
Trustworthy Machine Learning-
Enabled Systems

Lionel Briand

http://www.lbriand.info

IFIP WG 10.4, 2022

http://www.lbriand.info/

Context and Motivations

2

Importance

• ML components are increasingly part of safety- or mission-
critical systems (ML-enabled systems - MLS)

• Many domains, including aerospace, automotive, health care,
…

• Many ML algorithms, supervised vs. unsupervised,
classification vs regression, etc.

• But increasing use of deep learning and reinforcement
learning

3

ML-Enabled Systems (MLS)

4

Sensors

Controller

Actuators Decision

Sensors
/Camera

Environment

ADAS

Machine Learning

Example Automotive Applications

• Object detection, identification, classification,

localization and prediction of movement

• Sensor fusion and scene comprehension, e.g., lane

detection

• Driver monitoring

• Driver replacement

• Functional safety, security

• Powertrains, e.g., improve motor control and battery

management
5

Tian et al. 2018

Testing Levels

• Testing is still the main mechanism through which to gain trust

• Levels: model (e.g., Deep Neural Networks or DNN) , integration, system

• Research largely focused on model testing

• Integration: Issues that arise when multiple models and components are
integrated

• System: Test the MLS in its target environment, in-field or simulated

• Cross-cutting concerns: scalability, realism

6

Information Access

• Black-box: Model inputs and outputs

• Data-box: Training and test set originally used

• White-box: runtime state (neuron activation),
hyperparameters, weight and biases

• In practice, data-box and white-box access are often not
guaranteed, e.g., third party provider

7

Model Testing Objectives
• Correctness of classifications and predictions (regression)

• Robustness (to noise or attacks)

• Fairness (e.g., gender, race …)

• Efficiency: Learning and prediction speed

• Causes of failures: imperfect training (training set, overfitting …),
hyper-parameters, model structure …

• But what do these failures really entail for the system?

8

Challenges: Overview
• Behavior driven by training data and learning process

• Neither specifications nor code

• Huge input space, especially for autonomous systems

• Test suite adequacy, i.e., when is it good enough?

• Automated test oracles / verdicts

• Models are never perfect, but how do we decide
whether they are good enough?

9

Challenges

10

Large Input Space

• Inputs take a variety of forms: images, code, text, simulation
configuration parameters, …

• Incredibly large input spaces

• Cost of test execution (including simulation) can be high

• Labelling effort, when no automation is possible, is high

11

12

Automated Emergency Braking
System (AEB)

12

“Brake-request”
when braking is needed
to avoid collisions

Decision making

Vision
(Camera)

Sensor

Brake
Controller

Objects’
position/speed

AEB Input-Output Domain

13

- intensity: Real
SceneLight

Dynamic
Object

1
- weatherType:
Condition

Weather

- fog
- rain
- snow
- normal

«enumeration»
Condition

- field of view:
Real

Camera
Sensor

RoadSide
Object

- roadType: RT
Road

1 - curved
- straight
- ramped

«enumeration»
RT

- v0: Real
Vehicle

- x0: Real

- y0: Real

- θ: Real
- v0: Real

Pedestrian

- x: Real
- y: Real

Position

1

*

1

*

1
1

- state: Boolean
Collision

Parked
Cars

Trees
- simulationTime:
Real
- timeStep: Real

Test Scenario

AEB

- certainty: Real
Detection

1
1

11

1
1

1
1

«positioned»

«uses»
1 1

- AWA

Output
Trajectory

Environment inputs
Mobile object inputs
Outputs

Inputs: Adversarial or “Natural”?

• Adversarial inputs: Focus on robustness, e.g., noise or attacks

• Natural inputs: Focus on functional aspects, e.g., functional
safety

14

Adversarial Examples

• Szegedy et al. first indicated an intriguing weakness of DNNs
in the context of image classification

• “Applying an imperceptible perturbation to a test image is
possible to arbitrarily change the DNN’s prediction”

15

Adversarial example due to noise (Goodfellow et al., 2014)

Adversarial Inputs

• Input changes that are not expected to lead to any
(significant) change in model prediction or decision

• Techniques: Image processing, image transformations (GAN),
fuzzing

• Are often not realistic …

16

“Natural” Inputs

• Focused on functional aspects

• Inputs should be realistic

• Suffer from the oracle problem: what should be the expected
classification or prediction for new inputs?

