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Context and Motivations
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Importance

• ML components are increasingly part of safety- or mission-
critical systems (ML-enabled systems - MLS)

• Many domains, including aerospace, automotive, health care, 
…

• Many ML algorithms, supervised vs. unsupervised, 
classification vs regression, etc. 

• But increasing use of deep learning and reinforcement 
learning

3



ML-Enabled Systems (MLS)
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Example Automotive Applications

• Object detection, identification, classification, 

localization and prediction of movement

• Sensor fusion and scene comprehension, e.g., lane 

detection

• Driver monitoring

• Driver replacement

• Functional safety, security

• Powertrains, e.g., improve motor control and battery 

management
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Testing Levels

• Testing is still the main mechanism through which to gain trust

• Levels: model (e.g., Deep Neural Networks or DNN) , integration, system 

• Research largely focused on model testing

• Integration: Issues that arise when multiple models and components are 
integrated

• System: Test the MLS in its target environment, in-field or simulated

• Cross-cutting concerns: scalability, realism 
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Information Access

• Black-box: Model inputs and outputs

• Data-box: Training and test set originally used 

• White-box: runtime state (neuron activation), 
hyperparameters, weight and biases

• In practice, data-box and white-box access are often not 
guaranteed, e.g., third party provider
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Model Testing Objectives
• Correctness of classifications and predictions (regression)

• Robustness (to noise or attacks)

• Fairness (e.g., gender, race …)

• Efficiency: Learning and prediction speed

• Causes of failures: imperfect training (training set, overfitting …), 
hyper-parameters, model structure …

• But what do these failures really entail for the system?
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Challenges: Overview
• Behavior driven by training data and learning process

• Neither specifications nor code

• Huge input space, especially for autonomous systems

• Test suite adequacy, i.e., when is it good enough? 

• Automated test oracles / verdicts

• Models are never perfect, but how do we decide 
whether they are good enough?
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Challenges
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Large Input Space

• Inputs take a variety of forms: images, code, text, simulation 
configuration parameters, …

• Incredibly large input spaces

• Cost of test execution (including simulation) can be high

• Labelling effort, when no automation is possible, is high
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AEB Input-Output Domain
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Inputs: Adversarial or “Natural”?

• Adversarial inputs: Focus on robustness, e.g., noise or attacks

• Natural inputs: Focus on functional aspects, e.g., functional 
safety
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Adversarial Examples

• Szegedy et al. first indicated an intriguing weakness of DNNs 
in the context of image classification

• “Applying an imperceptible perturbation to a test image is 
possible to arbitrarily change the DNN’s prediction”
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Adversarial example due to noise (Goodfellow et al., 2014)



Adversarial Inputs

• Input changes that are not expected to lead to any 
(significant) change in model prediction or decision

• Techniques: Image processing, image transformations (GAN), 
fuzzing

• Are often not realistic …
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“Natural” Inputs

• Focused on functional aspects

• Inputs should be realistic

• Suffer from the oracle problem: what should be the expected 
classification or prediction for new inputs?
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Single-Image Test Inputs

• In the context of ADAS test inputs have been generated by 
applying label-preserving changes to existing already-labeled 
data (Tian et al., Zhang et al., 2018)
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Test Scenarios
• Most of existing research focuses on 

• Testing DNN components, not systems containing them

• Single inputs with label-preserving changes, e.g., to images

• Limited solutions accounting for the impact of object dynamics 
(e.g., car speed) in different scenarios (e.g., specific configurations 
of roads).

• Limited solutions regarding functional safety over scenarios. 

• ISO/PAS Road vehicles (SOTIF) requirements: In-the-loop testing of 
“relevant” scenarios in different environmental conditions
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Offline and Online Testing

• For many MLS, considering single inputs is not adequate. Sequences 
must be considered as context, e.g., images for steering angle DNN. 

• Offline testing is less expensive but does not account for physical 
dynamics and cumulative effects of prediction uncertainty over time. 

• How do offline and online testing results differ and complement each 
other? 20

Offline Online



Testing via Physics-based 
Simulation
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Simulation: Challenges

• How to effectively guide the simulator?

