|

Storage

O A

Physical Machine

@

2

o iJo

On-call
Engineer

e 1

Knowledge graph construction for cloud system

M croser'v.wkl A:ruser\f ch‘ Microsgrvice E

/wcﬁossﬁwcf:__ MicroservicsB | Microservica D/
Ge Virtuz une

INSTANCES - . ce "ngu.ar;ma

\\MI\

Physical M Physical Switch Physical Machine

INFRASTRUCTURE

The multi-layer architecture of a cloud
system:

e Infrastructure layer

* Instance layer

* Microservice layer

* Cloud service layer

T3 T3
> >
R3 RS | R3
¥ D 3
T3 . T3
7 T3
. T3 K
R2 T3 T \
Ro { R3
e ;
L . | &
\ T2 - T2 ,

R1 ™. R1
T1 ')(T Hfﬂ

An excerpt of cloud knowledge graph:

* Physical machine connections
* Network communications

* Placement relationships

» Microservices dependencies

20

Knowledge graph for cloud system failure
detection

T3 . T3 .
e Target Ra 7 . Rs
« Prompt failure detection for cloud " :
systems " T3
e Method oy T§ T:E/,/” _TB |
» Heterogeneous graph representation / I,:"fR2 { (R

learning R

» Detect abnormal state change for nodes \ T2 @ T2 ,_

based on their feature vectors RIS SIS R1
\‘. //.‘ ‘ ':‘,
E—fﬁ P fﬁ

Key direction: to examine the system internal structure and capture
the details of the system failure mechanism with a KG.

21

Data-driven software dependability modeling

"' @ > Black-box to white-box

BLACKBOX WHITEBOX

Model-centric to data-centric}

y | €D
v

¥
&7
Vg

Macro-level to micro-level

%
'

i 3) > Static analysis to dynamic analysis

22

Model-centric dependability modeling

Distributional
model selection

Assumptions

Analytical models assuming statistical distributions
* Exponential
« Weibull

Failure Intensity z(t)
[]
/ B A
Execution Time £ 1 t2 t3
Failure intensity function for Program hazard rate
Musa’s basic execution model function for Weibull

Assumptions behind model-centric dependability modeling
» Simple and predictable software behaviors

» Failure data follow specific distributions

* No extensive software changes

23

Data-centric dependability model

* Incorrect assumptions on data distribution

 Fallure data alone is insufficient
 Failures per time period/time between failures too high level
« Other monitoring data characterize the system better

24

Data-centric dependability model

LoG N

Log

L T maen—
Abnormal
Network i

Traffic bu

CPU Utilization (%)

1001

801

601

40

20"

Meter Data

Topology Alert

Incident Ticket

Raw Log Messagez

10

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxt4/
_temporary/_task_200811101024_0010_m_000011_0/part-
00011.blk_904791815409399662

2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010

2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010

2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.114

2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.251.43.210

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:

10.251.43.210:50010 is added to blk_904791815409399662 size 67108864

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864

2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Low

High

L ow
Medium

Medium

Medium
High
Medium

Medium

Medium

25

Data-centric dependability model

LOG [N |;|;|

R

Meter Data Topology Alert Incident Ticket
A\ —
ANOmALY
N i .
i’i ""L./v"h'\’-l__f\ — PRC;!BnIl.EM
| S m— ..
TIME =V
Arrauhly Fedulte Rodrdudtuse Hadule
Agsietdine Toteyanss Renalgyial Prediction

26

Software reliability engineering tasks

4 YA
fm O
\ e o o o ,
/7 — \
] =
Log \Meter Data U Topology Alert

!

(1‘1\ \ ” —
ANomALY
kg"”-h"“ -/*- - - % = T ';/__’F?_:'\:'\
§ —— PRC}HBHII[.EM
N -
TIME § =V
Anomaly Failure Root Cause
\ Detecton L Diagnosis \ Analysis)

Failure

\ Prediction

J

27

Log-based problem identification

 Impactful system problems:

» Can lead to the degradation
of service KPI.

e Target:

* |dentify clusters that are
highly correlated with service
KPI's changes.

