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Intrusion Detection. General intro and some

background:
= O-day attacks, Anomaly versus Sighature detection
= Scoring Metrics, Attacks and Datasets.

= An easy tool: RELOAD, Algorithms and comparison of
their performance

= Observations and questions addressed here

« Feature Selection

=  Meta-learning

= Performance with O-days

= Conclusions
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Cyberattacks, with their ability to evolve, obfuscate and hide
in between legitimate events, make them difficult +to
understand and analyse.

However they often leave some sign or distinguishing trace of

their presence. A signature - or fingerprint - of each known
attack can be derived and recorded.

R & o
"Not many clues, but we did
find this fingerprint."

Different possibilities for ML algorithms (supervised).
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» Zero-day attack or vulnerability

» Signhature-based algorithms cannot deal with them
— Until the signature of the new attack is added
— Could be too late: damaging actions already happened

Attack IT admin

Is Public/ Vendor Vendor Installs
launched Vendor Builds Distributes BEGEIUILE
awareness signature signature

Window of Vulnerability
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Corner cases??

m O Anomalies
: I’O

What if something Unknown pops up?

1 ANOMALY
We still assume that an attack Wloo o o= = -
generates observable deviations from an 2;:
expected - normal - behaviour. 4 N
TIME

This makes it possible to look and find patterns in data that do
not conform to the expected behavior of a system: such patterns

are known as Anomalies

] ) ) 1 ANOMALY
Detecting such anomalies allows protecting % 7N
against both known and zero-days attacks =

(and corner cases not already encountered in safety -

-~
D

critical systems) TINE
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© o, Anomaly Detection

Anomalies in data translate to significant, and often critical, actionable
information in a wide variety of application domains

— Dependability: Software errors, Misconfigurations
— Security: Malware, Attacks (e.g., DDoS/Ping Flood)
— Safety: unusual environment, corner cases, bad emergence in SoS

Anomaly detection refers to the problem of finding patterns
in data that do not conform to an expected behaviour’

' Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM computing surveys (CSUR) 41.3
(2009): 15.

Different possibilities for unsupervised ML algorithms.
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» The effectiveness of detection techniques are assessed
depending on specific indicators.

» We start from basics:

» Given a data item and the judgement of an algorithm we may have
one of 4 outcomes:

*True Positive (TP): erroneous
behaviour recognized as such.

Normal

‘False Negative (FN):
erroneous behaviour considered
normal

RCL
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© & Scoring Metrics (Il)

L%

S
» Such individual items populate the confusion
matrix on which metrics are derived

In our context Real Threat

>

© Precision
1) REAL NEGATIVES are much E o y
more than positives - R ; ?ﬁ X+y
2) Recall, Precision and their J: i T Vv
combination do not consider TN g | A
which is the most populated cell. S (J (';( e | Ay

3
. . Recall
Other useful (less biased) metrics are:
FSCOT'eﬁ (FB) = (1+’82)ﬁ2 -7 F — Score(2) F2 1 P LR
MOC — TP x TN — FP x FN |

R C L \/(TP+ FP)(TP+ FN)(TN + FP)(TN+ FN) Sk e
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Usage of Public Data/Tools.

04‘@ Attacks and (Public) Datasets

» Heterogeneous data sources, usual lack of documentation
and the different strategies used to collect data may limit
the understandability. Still public data and public tools
allows reproducibility.

» Our baseline data:

Dataset § % Dataset Features

Index Name Year ﬁ & Initial Ordinal
D1 ADFANet 2015 5 11 3
D2 CICIDS17 2017 4 85 75
D3 CICIDS18 2018 5 85 75
D4 CIDDS 2015 4 16 7
D5 ISCX12 2012 4 16 6
D6 NGDIS-DS 2015 7 9 2
D7 NSLKDD 2009 4 42 37
D8 UGR16 2016 5 13 7
D9  UNSW-NBI5 2015 8 45 38

RCL
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€, Mapping of Attacks and Datasets