• Simulation is highly expensive

• Fidelity of simulation
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Test Adequacy Criteria

• Model testing of DNNs

• Goal: Assess test suite adequacy, guide test selection

• Can help devise minimal and fault-revealing test suites

• Require access to the DNN internals and sometimes the 
training set. Not realistic in many practical settings.
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Structural Coverage Criteria
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Chen et al. 2020

• Neuron coverage
• Many variants



Surprise Adequacy Criteria
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Kim et al. 2019

• Not structural
• Surprise Adequacy (SA) aims to measure the relative novelty 

(i.e., surprise) of a given new input with respect to the inputs 
used for training. 

• Assumption: DNNs are likely to be more error prone for 
inputs that are unfamiliar.

• DSA: Test inputs closer to the class boundaries are more 
valuable

DSA(x1) = a1/b1
DSA(x2) = a2/b2

DSA(x1) > DSA(x2)



Limitations

• Code coverage assumes: 

• (1) the homogeneity of inputs covering the same part of a program

• (2) the diversity of inputs to be indicated by coverage metrics

• According to Li et al. (2019):

• These assumptions break down for DNNs and adversarial inputs

• There is a weak correlation between coverage and misclassification for 
natural inputs

• Scalability and applicability for the most complex coverage metrics?
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Failures in MLS

• Model level: misclassifications, square error (regression) 

• Uncertainty inherent to ML training

• What is a failure then in an MLS?

• Expected robustness of MLS to ML errors 

• Failure at system level: Requirement violation

• MLS failures result from both ML mispredictions and 
effectiveness of countermeasures, e.g., safety monitors
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Example: Key-points Detection

• DNNs used for key-points detection in 
images

• Many applications, e.g., face recognition

• Testing: Find test suite that causes DNN 
to poorly predict as many key-points as 
possible within time budget

• Impact of poor predictions on MLS? 
Alternative key-points can be used for 
the same purpose.
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Oracles (1)

• How to identify misclassifications or mispredictions?

• Required for testing purposes

• It may be difficult to manually determine the correct outputs 
of a model for a (large) set of inputs

• Effort-intensive, third-party data labelling companies
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Oracles (2)

• Simulators can help automate the oracle, if they have 
sufficient fidelity. Common in many industrial domains. 

• Important: Mispredictions may be unavoidable, and accepted, 
e.g., shadows in images

• Minimizing the test suite is often the only option
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Practical Accuracy Estimation 
(PACE)

• Chen et al., TOSEM 2020: Minimizing test suites
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Simulation: Key-points Detection
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Simulation+DNN Examples
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ML and Functional Safety

• Requires to assess risks in a realistic 
fashion

• Account for conditions and consequences
of failures

• Is the uncertainty associated with an ML 
model acceptable?

• With ML, automated support is required, 
given the difficulties in interpreting model 
test results
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Explaining Misclassifications

• Based on visual heatmaps: use colors to capture the extent to which 
different features contribute to the misclassification of the input.

• State-of-the-art 

• black-box techniques: perturbations of input image

• white-box techniques: backward propagation of prediction score

• They require, in our context, unreasonable amounts of manual analysis 
work to help explain safety violations based on image heatmaps
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Research Directions
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Evaluating and Selecting 
DNN Test suites



Objectives

• Effectively and efficiently explore the space of possible 
DNN inputs to identify and characterize unsafe parts of the 
input space.

• The main motivation is to decrease the manual effort 
required for labeling test data.

• Black-box approach based on measuring the diversity of 
test inputs.

• The more diverse, the more likely they are to reveal faults
38



Extracting Image Features

• VGG16 is a convolutional neural network trained on a 
subset of the ImageNet dataset, a collection of over 14 
million images belonging to 22,000 categories.
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Geometric Diversity (GD)

• Given a dataset X and its corresponding feature vectors V, 
the geometric diversity of a subset S ⊆ X is defined as the 
hyper-volume of the parallelepiped spanned by the rows of 
V, i.e., feature vectors of items in S, the larger the volume, 
the more diverse is the feature space of S

41 Kulesza et al., 2012



Representative Results

• 60 subsets with size of 300 from MNIST

• Correlation between geometric diversity and faults: 

Spearman= 32.89%  p-value = 0.013

Pearson=29.91%  p-value = 0.027

• 60 subsets with size of 300 from MNIST

• Correlation between surprise adequacy coverage and 

faults: 

Spearman= 24.55%  p-value = 0.07

Pearson= 22%  p-value = 0.11
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Mispredictions vs. Faults

Misprediction rates are misleading 
to evaluate DNN diversity or 
coverage metrics
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Estimating Faults with Clustering
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# Clusters ~ #Faults



Summary

• How to define and compute diversity?