 Method:

 Model the relation between
cluster sizes and KPI values

1. Log Parsing

. [E1, E2, E4, E5)
t > [E2, E3, E4, E5]

[E1, E2, E3, E5, E4]

[E2, E3, E4, E5]
t,: % > [E2, E1, ES, E3, E6]
[E1, E2, ES5, E4]

tae [E1, E2, E4, E5]
de > [E3, E4, E6, E5)
[E1, E2, E3, E5]

2. Sequence Vectorization
E1 E2 E3 E4 E5 E6

t:

—_ O RO Rl

i

ta:

e o R

1

- = e

(=T]

0

(=T I

= O

1

1
1
1
0
1

=

1

1
1
1
1
1

=

0]

0 | KPIs

0 232330/ 048
1

0fsum !

11=>232231|! 064

0 ; P

0 22223150.78

1

0]

o » Norm(w(idf)) + B - w(cor)

4. Correlation Analysis

1
ClL C2 C3 C4) Kpis
t17 25 17 69 5 | 048
1
t: 18 12 107 4 ! 064
ta: 23 23 8 9 | 078
AKPls
®
o o/
o ~°®
70 g
e/
s ® ¢
- Cluster Size

'

t1:

ts:

ta:

3. Cascading Clustering
Clusters: C1

c2 Cc3 ca

AA
A
AL

Ay A
A A

AAy

A
AA"

He et al., “Identifying impactful service system problems via log analysis,” FSE 2018.

28

Log-based problem identification

e Evaluation on real Microsoft Azure data

Table 1: Summary of Service X Log Data

Data | Snapshot starts | #Log Seq (Size) | #Events | #Types
Data 1 | Sept5th 10:50 | 359,843 (722MB) 365 16
Data 2 | Oct 5th 04:30 | 472,399 (996MB) 526 21
Data3 | Nov5th 18:50 | 184,751 (407MB) | 409 | 14

Table 2: Accuracy of Problem Detection on Service X Data

Data Data 1 Data 2 Data 3
Metrics Precision | Recall | Fl-measure | Precision | Recall | Fl-measure | Precision | Recall | F1-measure
PCA 0.465 0.946 0.623 0.142 0.834 0.242 0.207 0.922 0.338
Invariants Mining 0.604 1 0.753 0.160 0.847 0.269 0.168 0.704 0.271
Log3C 0.900 0.920 0.910 0.897 0.826 0.860 0.834 0.903 0.868

He et al., “Identifying impactful service system problems via log analysis,” FSE 2018.

29

Semantic log parsing for log analysis

e Semantics in log parsing
« Many parameters in a log message
have technical meaning, which provide) FELDS) Lock S4oe 357 acqared oy v conent g_co
extra information for log analysis Traditonal Parsers_—— —_ SemParser

e —
FIELDS FIELD VALUES FIELDS FIELD VALUES
EVENT TEMPLATE Listing instance in cell <*> CONCEPTUALIZED TEMPLATE | Listing instance in <CELL>

PARAMETERS ["949¢1227"] INSTANCE-LEVELSEMANTICS | [{“cell”, "94921227")]

MESSAGE-LEVELSEMANTICS | ["instance”, “cell*]

i I arg et FIELDS FIELD VALUES FIELDS FIELD VALUES

EVENT TEMPLATE | Lock <*> acquired by <*> CONCEPTUALIZED TEMPLATE | Lock SEELLS acquired by SFUNCH

INSTANCE-LEVELSEMANTICS | [{cell, "949e1227"), | “fn¢", “nova.context get_cell”)]

* |dentify meaningful tokens and the PRAMETERS | Cotseaar, “rom e A | 1 s | P, e

corresponding categories

Log messages

Listing instance in cell 949e1227
Lock 949e1227 acquired by nova.context()

l

] MethOd [l @ SernTnticsMher | |

* Iteratively update the concept-instance Explcit Cl pairs || Concepts Instances

[(“cell", "949e1227")] || ["instance”, “cell’] | | [949e1227"]

knowledge base, based on which to False I 0 (94591227 Novs conen(')

. . . Domain
identify new instances (nowedge l l i

1

(“cell’, “949¢1227"), 2 Joint Parser

(“project”, ESBV/ \ \
Conceptualized template Cl pairs Orphan concepts Orphan instances
Listing instance in cell <cell> [("cell”, "949e12277]] || ["instance"] 1]