Attack . Web Spam /
Category Malware  Web Attack Application Phishing (D)Dos BotNet  Data Breaches
ENISA Rank 1 2 3 4,6 5 7 8
NSL-KDD ur r2l DoS Probe
CTU-13 BotNet
ISCX12 BruteForce DoS. DDoS Infiltration
Backdoor. Analvsi
UNSW-NBI15 Worms Fuzzers Exploits. DoS —
Reconnaissance
Shellcode
UGRI6 Blacklist,  hos BotNet Scan
Spam
St Backdoor,
NGIDS-DS Avare. Exploits. Do$S Reconnaissance
Worms
Shellcode
. Neptune.
Netflow-IDS Mailbomb cpne
Portsweep
AndMall7 Ransomware. SMS.
Scareware Adware
PortScan,
CIDDS-001 BruteForce DoS ”
PingScan
DoS
CICIDS17 BruteForce (Slowloris. PortScan
Goldeneye)
BruteForce .
CICIDSIS (FTP. SSH) DoS. DDoS Bot Infiltration
LIV EREITIX
FIRENZ|

DimMal
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RELOAD: Rapid EvalLuation of
Anomaly Detectors

A tool specifically crafted with attacks and
errors datasets in mind to (among others)

- automatize analyses,
- help in devising the best parameter values
- allow fair comparisons, X

&
DB: id_kaggle - Alg: SLIDING_SPS (FIFO - 50) DB: id_kaggle - Alg: SLIDING_SPS (FIFO - 100) DB: id_kaggle - Alg: HBOS ELKI_KMEANS
| summary | DBid kaggle-AlgHBOS |  DB:id_keggle-Alg:ELKI KMEANS |  DB:id_kaggle-Alg'ELKILOF | DB: id_kaggle - Alg: SLIDING_SPS (FIFO - 20) |
commen sewes
L | Metric F-Measure |
R E i O A D Algorithm Best Setup Selected Features Attacks Ratio Metric Score
. HBOS BEST1-1 21 19.5% 074
Setup Path: Data Analysisq
Togetweine  [ensuRe ) Preferences Fie rekoad preferences
OupaFor [l = R ‘ — ‘ Loaders ELKL_KMEANS BEST1-1 21 19.5% 0.59
Feature Aggregation | PEARSON - Foser ‘
& Feature Selection E— ELKI LOF BEST1-1 21 19.5% 06
Fealure Selection Stralegies J — Create Loader Add Loader See Loaders
& Datasets Folder aasees
& Training — | L SLIDING_SPS (FIFO - 20) BEST1-1 21 19.5% 043
K-Fold Cross Validation |2 Loaders Folder inputioaders\

Sliding Pokicy FFO Algorithms

WidowSze  [10.20 Setup Foloer N — SLIDING_SPS (FIFO - 50) BEST1-1 2 19.5% 032
 Optimization Scores Folder ]
Open Optimizaiion Preferences | o Add Agorthm Open Agarthms SLIDING_SPS (FIFO - 100) BEST1-1 21 19.5% 0.07
o Evaluation [ Open RELOAD Preferences ]
HBOS ELKI_KMEANS BEST1-1 21 19.5% 074
C | RELOAD! |
Authors' Information and References L _—

UNIVERSITA
DEGLI STUDI

FIRENZE
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O Reload: Rapid EvalLuation of
=IO Anomaly Detectors (2)

- GUI; we tried to keep it as
simple as possible

- Includes 10 features
selection strategies, 17
algorithms, 11 metrics

- Includes the support for |-
meta-learners eSS

0 = . s 4 45 0 ss e e 70 75 80 85 %0 95 100 105
[W anomaly Series (Nor malized) W Nor mal Series (Normalized)

Zoppi, T., Ceccarelli, A., Bondavalli, A. Evaluation of Anomaly Detectors Made Easy with
RELOAD. ISSRE 2019 (Tool paper)

Zoppi, T., Ceccarelli, A., Bondavalli, A. Into the unknown: Unsupervised machine
learning algorithms for anomaly-based intrusion detection - Tutorial, DSN 2020

Downloadable at (GPL3 license): https://github.com/tommyippoz/RELOAD

MRS, UNIVERSITA
S DEGLI STUDI
R [ l “IRENZE
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O Extensive comparison of
=t 04‘@ unsupervised algorithms

RELOAD explm’red to investigate 17 algorithms
belonging to the main families

using the attacks datasets

_Clustering
e K_Mear.l.s.“."'., HBOS Classification
;_..'G-Means . quass SD
DBSCAN _____ Isolation Forest
L. IDCOF . LN mos /=~
............... 7
SDO (/ égi KNN FastABOD \ ABOD
* N Neural
e P O -Izﬂ_\l_ _ — =" Angle-based Network
Neighbour-based T —

R C L . ) (a first version of this study appeared at ACM SAC 2019)
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A sample of results

BAAvgMCC mAvgFl OAvgACC ®@#Best MCC
0.90 18

0.80 T Ins M1 16
0.70 IS | - —=— 14
0.60 T 12
0.50
0.40
0.30
0.20
0.10
0.00

Metric
Scores
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A
O . Attack driven Algorithm selection
e P N S

How to select algorithm(s) that maximizes
detection capability?