• Geometric diversity based on extracted features (black-box)

• Moderate, positive and statistically significant correlations 
between geometric diversity and faults.

• Coverage is not strongly and positively correlated with fault 
detection.

• We are approximating fault counts in DNN by applying 
clustering techniques. This could affect correlations. 
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Simulation-Based Testing of MLS



Objectives

• Effectively and efficiently explore the space of possible 
system scenarios to identify and characterize unsafe parts of 
the scenario space.

• Automate online testing

• Requires simulation with sufficient fidelity

• Scalability
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Example: ADAS Testing
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Automated Emergency Braking 
System (AEB)
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Test Approach
• We use multi-objective search algorithm (NSGA II).

• Objective Functions: 

• We use decision tree classification models to speed up the 
search and explain violations. 

• Each search iteration calls simulation to compute objective 
functions.
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1. Minimum distance between the pedestrian and the 
field of view

2. The car speed at the time of collision
3. The probability that the object detected is a pedestrian



Multiple Objectives Search
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Individual A Pareto 
dominates individual B if
A is at least as good as B 

in every objective 
and better than B in at 

least one objective.

Dominated by x

F1

F2
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x

• A multi-objective optimization algorithm (e.g., NSGA II) must:
• Guide the search towards the global Pareto-Optimal front.
• Maintain solution diversity in the Pareto-Optimal front.



Decision Trees
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Genetic Evolution Guided by 
Classification
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Engineers’ Feedback

• The characterizations (decision trees) of the different 

critical regions can help with:

(1) Debugging the system model 

(2) Identifying possible hardware changes to increase 

ADAS safety

(3) Providing proper warnings to drivers
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Key-points Detection

• Automatically detecting key-points in 
an image or a video, e.g., face 
recognition, drowsiness detection

• Key-point Detection DNNs (KP-DNNs) are 
widely used to detect key-points in an image

• It is essential to check how accurate 
KP-DNNs are when applied to various 
test data
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Example Application

• Drowsiness or gaze detection based on interior camera monitoring the 
driver

• In the drowsiness or gaze detection problem, each Key-Point (KP) may be 
highly important for safety

• Each KP leads to a requirement and test objective

• For our subject DNN, we have 27 requirements 

• Goal: Cause the DNN to mis-predict as many key-points as possible

• Solution: Many-objective search algorithms combined with simulator
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Overview
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Results

• Our approach is effective in generating test suites that cause the DNN to 
severely mispredict more than 93% of all key-points on average

• Not all mispredictions can be considered failures …

• Some key-points are more severely predicted than others, detailed 
analysis revealed two reasons:

• Under-representation of some key-points (hidden) in the training data

• Large variation in the shape and size of the mouth across different 3D 
models (more training needed)
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Interpretation

• Regression trees

• Detailed analysis to find the root causes of high NE values, e.g., shadow on the location of 
KP26 is the cause of high normalized (NE) values

• The average MAE from all the trees is 0.01 (far less than the pre-defined threshold: 0.05) 
with average tree size of 25.7. Excellent accuracy, reasonable size. 
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Image Characteristics Condition NE

! = 9 ∧ # < 18.41 0.04
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % < 17.06 0.26
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ 17.06 ≤ % < 19 0.71
! = 9 ∧ # ≥ 18.41 ∧ $ < −22.31 ∧ % ≥ 19 0.36

Representative rules derived from the decision tree for KP26
(M: Model-ID, P: Pitch, R: Roll, Y: Yaw, NE: Normalized Error)

(A) A test image satisfying 
the first condition

(B) A test image satisfying 
the third condition

NE = 0.013 NE = 0.89



Summary

• Effective search of the test input set based on evolutionary 
computing and machine learning.