17

Single-Image Test Inputs

• In the context of ADAS test inputs have been generated by
applying label-preserving changes to existing already-labeled
data (Tian et al., Zhang et al., 2018)

18

Original image Test image
(generated by adding fog)

Test Scenarios
• Most of existing research focuses on

• Testing DNN components, not systems containing them

• Single inputs with label-preserving changes, e.g., to images

• Limited solutions accounting for the impact of object dynamics
(e.g., car speed) in different scenarios (e.g., specific configurations
of roads).

• Limited solutions regarding functional safety over scenarios.

• ISO/PAS Road vehicles (SOTIF) requirements: In-the-loop testing of
“relevant” scenarios in different environmental conditions

19

Offline and Online Testing

• For many MLS, considering single inputs is not adequate. Sequences
must be considered as context, e.g., images for steering angle DNN.

• Offline testing is less expensive but does not account for physical
dynamics and cumulative effects of prediction uncertainty over time.

• How do offline and online testing results differ and complement each
other? 20

Offline Online

Testing via Physics-based
Simulation

21

ADAS
(SUT)

Simulator (Matlab/Simulink)

Model
(Matlab/Simulink)

▪ Physical plant (vehicle / sensors / actuators)
▪ Other cars
▪ Pedestrians
▪ Environment (weather / roads / traffic signs)

Test input

Test output

time-stamped output

Simulation: Challenges

• How to effectively guide the simulator?

• Simulation is highly expensive

• Fidelity of simulation

22

Test Adequacy Criteria

• Model testing of DNNs

• Goal: Assess test suite adequacy, guide test selection

• Can help devise minimal and fault-revealing test suites

• Require access to the DNN internals and sometimes the
training set. Not realistic in many practical settings.

23

Structural Coverage Criteria

24

Chen et al. 2020

• Neuron coverage
• Many variants

Surprise Adequacy Criteria

25
Kim et al. 2019

• Not structural
• Surprise Adequacy (SA) aims to measure the relative novelty

(i.e., surprise) of a given new input with respect to the inputs
used for training.

• Assumption: DNNs are likely to be more error prone for
inputs that are unfamiliar.

• DSA: Test inputs closer to the class boundaries are more
valuable

DSA(x1) = a1/b1
DSA(x2) = a2/b2

DSA(x1) > DSA(x2)

Limitations

• Code coverage assumes:

• (1) the homogeneity of inputs covering the same part of a program

• (2) the diversity of inputs to be indicated by coverage metrics

• According to Li et al. (2019):

• These assumptions break down for DNNs and adversarial inputs

• There is a weak correlation between coverage and misclassification for
natural inputs

• Scalability and applicability for the most complex coverage metrics?

26

Failures in MLS

• Model level: misclassifications, square error (regression)

• Uncertainty inherent to ML training

• What is a failure then in an MLS?

• Expected robustness of MLS to ML errors

• Failure at system level: Requirement violation

• MLS failures result from both ML mispredictions and
effectiveness of countermeasures, e.g., safety monitors

27

Example: Key-points Detection

• DNNs used for key-points detection in
images

• Many applications, e.g., face recognition

• Testing: Find test suite that causes DNN
to poorly predict as many key-points as
possible within time budget

• Impact of poor predictions on MLS?
Alternative key-points can be used for
the same purpose.

28

Ground truth
Predicted

Oracles (1)

• How to identify misclassifications or mispredictions?

• Required for testing purposes

• It may be difficult to manually determine the correct outputs
of a model for a (large) set of inputs

• Effort-intensive, third-party data labelling companies

29

Oracles (2)

• Simulators can help automate the oracle, if they have
sufficient fidelity. Common in many industrial domains.