- We studied relations between attack families, anomaly
classes and algorithms

Implications:
- an unknown attack belonging to an attack family is

most likely o get observed by unsupervised algorithms
that are particularly effective on such attack family.

- Consequently, rules can be defined to select algorithms
based on "target” attack families

Fault/Attack Algorithms
Families g a

Anomalies
of a certain type ol | e
R C /A% % | FIRENZE
L 2NV | pmar
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© - Match algorithms to anomaly

J
-;m %Oi'i'e’ classes

We proceed in two steps:

- First, we run algorithms on synthetic datasets in which
collective, contextual and point anomaly are introduced

- Then, we execute on real datasets

0.90
0.80 B Point M Contextual B Collective _ Point Anomaly
0.70 | - I |
[}-6[} —|— T T T e T
:: " & \:E . e o
.

_ _ N Contextual Anomaly Collective Anomaly
HBOS K-Means LOF FastABOD ODIN SVM

Zoppi, T., Ceccarelli, A., Salani, L., & Bondavalli, A. On the educated selection of unsupervised algorithms via attacks and

anomaly classes. Journal of Information Security and Applications, Volume 52, 2020. \\\ﬁuﬂ UNIVERSITA
.-\/’f:: SN
R ( | s [RENZE
DIMAI
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Observations

» Unsupervised algorithms are supposedly good to detect O-
days but are much weaker than their supervised
counterpart for known threats... Sometimes too weak to be
useful at all

» Selecting and tuning an anomaly detector that minimizes
misclassifications for a given problem/set-up is a
substantial effort that requires to:

- i) gather all the informative features i.e., system indicators and other
measurable properties of the system,

- ii) choose an unsupervised algorithm and,

- iii) tune its hyper-parameters, to optimize its classification
performance.

RCL
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(f_ &, Questions explored here
BEEeE YoV

» Ql: Can I understand if the dataset at hand can be
satisfacorily dealt with using unsupervised algorithms
before doing all the work for selection and tuning??

» Q2: are there improvements on unsupervised learning
able to improve detection capabilities and reduce the gap
wrt supervised?

» Q3: is the unsupervised approach a proper and good
response for O-days?

RCL
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= ¢ Q1: Selection of detectors
smpme O QCJ@
A (o)

Selecting and tuning an anomaly detector that minimizes
misclassifications is far from easy.

To improve detection performance literature recommends
pre-processing features through filter-based or wrapper-
based methods

However, classification performance may still be not
adequate if the features do not contain enough
information.

In such cases the effort to identify the best anomaly
detector will end up wasting time and money.

SER, | prti stupi
SN 7 | FIRENZI
= \FHV= | pmar

LN MATEMUNIGA = IECRMATICA

RESILIENT COMPUTING LAB
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»
J . 143
(- Y Approach to Q1: exploiting features

» We conjecture the existence of a strong correlation between

- i) the scores that filter and wrapper-based feature rankers
assign to features, and

- ii) classification performance of anomaly-based intrusion
detectors that use those features.

» Goal is to define a function that, using scores of feature rankers
- before running any detector - predicts classification
performance of unsupervised anomaly detection algorithms.

» If the features do not contain adequate information,
misclassifications will be unacceptably high no matter the
algorithm used.

g%, | kL stupi
2 2 | FIRENZI
“0\ZH{ /= | DIMAI
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Predicting Classificators Performance
using Feature Ranking

» Our machinery to predict classification performance
* Here Regressor are already trained

Normalized | Feature .
Scores N§ | Data FD, m Metrics MET
|FD|=ns*n 1

ns Scores N
NSl—NS rl 4@{2}) pred_met,

Feature
Ranker FR,

Featil S Reg,(FD.met,
gature ns Scores
n Feature [~ —pa _;/ /_’
Radloers R Ranker FR, . NS7=NS(ry) ’t@ ored met,
p)
: : Reg,(FD,met,
Feature ns Scores K
’
Ranker FR, "# NS=NS(r,) /-’ @ pled met,,
Reg,.(FD.met,,

FIRENZL
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° . . . ™ =0 1N/
TET\
LISYIN

DiMAL
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(’_ Feature Rankers

o (o%
e
CE

>

o

We identify 8 feature rankers based on literature
reviews.

