80th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance June 24, 2021

Security and Privacy for Distributed Optimization and Learning

Nitin Vaidya Georgetown University

disc.georgetown.domains -> Talks

Secret to happiness is to lower your expectations to the point where they're already met

- Hobbes (paraphrased)

Goals

- g Background
- g Problem formulation
- g Intuition

No theorems/proofs

Distributed Optimization

Rendezvous

Rendezvous

argmin $\sum f_i(x)$

Machine Learning

Data is distributed
 across different
 agents

- Data is distributed
 across different
 agents

Machine Learning

Minimize global loss

argmin $\sum f_i(x)$

argmin $\sum f_i(x)$

Gradient Method

$$f(x) = \sum f_i(x)$$

Gradient Method

$$f(x) = \sum f_i(x)$$

$$x_{k+1} \leftarrow x_k - \lambda \sum_i \nabla f_i(x_k)$$

Gradient Method

Distributed Optimization

- g Each agent *i* knows own cost function $f_i(x)$
- g Need to cooperate to minimize $\sum f_i(x)$

→ Distributed algorithms

Architectures

g Server maintains estimate x_k

g Server maintains estimate x_k

```
In each iteration
```

- g Agent i
 - **i** Receives x_k from server

g Server maintains estimate x_k

```
In each iteration
```

- g Agent *i*
 - i Receives x_k from server
 - i Uploads gradient $\nabla f_i(x_k)$

g Server maintains estimate x_k

In each iteration

- g Agent i
 - **i** Receives x_k from server
 - i Uploads gradient $\nabla f_i(x_k)$

g Server updates estimate

 x_k -

$$+1 \leftarrow x_k - \lambda \sum \nabla f_i(x_k)$$

Many Variations

- ... stochastic optimization
- ... asynchronous
- ... gradient compression
- ... acceleration
- ... shared memory

Challenges

Challenges

g Fault-tolerant distributed optimization

 $f_1(x) + f_2(x) + f_3(x)$

How to optimize if agents inject bogus information?

Challenges

g Privacy-preserving distributed optimization

How to collaborate without revealing own cost function?

Secure / Fault-Tolerant Optimization

2015 ...

Rendezvous

Rendezvous

Machine Learning

loss

g Server maintains estimate x_k

In each iteration

- g Agent i
 - **i** Downloads x_k from server
 - i Uploads gradient $\nabla f_i(x_k)$

g Server updates estimate

$$x_{k+1} \leftarrow x_k - \lambda \sum \nabla f_i(x_k)$$

g Server maintains estimate x_k

In each iteration

- g Agent *i*
 - i Downloads x_k from server
 - i Uploads gradient $\nabla f_i(x_k)$

g Server updates estimate

$$x_{k+1} \leftarrow x_k - \lambda$$
 Filtered—Gradient <

But what do we mean by fault-tolerance?

Fault-Tolerance

g Optimize over only good agents ... set G

Fault-Tolerance

g Optimize over only good agents ... set G

It Depends

It Depends

Independent functions "Enough" redundancy

Independent functions

"Enough" redundancy

Approximate

Independent functions

"Enough" redundancy

Exact

Approximate

An Example of Redundancy

n agents*t* bad agents

g Aggregate cost of ANY n - 2t agents has argmin identical to desired $\operatorname{argmin} \sum_{i \in G} f_i(x)$

Parameter Server

g Server maintains estimate x_k

In each iteration

- g Agent i
 - **i** Downloads x_k from server
 - i Uploads gradient $\nabla f_i(x_k)$

g Server updates estimate

$$x_{k+1} \leftarrow x_k - \lambda$$
 Filtered–Gradient

Norm Filter

g Clip the largest t norms to equal $t + 1^{th}$ norm

$$|\nabla f_1(x_k)| = 1$$
$$|\nabla f_2(x_k)| = 3$$
$$|\nabla f_3(x_k)| = 2$$

Norm Filter

g Clip the largest t norms to equal $t + 1^{th}$ norm

$$|\nabla f_1(x_k)| = 1$$
$$|\nabla f_2(x_k)| = 3$$
$$|\nabla f_3(x_k)| = 2$$

Filtered gradient = $\nabla f_1(x_k) + \frac{2}{3}\nabla f_2(x_k) + \nabla f_3(x_k)$

Norm Filter

g Clip the largest t norms to equal $t + 1^{th}$ norm

$$|\nabla f_1(x_k)| = 1$$
$$|\nabla f_2(x_k)| = 3$$
$$|\nabla f_3(x_k)| = 2$$

Filtered gradient = $\nabla f_1(x_k) + \frac{2}{3}\nabla f_2(x_k) + \nabla f_3(x_k)$

Exact optimum computed despite faulty agents

Another Example of Redundancy

Another Example of Redundancy

g Machine learning

g Agents draw samples from identical data distribution

g Filter on stochastic gradients

Relaxing Redundancy Requirements

Ideas also extend to a relaxed notion of

"enough redundancy"

Independent functions

"Enough" redundancy

Approximate

Several alternatives for approximation

argmin
$$\sum_{i \in G} f_i(x) = \operatorname{argmin} \sum_{i \in G} \frac{1}{|G|} f_i(x)$$

argmin
$$\sum_{i \in G} f_i(x) = \operatorname{argmin} \sum_{i \in G} \frac{1}{|G|} f_i(x)$$

g Ideal goal: Equal weight for all non-faulty agents

argmin
$$\sum_{i \in G} f_i(x) = \operatorname{argmin} \sum_{i \in G} \frac{1}{|G|} f_i(x)$$

g Ideal goal: Equal weight for all non-faulty agents

g Approximation: Unequal weights

Results

g For each faulty agent,
a good agent may be ignored → Weight 0

Results

g For each faulty agent,
a good agent may be ignored → Weight 0

g But remaining (n - 2t) good agents get "almost" uniform weight

n agents, up to *t* faulty

Results

g For each faulty agent,
a good agent may be ignored → Weight 0

g But remaining (n - 2t) good agents get "almost" uniform weight

n agents, up to *t* faulty

g Bad agents all get weight = 0

Parameter Server

g Server maintains estimate x_k

In each iteration

- g Agent i
 - **i** Downloads x_k from server
 - i Uploads gradient $\nabla f_i(x_k)$

g Server updates estimate

$$x_{k+1} \leftarrow x_k - \lambda$$
 Filtered–Gradient

Privacy-Preserving Optimization

2016 ...

Communication Leaks Information

Communication Leaks Information

Server can use gradients to infer polynomial cost functions (up to a constant)

Related Work

Our Approach

g Motivated by secret sharing & differential privacy

→ Add cancellable noise

Multiple Parameter Servers

Improving Privacy

Convex Sum of Non-Convex Functions

Convex Sum of Non-Convex Functions

 $p_{11}(x) + p_{12}(x) = f_1(x)$
Summary: argmin $\sum f_i(x)$

Acknowledgments

- g Lili Su
- g Shripad Gade
- g Nirupam Gupta
- g Shuo Liu
- g Connor Lu
- g Dimitrios Pylorof

Thanks!

A longer tutorial at

Results (Scalar *x*)

Can output

argmin $\sum_{i \in G} \alpha_i f_i(x)$

for some weights (α_i)

where at least (n - 2t) good agents have weight $\alpha_i \ge \frac{1}{2(n - 2t)}$