Lock <cell> aceuired by <*> [(“cell”, "849e12277)] || [[*nova.context()"]

e

) * Root cause analysis
Log analytical tasks « Anomaly detection
+ Others 30

Semantic log parsing for log analysis

* Experimental results

Table 4: Experiments results of mining semantics from logs.

|| System
Andriod Hadoop HDFS Linux OpenStack Spark Zookeeper
Framework P|R|FP|P|R|FP|P|R|F|P|R|F|P|R|F|P|R|]F|P|R]|FH
SemParser || 0.9510.9350.943 | 0.9930.978 0.985 | 1.000 1.000 1.000 | 0.998 0.977 0.987 | 0.999 0.998 0.999 | 1.000 0.998 0.999 | 1.000 0.989 0.995
-w/0 Fehar || 0.9810.909 0.943 | 0.988 0.953 0.970 | 1.000 0.998 0.999 | 0.995 0.957 0.976 | 0.995 0.989 0.992 | 1.000 0.998 0.999 | 0.993 0.987 0.990
-w/o Fiocal 0.979 0.858 0.915 0.993 0.880 0.933 1.000 0.999 0.999 0.992 0.947 0.969 0.994 0.989 0.992 1.000 0.937 0.967 0.997 0.940 0.968
-w/o LSTM || 0.9790.858 0.915 | 0.993 0.879 0.932 | 1.000 0.999 0.999 | 0.9950.909 0.951 | 1.000 0.963 0.981 | 0.9850.998 0.992 | 0.966 0.953 0.959
-W/0 Feontx || 0.977 0.060 0.113 | 0.984 0.253 0.403 | 0.999 0.289 0.449 | 0.999 0.242 0.389 | 1.000 0.256 0.407 | 1.000 0.268 0.423 | 0.842 0.197 0.319

Table 5: Experimental results in anomaly detection task.

|| Technique
LSTM Atten-biLSTM CNN Transformer

Baseline Precision Recall F1 Precision Recall F1 | Precision Recall F1 Precision Recall F1
LenMa 0.717 0.938 0.813 0.714 0.924 0.806 0.793 0.815 0.804 0.685 0.896 0.776
AEL 0.738 0.934 0.824 0.791 0.877 0.832 0.747 0.924 0.826 0.503 0.962 0.660
Drain 0.824 0.867 0.845 0.810 0.886 0.846 0.737 0.943 0.827 0.693 0.919 0.790
IPLoM 0.863 0.833 0.848 0.808 0.877 0.841 0.834 0.834 0.834 0.929 0.683 0.787
SemParser 0.971 0.927 0.948 0.952 0.913 0.932 0.907 0.899 0.903 0.938 0.904 0.921
A% Il +11.80% +10.17% +8.27% +16.58%

Data-driven software dependability modeling

"' @ > Black-box to white-box

BLACKBOX WHITEBOX

Model-centric to data-centric

v | 6
v

Macro-level to micro—level]

)
5%
X7

V

i 3) > Static analysis to dynamic analysis

32

Macro-level dependability modeling

* Macro perspective is insufficient

= Asingle failure number = Atomic systems

for behavior prediction = Oversimplified interactions

= Too course-grained for for systems with components
dependability modeling

Micro perspective
* Profile software reliability from multiple aspects
* Dynamic interactions in microservices
» Automated data collection process

e

Manual failure data
collection

7

Ky,
A\

&

33

Micro-level dependability modeling

 Profile software reliability from multiple facets

i ANomALY

mm

>

3‘::

>

L—/ \‘
e

TIME

Anomaly

= Abnormal runtime status

= Early signal for failures

» Fine-grained information

Incident 1D: INCI

Severity: High

Status: Closed

TN62010 6:55:20 AM

- TAT2010 8:31:4T7 AM
Ass ame: John Doe

Assignment Growp: Account Management

Deseription: The USER xxx has a successful Jogin into the hub
a but | le to access SAP,
Ew he ¢l Sap work place, the
screen g ank!