FR1. Chi-Square;

FR2. ReliefF identifies differences of feature values between
nearest neighbors;

FR3. Pearson Correlation between each feature and the label;

FR4. Information Gain measures the decrease in entropy when
the feature is given with respect to when it is discarded:;

FR5. PCA (Principal Component Analysis) analyzes the
relationships among features and seeks the principal components
through linear combination.

FR6 to FR8. 3 wrapper-based rankers based on Random Forests,
J48, and OneR. They train tree-based classifiers, measure the
impact that features have in building those trees or forests and
use it to rank features.

EC

. DEGLI STUDI
z | FIRENZE

AnERST, ERSITA
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©
= ¢ Regressors
LS

We chose Supervised Regressors

Supervised regressors build the RG set of ML algorithms
intfended to predict numeric values pred_met of a given
metric met.
We adopted

- Linear Regression (LR) and Additive Regression (AR),

- Support Vector Machines (SVM) with Quadratic kernel,

- KNN-kStar,

- Random Forests (RF), and

- Multi-Layer Perceptron (MLP)

all implemented in WEKA.

we choose regressors which rely on different mechanisms
as neural networks, ensembles of decision trees, and other
linear and non-linear ML algorithms.

g%, | kL stupi
2 2 | FIRENZI
“0\ZH{ /= | DIMAI
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,
( O To train the Regressors
(o)

6 s’reps to a) verify correlation between feature rankers and
classification metrics and b) build and train regressors RG to
predict classification performance.

- ML1. 12 public datasets elaborating on their features F. We also
extract 110 variants.

- M2.8 commonly used filter and wrapper-based feature rankers
Additionally, we define normalized scores NS.

- M3. unsupervised anomaly detection algorithms and metrics MET.
M2+ M3 M4 M5 Me6

12 Network IDS 8 Feature X
Datasets (plus Rankers FR it pSccnonm of 6 Regressors Chmcl;"a:air?:t!e(:?thms ~ @ g
110 Variants) . UE" thnsxsed / K‘J :i
) gm
N T
Expenmenls "' :

. / 8 trained | K{‘é?)

Execution (for —b- Regressors | =

'_’ : E w O A D —T each Dataset or / 8 Regressor Labels RG | :
- 3

ale | veimw

/ FD as ¥
(7) Unsupervised Choice of Algorithms : geangcb L’ Regressor “K@ =
Algorithms Parameters i_ata / Features oty
= A& e | T rcNZE
UL 80° IFIP wg 10.4 M T he | f Al & Dependability 24 Nl | pma,
o . . . . T N [ DIPARTIVENTO D!
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c pace .
= %4%? To train the Regressors-2
T lwo

- M4.apply each unsupervised algorithm to each of the 122 datasets or
variants, collecting scores of feature rankers and metric scores, and
the R-Squared correlation between them.

- M5.Results of M4 build Feature Data FD and maximum metric values
for each dataset, used as features and labels for the regressors.

- Mé.train each regressor using FD as features and different metrics
MET as labels. The best regressor for each metric met could then be
used to calculate pred_met values

M1 M2+ M3 M4 M5 Mo

12 Network IDS

8 Feature ' Choice of Algorithms ~
Datasets (plus Rankers FR Memc Scores of 6 Regressors e =
110 Variants) U:ls;pcrwsed Parameters FK@J 7

orithms
’\ E
/ Expenmen}s 8 e t{‘?) 03
Execution (for egressors | =
“ Py 2 E O é D _-.J each Dataset or 8 Regressor Labels RG :

i WV v.m)

FD as =
i Feature ~_K ) 2
(7) Unsupervised Choice of Algorithms Data FD chressor @ =
Algorithms Parameters Features BaTL

STUDI
Y8

rincNZE
. . : . .- *_'I:Zfﬁ;.‘-ill,'} \’T R—!ﬁMIﬁk‘HTODI
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Correlation

» R-Squared correlations between normalized scores of
individual (first 8 rows) or multiple (last 7 rows) feature
rankers and meftric scores (FPR, Precision, Recall, F1, F2,
Accuracy, MCC and AUC) obtained by running the set of
unsupervised detectors.