• Important: Mispredictions may be unavoidable, and accepted,
e.g., shadows in images

• Minimizing the test suite is often the only option

30

Practical Accuracy Estimation
(PACE)

• Chen et al., TOSEM 2020: Minimizing test suites

31

Simulation: Key-points Detection

32

Input Generator Simulator

Input (vector)

DNNFitness
Calculator

Actual Key-points Positio
ns

Predicted Key-points Positions

Fitness Score
(Error Value)

Test
Image Most Critical

Test Input

Simulation+DNN Examples

33

Pylot + Carla Apollo + LGSVL

High-fidelity simulators
Carla
LGSVL

DNN-based ADAS
Pylot: many DNN models
Apollo: 20 DNN models

ML and Functional Safety

• Requires to assess risks in a realistic
fashion

• Account for conditions and consequences
of failures

• Is the uncertainty associated with an ML
model acceptable?

• With ML, automated support is required,
given the difficulties in interpreting model
test results

34

Explaining Misclassifications

• Based on visual heatmaps: use colors to capture the extent to which
different features contribute to the misclassification of the input.

• State-of-the-art

• black-box techniques: perturbations of input image

• white-box techniques: backward propagation of prediction score

• They require, in our context, unreasonable amounts of manual analysis
work to help explain safety violations based on image heatmaps

35

Black sheep
misclassified as

cow

Research Directions

36

Evaluating and Selecting
DNN Test suites

Objectives

• Effectively and efficiently explore the space of possible
DNN inputs to identify and characterize unsafe parts of the
input space.

• The main motivation is to decrease the manual effort
required for labeling test data.

• Black-box approach based on measuring the diversity of
test inputs.

• The more diverse, the more likely they are to reveal faults
38

Extracting Image Features

• VGG16 is a convolutional neural network trained on a
subset of the ImageNet dataset, a collection of over 14
million images belonging to 22,000 categories.

40

Geometric Diversity (GD)

• Given a dataset X and its corresponding feature vectors V,
the geometric diversity of a subset S ⊆ X is defined as the
hyper-volume of the parallelepiped spanned by the rows of
V, i.e., feature vectors of items in S, the larger the volume,
the more diverse is the feature space of S

41 Kulesza et al., 2012

Representative Results

• 60 subsets with size of 300 from MNIST

• Correlation between geometric diversity and faults:

Spearman= 32.89% p-value = 0.013

Pearson=29.91% p-value = 0.027

• 60 subsets with size of 300 from MNIST

• Correlation between surprise adequacy coverage and

faults:

Spearman= 24.55% p-value = 0.07

Pearson= 22% p-value = 0.11

42

Mispredictions vs. Faults

Misprediction rates are misleading
to evaluate DNN diversity or
coverage metrics

43

Fe
at

ur
e

2

Feature 1

Dataset

Fe
at

ur
e

2

Feature 1

Subset 1

Mis rate =
!"
#" = %"% Number of faults = 2

Mispredicted input

Correctly predicted input

Fe
at

ur
e

2

Feature 1

Subset 2

Mis rate =
%
#" = #%% Number of faults = 5

Estimating Faults with Clustering

44

Clusters ~ #Faults

Summary

• How to define and compute diversity?

• Geometric diversity based on extracted features (black-box)

• Moderate, positive and statistically significant correlations
between geometric diversity and faults.

• Coverage is not strongly and positively correlated with fault
detection.

• We are approximating fault counts in DNN by applying
clustering techniques. This could affect correlations.

45

Simulation-Based Testing of MLS

Objectives

• Effectively and efficiently explore the space of possible
system scenarios to identify and characterize unsafe parts of
the scenario space.

• Automate online testing

• Requires simulation with sufficient fidelity

• Scalability

47

Example: ADAS Testing

48

ADAS
(SUT)

Simulator (Matlab/Simulink)

Model
(Matlab/Simulink)

▪ Physical plant (vehicle / sensors / actuators)
▪ Other cars
▪ Pedestrians
▪ Environment (weather / roads / traffic signs)

Test input

Test output

time-stamped output

49

Automated Emergency Braking
System (AEB)

49

“Brake-request”
when braking is needed
to avoid collisions

Decision making

Vision
(Camera)

Sensor

Brake
Controller

Objects’
position/speed

Test Approach
• We use multi-objective search algorithm (NSGA II).