Resolution; Fixed USER xxx permission to aceess SAP,

Incident

* Rendered by monitors
» Detailed failure description

= Contain human knowledge

Failure report

Failure statistics over a period

Derive system vulnerability

34

Micro-level dependability modeling

* Dynamic interactions in microservices
» Loosely-coupled and collaborating microservices
» Dependencies are hard to capture
* Interactions are always changing

Monolith Microservices

35

The criticality of service dependencies

AWS Post-Event Summaries

AWS Post-Event Summaries
\The following is a list of post-event summaries from major service events that impacted AWS service availability:

Summary of the Amazon Kinesis Event in the Northern Virginia (US-EAST-1) Region, November, 25th 2020

« Summary of the Amazon EC2 and Amazon EBS Service Event in the Tokyo (AP-NORTHEAST-1) Region, August 23, 2019

Summary of the Amazon EC2 DNS Resolution Issues in the Asia Pacific (Seoul) Region (AP-NORTHEAST-2), November 24, 2018.
* Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region, February 28, 2017.

Summary of the AWS Service Event in the Sydney Region, June 8, 2016.

\: Summary of the Amazon DynamoDB Service Disruption and Related Impacts in the US-East Region, September 20, 2015. Cascad | ng fal I ure

Summary of the Amazon EC2, Amazon EBS, and Amazon RDS Service Event in the EU West Region, August 7, 2014.
» Summary of the Amazon SimpleDB Service Disruption, June 13, 2014.
« Summary of the December 17th event in the South America Region (SA-EAST-1), December 20, 2013.
\- Summary of the December 24, 2012 Amazon ELB Service Event in the US-East Region, December 24, 2012.
\ Summary of the October 22, 2012 AWS Service Event in the US-East Region, October 22, 2012.
\ Summary of the AWS Service Event in the US East Region, July 2, 2012,

Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US East Region, April 29, 2011.

5 out of 13 AWS outages are related to service dependency!

https://aws.amazon.com/premiumsupport/technology/pes/

36

https://aws.amazon.com/premiumsupport/technology/pes/

Prediction of aggregated intensity of dependency

Candidate _
Selection Oo-A| Candidate
» |O0->o| Dependency |—
O0—-x List
#Y.. Dependency
9 TI::JV;S)‘ Q Graph with
Service Status ‘— Intensity
Generation -—|| Status Series
> | — . —
— \ of Services
Span ID e22f30bdbfd09134
" __________________________ \ | Parent Span ID | b42a04bf18997d5d
1
I 1 | Name ts-preserve-service
! | Span 2 ;
. - — ! | Timestamp (us) | 1618589098705000
| | .
: , | Duration (us) 1126
1 SpanID | ParentID | Name | Timestamp | Duration Result I Result SUCCESS
- . . o /
| h Trace ID c0d17d481147bdd9
Atrace log with 6 spans. Additional Logs |

Yang et al., “AlD: Efficient Prediction of Aggregated Intensity of Dependency in Large-scale Cloud Systems”, ASE 2021
]

37

Prediction of aggregated intensity of dependency

Candidate -
Selection o-A| Candidate
» |0—»<| Dependency |—
0-»x List
#". Dependency
e TI:;V;S > (Q Graph with
Service Status » Intensity
Generation --—|| Status Series
» == _ ||
— of Services

Method

« Select the candidate invocation pairs
(caller, callee)

e Three aspects of indicators of service status
 Number of Invocations
« Durations of Invocations
» Error of Invocations

38

Yang et al., “AlD: Efficient Prediction of Aggregated Intensity of Dependency in Large-scale Cloud Systems”, ASE 2021

Prediction of aggregated intensity of dependency

O-A
O=o

O0-»x

Candidate
Dependency
List

Candidate
Selection
Traces]
Service Status
Generation

Method

>

Status Series
of Services

#Y.. Dependency
D‘ e Graph with
Q" Intensity

Service A

« Select the candidate invocation pairs

(caller, callee)

e Three aspects of indicators of service status

e Number of Invocations
e Durations of Invocations
 Error of Invocations

$
(=3
=
=
>

[=]
=
—
C
e
—
<
£
=
-~
e
- %
=
- -
>
S
1 r

Service B . A\ /Ny
Service C |

(7
=
=

Number of Invocations
o]
(=]

=

Duration (second)

=

02 K)
11
| | |
| X n/
5 | | [|
£ ! I| | | . | |
1 1710,]
Y d Al L |

. r..:. [m _.;I\' |

Error Rate

W

! n W u
o I ll.._v:J LM [A 1 4y

06:00 08:00 10:00 12:00 14:00 16:00 18:00
Time (minute)
. 39
Yang et al., “AlD: Efficient Prediction of Aggregated Intensity of Dependency in Large-scale Cloud Systems”, ASE 2021 O