Normalized Score Feature Ranker(s) FPR Precision Recall F1 F2 Accuracy MCC AUC

S1 FR1 - Chi Squared  0.00 0.22 022 033 0.28 0.00 0.34 0.26

Si FR2 - ReliefF 0.01 0.07 0.04 0.07 0.04 0.06 0.09 0.09

S FR3 - Pearson 0.01 0.20 0.30 0.36 0.36 0.04 0.31 0.27

S FR4 - Info Gain 0.02 0.28 0.50 0.61 0.63 0.05 0.53 0.45

S1 FRS5 - PCA 0.01 0.00 0.02 0.00 0.01 0.05 0.00 0.00

S1 FR6 - RandomForest  0.00 0.12 0.10 0.13 0.13 0.00 0.14 0.14

S1 FR7 - OneR 0.09 0.00 0.02 0.00 0.02 0.68 0.01 0.00

S1 FRS8 - J48 0.02 0.17 0.32 037 0.39 0.10 0.30 0.24

S All - FR 0.11 0.49 0.62 0.81 0.80 0.72 0.78 0.67

s2 All - FR 0.11 0.47 0.59 0.75 0.75 0.58 0.71 0.60

S3 All - FR 0.17 0.44 0.56 0.69 0.70 0.67 0.65 0.54

S4 All - FR 0.17 0.43 0.55 0.68 0.69 0.69 0.63 0.54

{s1, s2} All - FR 0.25 0.62 0.66 0.85 0.84 0.76 0.84 0.73

{ s1, 52, s3} All - FR 0.35 0.64 0.72 087 0.85 0.83 0.86 0.77
{s1, s2, 53, 54} = NS All - FR 0.39 0.68 0.76 0.89 0.87 0.84 0.88 0.80

RESILIENT COMPUTING LAR 80° IFIP wg 10.4 Meeting: Topics at the Intersection of Al & Dependability 26



LS 04‘@ Regressors selection

The r'egr'essors were trained and then tested by submitting

i) FD as features and

ii) the value of one of the computed metrics FPR, P, R, F1, F2, ACC MCC
and AUC as label.

Average of relative residuals achieved for each metric.

Bold identifies the regressor that minimizes residuals.

Regressors were not able to predict FPR with satisfactory approximation

(residual bigger than 1!) while for the other metrics residuals are very

low and Random Forests is the one that achieves the lowest averagelll

FPR P R Fl F2 ACC MCC AUC

MLP 2410 .206 .290 .221 234 .035 251 .145
AR 1915 153 190 .194 194 031 196 .087
RF 1.644 112 .155 .132 J15 021 138 .071
LR 1.757 155 .237 210 213 .027 210  .095
kKNN 1.870 .129 .164 .186 155 .040 216  .105
SVM 1.532 .160 .185 .179 167 .024 186 .086.:11w, |

£ A DEGLI STUDI
= f FIRENZI
o : . 2\~ | pimal
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We used as Test Set 41 datasets or variants

» Computed and predicted F1 (left) and MCC (right) values for the
Random Forest regressors.

» The black solid line graphically plots perfect correlation and helps
showing residuals of each prediction.

VERSITA
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. Q2: Meta-learning

Often even the best unsupervised algorithm has too many
misclassifications to satisfy the requirements of a critical system.

Several studies suggest that meta-learners may lower
misclassifications.

However, this does not always result in improved capabilities: some
misleading  learners may drive  meta-learners  towards

misclassifications. U

Explore various meta-learning approaches with ensembles of
unsupervised base-learners

to see if and how some specific meta-learning approach may
significantly reduce misclassifications (with respect to non-meta
unsupervised algorithms).

YA V= | pimar
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(’. Categories of Metalearning

This prject has received funding
" Eurspean Ur rzoe,
2020 d

det the Mane Skoduskad

« Single Classifier (SC): Bagging, Boosting. build ensembles of
homogeneous base-learners, trained with different portions
or feature sets extracted from the training dataset.

« Multiple Classifiers (MC): Stacking (Generalization), Voting
(Weighted). heterogeneous base-level learners. aggregation
of individual results does not depend on the order.