• Objective Functions:

• We use decision tree classification models to speed up the
search and explain violations.

• Each search iteration calls simulation to compute objective
functions.

50

1. Minimum distance between the pedestrian and the
field of view

2. The car speed at the time of collision
3. The probability that the object detected is a pedestrian

Multiple Objectives Search

51

Individual A Pareto
dominates individual B if
A is at least as good as B

in every objective
and better than B in at

least one objective.

Dominated by x

F1

F2

Pareto front
x

• A multi-objective optimization algorithm (e.g., NSGA II) must:
• Guide the search towards the global Pareto-Optimal front.
• Maintain solution diversity in the Pareto-Optimal front.

Decision Trees

52

Partition the input space into homogeneous regions

All points
Count 1200

“non-critical” 79%
“critical” 21%

“non-critical” 59%
“critical” 41%

Count 564 Count 636
“non-critical” 98%
“critical” 2%

Count 412
“non-critical” 49%
“critical” 51%

Count 152
“non-critical” 84%
“critical” 16%

Count 230 Count 182

vp
0 >= 7.2km/h vp

0 < 7.2km/h

✓p0 < 218.6� ✓p0 >= 218.6�

RoadTopology(CR = 5,
Straight,RH = [4� 12](m))

RoadTopology
(CR = [10� 40](m))

“non-critical” 31%
“critical” 69%

“non-critical” 72%
“critical” 28%

Genetic Evolution Guided by
Classification

53

Initial input

Fitness
computation

Classification

Selection

Breeding

Engineers’ Feedback

• The characterizations (decision trees) of the different

critical regions can help with:

(1) Debugging the system model

(2) Identifying possible hardware changes to increase

ADAS safety

(3) Providing proper warnings to drivers

54

Key-points Detection

• Automatically detecting key-points in
an image or a video, e.g., face
recognition, drowsiness detection

• Key-point Detection DNNs (KP-DNNs) are
widely used to detect key-points in an image

• It is essential to check how accurate
KP-DNNs are when applied to various
test data

55

Ground truth
Predicted

Example Application

• Drowsiness or gaze detection based on interior camera monitoring the
driver

• In the drowsiness or gaze detection problem, each Key-Point (KP) may be
highly important for safety

• Each KP leads to a requirement and test objective

• For our subject DNN, we have 27 requirements

• Goal: Cause the DNN to mis-predict as many key-points as possible

• Solution: Many-objective search algorithms combined with simulator

56

Overview

57

Input Generator Simulator

Input (vector)

DNNFitness
Calculator

Actual Key-points Positions

Predicted Key-points Positions

Fitness Score
(Error Value) Most Critical

Test Input

Test
Image

Results

• Our approach is effective in generating test suites that cause the DNN to
severely mispredict more than 93% of all key-points on average

• Not all mispredictions can be considered failures …

• Some key-points are more severely predicted than others, detailed
analysis revealed two reasons:

• Under-representation of some key-points (hidden) in the training data

• Large variation in the shape and size of the mouth across different 3D
models (more training needed)

58

Interpretation

• Regression trees

• Detailed analysis to find the root causes of high NE values, e.g., shadow on the location of
KP26 is the cause of high normalized (NE) values

• The average MAE from all the trees is 0.01 (far less than the pre-defined threshold: 0.05)
with average tree size of 25.7. Excellent accuracy, reasonable size.

59

Image Characteristics Condition NE

! = 9 ∧ # < 18.41 0.04
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % < 17.06 0.26
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ 17.06 ≤ % < 19 0.71
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % ≥ 19 0.36

Representative rules derived from the decision tree for KP26
(M: Model-ID, P: Pitch, R: Roll, Y: Yaw, NE: Normalized Error)

(A) A test image satisfying
the first condition

(B) A test image satisfying
the third condition

NE = 0.013 NE = 0.89

Summary

• Effective search of the test input set based on evolutionary
computing and machine learning.

• Mechanism to learn conditions leading to (safety)
violations to enable risk analysis and improvements.