• Mechanism to learn conditions leading to (safety) 
violations to enable risk analysis and improvements. 
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Surrogate Models

• Online testing, coupled with a simulator, is highly important in 
many domains, such as autonomous driving systems.  

• E.g., more likely to find safety violations

• But online testing is computationally expensive

• Surrogate model: Model that mimics the simulator, to a certain 
extent, while being much less computationally expensive

• Research: Combine search with surrogate modeling to decrease the 
computational cost of testing (Ul Haq et al., ICSE 2022)
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Safety Engineering in MLS



Objectives

• Understand conditions of critical failures in various settings

• Simulator: In terms of configuration parameters

• Real images: In terms of the presence of concepts

• Required for risk assessment

• Research: Techniques to achieve such understanding 
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Typical DNN Evaluation

• Example with images
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Identification of Unsafe 
Situations

• Current practice is based on manual root cause analysis: 
identification of the characteristics of the system inputs that 
induce the DNN to generate erroneous results

• manual inspection is error prone (many images)

• automated identification of such characteristics is the 
objective of research on DNN safety analysis approaches
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DNN Heatmaps
• Generate heatmaps that capture the extent to which the pixels of 

an image impacted a specific result

• Limitations:
• Heatmaps should be manually inspected to determine the reason for 

misclassification

• Underrepresented (but dangerous) failure causes might be unnoticed
• DNN debugging (i.e., improvement) not automated
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An heatmap can show that long hair
is what caused a female doctor to be 

classified as nurse [Selvaraju'16]



Heatmap-based Unsupervised 
Debugging of DNNs (HUDD)

Rely on hierarchical agglomerative clustering
to identify the distinct root causes of DNN errors in 

the heatmaps of internal DNN layers
and use this information 

to automatically retrain the DNN 
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• Classification

• Gaze Detection
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Heatmap Clustering
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Clusters identify different problems
Cluster 1

(angle ~157.5)
borderline cases

Cluster3
(closed eyes)

incomplete training set
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Summary

• Mechanism to group mispredicted/misclassified images 
whose error root causes are similar.

• This is a basis to better understand the root causes of DNN 
errors, assess risks, and retrain them to improve their 
accuracy.

• Current work: Black-box approach based on feature 
extraction
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Conclusions
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Testing Community

• It contributes by adapting techniques from classical software 
testing

• SBST

• Adequacy criteria

• Metamorphic testing

• Mutation analysis

• Empirical methodology for software testing
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Re-Focus Research (1)

• But, as usual, research is taking the path of least resistance 
but we need to shift the focus to increase impact

• More focus on integration and system testing for MLS

• Not only model accuracy, but model-induced risks within a 
system

• Safety engineering in MLS

• More focus on practical and scalable black-box approaches
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Re-Focus Research (2)

• Scalable online testing for autonomous systems

• Scalability issues due to simulations and large DNNs

• Beyond the perception layer, the control aspects need to be 
considered as well

• Beyond stateless models (DNN): Reinforcement learning …
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Testing in ISO 26262
• Several recommendations for testing at the unit and system levels

• e.g., Different structural coverage metrics, black-box testing

• However, such testing practices are not adequate for MLS

• The input space of ADAS is much larger than traditional automotive systems.

• No specifications or code for DNN components.

• MLS may fail without the presence of a systematic fault, e.g., inherent 
limitations, incomplete training.

• Imperfect environment simulators.

• Traditional testing notions (e.g., coverage) are not clear for DNN components.
83



SOTIF
• ISO/PAS 21448:2019 standard: Safety of the intended functionality (SOTIF).

• Autonomy: Huge increase in functionalities relying on advanced sensing, 
algorithms (ML), and actuation. 

• SOTIF accounts for limitations and risks related to nominal performance of 
sensors and software:

• The inability of the function to correctly comprehend the situation and operate 
safely; this also includes functions that use machine learning algorithms;

• Insufficient robustness of the function with respect to sensor input variations 
or diverse environmental conditions.
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