« Multiple Classifiers with Ordering (MCO): Cascading
(Generalization), Delegating. heterogeneous base-level
classifiers. Final result based on subsequent operations
therefore depends on the order.

RCL

RESILIENT COMPUTING LAR 80° IFIP wg 10.4 Meeting: Topics at the Intersection of Al & Dependability 30



Meta Learners

Meta-Learner Category (Meta)Features Usage
Bagging SC Simple Widespread
Boosting SC Simple Widespread
Stacking MC Model-Based Uncommon

Stacking Generalization MC Simple, Model-Based =~ Uncommon
Cascading MCO Uncommon
Cascade Generalization MCO Rare
Delegating MCO Simple Rare
Voting MC Model-Based Common
Weighted Votin MC Model-Based, Uncommon
g g Statistical

RCL
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Our experiments
Biometric _ )
Authentication ; ‘?m‘fk ———
Datasets | Injection

Meta-Learmning Base-Leamner
Approaches Groups

. Peec
; v x
J 1 " | e ———
. ; sl v
Connecnon | Execution Lo | ] g
to Datasets { T T 2
N X Tl mcc
XV Xov e
L
! ‘ )
Choice of
Network IDS Unsupervised :
Debts Base-Leamers / Algorithms
Algorithms Paramelters

We performed a lot of experiments on our several dataset (including
biometric datasets not reported here) and with many basic and meta-learners
built upon the 17 unsupervised algorithms provided by RELOAD

i

We searched for optimal values of internal paramentes to maximise
detection performace of each

Then evaluated base learners and meta- Iearne_
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Performance of the Meta-Learners
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» Differences of MCC achieved by meta-learners on each dataset, wrt.
the MCC achieved by best unsupervised (non-meta) algorithm.

- Blank cells: meta-learner did not improve scores.
- Bold underlined cells optimal classifier(s) for each dataset.

2 e o8 g
a t g g £ . o _E|EF
o ST |2 2 w S P OPTE E ¥E 5t
2 ) 5 £ £ E8 £ = TSl egz
@ Dataset 2 = N 2 s E 3 BT » 8 9= 5 8
= s < = c S = S =& = 29 2 ==l a &
& = @ -] > % »n o »n o2 2 S O 2| = 2
| SRZ 5 N Sl &5

Q

S = =
DI ADFANet 0.98 0.002 | 0.006 0.004 3
D2 CICIDS17 0.91 0.02 1
D3 CICIDS18 0.90 0.08 10.10 0.08 0.07 0.09 0.09 6
D4 CIDDS 0.88 0.07 0.01 0.05 3
D5 ISCX12 0.51 0.01 [0.18 2
D6 NGDIS-DS 0.39 0.19 1044 0.15 0.24 0.12 0.13 0.15 7
D7 NSLKDD 0.79 0.002 ' 0.06 0.003 0.002 0.01 5
DS UGRI16 0.31 0.28 [ 0.28 0.27 0.27 0.2 0.21 0.21 7
D9 UNSW-NB15 0.57 0.08 [ 0.04 0.02 0.01 0.08 5
Times Meta Better Than Unsupervised 8 8 3 4 2 3 3 4 4

Times Meta Better Overall 3 7 0 0 0 1 0 0 FIRENZI
DIMAI
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Boosting outperforms base algorithms and other
meta-learners in 7 out of the 9 datasets
considered.

Adopting Boosting allows reaching the highest MCC
scores, consequently minimizing misclassifications.

Other meta-learners (apart Bagging) are not
even close to these numbers
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O Q3: detection performance in
“ O%tc,@ presence of 0-d ays

» We want to understand how well unsupervised
learning (and meta learning) performs in scenarios
where 0O-days must be considered.

» For this we set up 2 specific experiments
- i) to see how robust is unsupervised to O-days and
- ii) fo compare with supervised

e [ FIRENZI
2\ | pima
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Y Robustness to 0-days

» F2-Score and MCC scores of SDO, HBOS, COF boos‘ring
ensemble) and ODIN (bagging ensemble) on 8 differen
subsets of the SDN20 dataset. Each subset exposes
different types of attacks and zero-days in the test set.