60

Surrogate Models

• Online testing, coupled with a simulator, is highly important in
many domains, such as autonomous driving systems.

• E.g., more likely to find safety violations

• But online testing is computationally expensive

• Surrogate model: Model that mimics the simulator, to a certain
extent, while being much less computationally expensive

• Research: Combine search with surrogate modeling to decrease the
computational cost of testing (Ul Haq et al., ICSE 2022)

61

Safety Engineering in MLS

Objectives

• Understand conditions of critical failures in various settings

• Simulator: In terms of configuration parameters

• Real images: In terms of the presence of concepts

• Required for risk assessment

• Research: Techniques to achieve such understanding

63

Typical DNN Evaluation

• Example with images

64

Step A.
DNN Training

DNN
model

Step B.
DNN Testing

Error-inducing
test set images

Training set
images

Test set
images

DNN accuracy

Identification of Unsafe
Situations

• Current practice is based on manual root cause analysis:
identification of the characteristics of the system inputs that
induce the DNN to generate erroneous results

• manual inspection is error prone (many images)

• automated identification of such characteristics is the
objective of research on DNN safety analysis approaches

65

DNN Heatmaps
• Generate heatmaps that capture the extent to which the pixels of

an image impacted a specific result

• Limitations:
• Heatmaps should be manually inspected to determine the reason for

misclassification

• Underrepresented (but dangerous) failure causes might be unnoticed
• DNN debugging (i.e., improvement) not automated

66

An heatmap can show that long hair
is what caused a female doctor to be

classified as nurse [Selvaraju'16]

Heatmap-based Unsupervised
Debugging of DNNs (HUDD)

Rely on hierarchical agglomerative clustering
to identify the distinct root causes of DNN errors in

the heatmaps of internal DNN layers
and use this information

to automatically retrain the DNN

67

• Classification

• Gaze Detection

68

90

270

180 0

45

22.5

67.5

337.5

315

292.5247.5

225

202.5

157.5

135

112.5

Top
Center

BottomLeft
Bottom
Center

Bo
tto
m

Ri
gh
t

TopRight

Middle
Right

To
p

Le
ft

Middle
Left

Example Application

69

Step1.
Heatmap

based
clustering

Root cause clusters

C1

Step 5.
Label images

Step 4. Identify
Unsafe Images

Error-inducing
TestSet images

+
TrainSet images

Unsafe Set:
improvement set

images
belonging

to the root cause
clusters

C2 C3

Simulator execution

Step 3. Generate
new images

Collection of field data

Improvement
set: new images

(unlabeled)

C1 C2 C3

Labeled
Unsafe Set

C1 C2 C3

Step 6. DNN
Retraining

Legend:
Manual

Step
Automated

Step Data flow

Step 2. Inspection of subset
of cluster elements.

Training set
images

Balanced
Labeled

Unsafe Set

C1 C2 C3

Improved
DNN

model

Step 6.
Bootstrap

Resampling

HUDD

Heatmap Clustering

70

LRP
Agglomerative
Hierarchical
Clustering

...

...

Clusters for
Layer 1

Comparison
to identify
Best Layer

for Clustering

Heatmaps
at Layer 1 Layer 1

Layer N

...

Clusters for
Layer N

Distance
Matrices

Error-inducing
test set images

Root Cause
Clusters

Heatmaps
at Layer N

Clusters identify different problems
Cluster 1

(angle ~157.5)
borderline cases

Cluster3
(closed eyes)

incomplete training set

71

Cluster 2
(eye middle center)

incomplete set of classes

Summary

• Mechanism to group mispredicted/misclassified images
whose error root causes are similar.

• This is a basis to better understand the root causes of DNN
errors, assess risks, and retrain them to improve their
accuracy.