Data-driven software dependability modeling

"' @ > Black-box to white-box

BLACKBOX WHITEBOX

‘!ﬁ‘:-l-@— > Model-centric to data-centric
®

f‘i > Macro-level to micro-level
N

{ 3) > Static analysis to dynamic analysis]

40

Static analysis-based dependability modeling

 Model selection
* Model training

Highly rely on historical failure data
@ & « The software is assumed to be mature enough

Poor performance if the software changes considerably
W * New capabilities exercised

» Different testing methodology/environment
employed

41

Dynamic analysis-based dependability modeling

Anomaly Failure Root Cause Failure
Detection Diagnosis Analysis Prediction

« Consider both historical and on-going data
* Models have online learning capabillities

e Online machine learning

» Zero-shot learning

» Transfer learning

42

Adaptive KPI anomaly detection

Anomaly-free KPI

Offline Anomaly | |

Detection Phase JR——— ; s :
norm P e
KPI Pattern 1 ‘ :
Biacuvery : Human Knowledge |
.. o i i
{ : oot
| |
. [Vv h
Online A I
e e ! -
smssquonce Fl;::‘rg::; ’t’ba:fé:’;lzl \an_apt_we_ Pgttgn_Legrmr{g Prediction Result
Pattern Database
o Targ et 1.0 Traffic surge
« KPI anomaly detection with online adaptability 05 o Ny |7
—— Application CPU Usage
 Method l:'z 1000 2000 3000 4000 5000
* Identify abnormal KPI patterns based on historical .

OCCUrrences 00 ngm restart Interface Throughput
 Add new patterns based on the similarity to known ., 2002 aen 0
patterns o5 ¥ \)’H/"‘J \ /f\f]‘Pcnﬂap f‘u‘ \

 Human knowledge can be incorporated ool Requests Per Minute /
0 1000 2000, 3000 4000 5000
43

Chen et al., “Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching”, ICSE 2022

Summary and Conclusion

 Traditional dependability modeling is losing its practical
significance and relevance

 Modern software systems make dependability modeling
more challenging

« Data-driven dependability modeling with Al
e From black-box to white-box
 From model-centric to data-centric
* From macro-level to micro-level
* From static analysis to dynamic analysis

In the evolution of dependability modeling, the paradigm shift to
a data-driven approach is an inevitable modeling effort, and Al

techniques such as machine learning are called for.

44

HOME MEMBERS~ PROJECTS PUBLICATIONS = NEWS

:Welcome to ARISE Lab

Bridging Artifieial Intelligence and Software Engineering

DISCOVER

Thank youl!
[m] M =]

ARISE

Automated Reliable Intelligent
Software Engineering

	Software Dependability Modeling with A Data-Driven AI Paradigm
	Background
	Software dependability modeling
	Software dependability modeling
	Software dependability modeling
	Software Reliability Engineering
	Service-oriented systems
	Reliability prediction for service-oriented systems
	Reliability prediction of Web services
	Meaning of dependability modeling
	Dependability modeling: new challenges
	Dependability modeling: new challenges
	Dependability modeling: new challenges
	Dependability modeling evolution
	Data-driven software dependability modeling
	Data-driven software dependability modeling
	Black-box dependability modeling
	White-box dependability modeling
	Cloud system architecture
	Knowledge graph construction for cloud system
	Knowledge graph for cloud system failure detection
	Data-driven software dependability modeling
	Model-centric dependability modeling
	Data-centric dependability model
	Data-centric dependability model
	Data-centric dependability model
	Software reliability engineering tasks
	Log-based problem identification
	Log-based problem identification
	Semantic log parsing for log analysis
	Semantic log parsing for log analysis
	Data-driven software dependability modeling
	Macro-level dependability modeling
	Micro-level dependability modeling
	Micro-level dependability modeling
	The criticality of service dependencies
	Prediction of aggregated intensity of dependency
	Prediction of aggregated intensity of dependency
	Prediction of aggregated intensity of dependency
	Data-driven software dependability modeling
	Static analysis-based dependability modeling
	Dynamic analysis-based dependability modeling
	Adaptive KPI anomaly detection
	Summary and Conclusion
	Slide Number 45