. BASIC | Boosting | Bagging
Train Set Test Set BASIC: SDO| [TBOS COF ODIN
SDN2
0
2 2 2 2
subset Attacks AKIOWR |76 r0-Days | grae  MCC o, McC (P2 mce | (P2 mee
DoS, DDoS,
SDN20/ ~ DoS, DDoS, BFA, | pro\ "plope. ] 0060 0793 [0.932 0475 |0.995 0986 | 0.958 0.682
_full Probe, U2R U2R
Sl Do, Probe, U2R D‘}Jsélg"’be’ DDoS, BFA| 0928 0.799 [0.885 0520 [0.995 0.986 | 0.964 0.727
2 Do, Probe, U2R ] DDoS, BFA| 0909 0756 [0.920 0.550 [0.990 0.983 | 0.943 0.687
S3 DoS, Probe, U2R ] DDoS | 0973 0808 [0.941 0576 [0.998 0.992 | 0.955 0.705
s4 DDoS, BFA DDoS, BFA D‘i%llir"be’ 0956 0792 10.782 0.532 [0.989 0971 | 0.958 0.682
S5 DDoS, BFA D‘i%llir"be’ 0917 0733 10731 0472 [0.977 0947 | 0.913 0.699
S6 DDoS, BFA ] DoS, Probe| 0918 0737 0733 0472 [0.978 0.949 | 0915 0.697
DDoS, BFA ] Probe |0918 0734 [0.736 0477 |0.986 0.956 | 0.918 0.699
StDev | 0.025 0032 [0.096 0041 [0.008 0.018 | 0.022 0.0151,

S7 .
2 c L \ R DMal
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How far are unsupervised?

» MCC score and Recall-Coverage restricted to O-days for the best Supervised
algorithm, the best unsupervised algorithm, and the best Meta-unsupervised
algorithm (boosting).

Attack Types MCC Recall-Unknowns
= R= = g g 7 = g g @
z % 4| 28| 2 |5 2| 2 £ | £ 8
Dataset £ 2 |22/ 52| z | 5 |&5®| &z | & |5"™
= = |22&|ZE| 2| 2 |5:| £ 5|5
= s & | E|2E| Z| B |2¢%
° = > | = =
Patator, D DD
CICIDS17 atator, DoS, DDos, ; 0.00 [0.9996]0.9935{0.9959
PortScan Patator,
CICIDS17 DoS, DDoS, PortScan DoS, Patator 0.98 10.9818]0.574410.9356] 0.298 | 0.995 | 0.991
CICIDS17 Patator, DoS, DDoS DDoS, |PortScan| 11.17 [0.8497(0.595810.8634| 0.502 | 0.507 | 0.626
P DD
CICIDS17 atator, DDoS, PortSean | g | 17.72 0.7137]0.5539]0.5542| 0.326 | 0.385 | 0.566
PortScan
blacklists, nerisbotnet,
UGR anomaly-spam, dos, - 0.00 {0.9272]10.8115(0.8718
scan44
i - | blacklists, i
UGR blacklists, anomaly ) nerisbotnel ) 14 10.9079|0.8148{0.8684| 0.000 | 0.000 | 0.224
spam, dos, scan44  [nerisbotnet t
blacklists, nerisbotnet, [, anomaly-|[anomaly-
UGR 0.71 10.894710.8090[0.87021 0.000 | 0.000 | 0.000
dos, scan44 spam, dos,| spam
lacklist isbotnet
UGR blacklists, nerisbotnet, | scandd |4 | 557 1o 8739(0.8163 |0.8326 0.505 | 0.501 | 0.786
anomaly-spam, scan44
blacklists, nerisbotnet, I VERSITA
UGR scan44 9.17 10.542110.753310.67421 0.216 Qo9ﬂ;99’-,/_0 999

anomaly-spam, dos
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Y Conclusions
OOLOQC’@

Intrusion Detectors (IDs) to deal with zero-day attacks.

Overviewed Unsupervised Machine Learning (ML) and tooling (RELOAD) for
their assessment (including Datasets, Metrics, Parameters' Tuning)

- Predicting unsupervised anomaly detection algorithms performance using
Feature Ranking - before running any detector |

- Improving unsupervised anomaly detection algorithms performance using
meta-learning: in our experiments Boosting by far the best

- O-days: unsupervised very good in detection of O-days, also very robust
(very low standard deviation)

- Gap with supervised quite significant > we need to understand how to use
together unsupervised (meta) and supervised algorithms.

e [ FIRENZI
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