• Current work: Black-box approach based on feature
extraction

72

Conclusions

74

Testing Community

• It contributes by adapting techniques from classical software
testing

• SBST

• Adequacy criteria

• Metamorphic testing

• Mutation analysis

• Empirical methodology for software testing

75

Re-Focus Research (1)

• But, as usual, research is taking the path of least resistance
but we need to shift the focus to increase impact

• More focus on integration and system testing for MLS

• Not only model accuracy, but model-induced risks within a
system

• Safety engineering in MLS

• More focus on practical and scalable black-box approaches

76

Re-Focus Research (2)

• Scalable online testing for autonomous systems

• Scalability issues due to simulations and large DNNs

• Beyond the perception layer, the control aspects need to be
considered as well

• Beyond stateless models (DNN): Reinforcement learning …

77

Trustworthy Machine Learning-
Enabled Systems

Lionel Briand

http://www.lbriand.info

IFIP WG 10.4, 2022

http://www.lbriand.info/

References

79

Selected References
• Briand et al. "Testing the untestable: model testing of complex software-intensive systems.”, international conference on software

engineering (companion), 2016.

• Ul Haq et al. "Comparing offline and online testing of deep neural networks: An autonomous car case study." IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST), 2020.

• Ul Haq et al. "Can Offline Testing of Deep Neural Networks Replace Their Online Testing?." Empirical Software Engineering
(Springer), 2021

• Ul Haq et al. "Automatic Test Suite Generation for Key-points Detection DNNs Using Many-Objective Search." ACM International
Symposium on Software Testing (ISSTA), 2021

• Ul Haq et al., “Efficient Online Testing for DNN-Enabled Systems using Surrogate-Assisted and Many-Objective Optimization.”
IEEE/ACM ICSE 2022

• Fahmy et al. "Supporting DNN Safety Analysis and Retraining through Heatmap-based Unsupervised Learning." IEEE Transactions
on Reliability, Special section on Quality Assurance of Machine Learning Systems, 2021

• Ben Abdessalem et al., "Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms”, ICSE 2018

• Ben Abdessalem et al., "Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search”, ASE 2018

80

Selected References
• Goodfellow et al. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

• Zhang et al. "DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous driving systems." In 33rd

IEEE/ACM International Conference on Automated Software Engineering (ASE), 2018.

• Tian et al. "DeepTest: Automated testing of deep-neural-network-driven autonomous cars." In Proceedings of the 40th

international conference on software engineering, 2018.

• Li et al. “Structural Coverage Criteria for Neural Networks Could Be Misleading”, IEEE/ACM 41st International Conference on

Software Engineering: New Ideas and Emerging Results (NIER)

• Kim et al. "Guiding deep learning system testing using surprise adequacy." In IEEE/ACM 41st International Conference on Software

Engineering (ICSE), 2019.

• Ma et al. "DeepMutation: Mutation testing of deep learning systems." In 2018 IEEE 29th International Symposium on Software

Reliability Engineering (ISSRE), 2018.

• Zhang et al. "Machine learning testing: Survey, landscapes and horizons." IEEE Transactions on Software Engineering (2020).

• Riccio et al. "Testing machine learning based systems: a systematic mapping." Empirical Software Engineering 25, no. 6 (2020)

• Gerasimou et al., “Importance-Driven Deep Learning System Testing”, IEEE/ACM 42nd International Conference on Software

Engineering, 2020

81

Backup

82

Testing in ISO 26262
• Several recommendations for testing at the unit and system levels

• e.g., Different structural coverage metrics, black-box testing

• However, such testing practices are not adequate for MLS

• The input space of ADAS is much larger than traditional automotive systems.

• No specifications or code for DNN components.

• MLS may fail without the presence of a systematic fault, e.g., inherent
limitations, incomplete training.

• Imperfect environment simulators.

• Traditional testing notions (e.g., coverage) are not clear for DNN components.
83

SOTIF
• ISO/PAS 21448:2019 standard: Safety of the intended functionality (SOTIF).

• Autonomy: Huge increase in functionalities relying on advanced sensing,
algorithms (ML), and actuation.

• SOTIF accounts for limitations and risks related to nominal performance of
sensors and software:

• The inability of the function to correctly comprehend the situation and operate
safely; this also includes functions that use machine learning algorithms;

• Insufficient robustness of the function with respect to sensor input variations
or diverse environmental conditions.

84

