
https://www.dependability.org/wg10.4/






Performance

Dependability

Accuracy

Performance Accuracy

State-of-the-Art System Optimization with 
Performace vs. Accuracy Trade-Off 

(e.g., float32 => bfloat16)

Add Dependability to 
System Optimization







Data
Model Optimization

(performance) 
Model Creation 
(requirements)

Model Execution
(platform errors)

State-of-the-art system optimization with 
performance vs. accuracy trade-off 

(e.g., fp32 => bfloat16)

add dependability to 
system optimization



Main 

memory

Cache
In memory

Inference 

engines

MAC processing 

enginesMAC processing 

enginesMAC processing 

enginesMAC processing 

engines

Weight and 

activation 

buffers



https://d1io3yog0oux5.cloudfront.net/_9b8eafa09fdfe29a2b5075a02e147fa8/intel/db/861/8457/pdf/Intel-Blueprint-Series_11th-Gen-Intel-Core-Processors.pdf
https://d1io3yog0oux5.cloudfront.net/_9b8eafa09fdfe29a2b5075a02e147fa8/intel/db/861/8627/pdf/FINAL_3rd+Gen+Intel+Xeon+Scalable+Platform.pdf
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https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf
https://arxiv.org/abs/2102.11245
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf
https://arxiv.org/abs/2102.11245
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•Additional independent 
source of perception
•Extended field of view
•Different perception 

vantage points
•Extended compute and 

energy envelope
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Image Sources: https://www.geospatialworld.net/news/mobileye-join-hands-enable-crowd-sourced-hd-mapping-automated-driving/
https://wtvox.com/fashion-innovation/the-future-of-driving-with-v2v-and-v2i-technology/

Single car Infrastructure

vs.

https://www.geospatialworld.net/news/mobileye-join-hands-enable-crowd-sourced-hd-mapping-automated-driving/
https://wtvox.com/fashion-innovation/the-future-of-driving-with-v2v-and-v2i-technology/




How to implement a system that can monitor & recover function : 
• requiring significant less complexity 
• not decreasing availability of the primary channel

Checking for correctness easier than 
calculation of the correct result 
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Perception 

Monitor
Sensor 

Checks [2]

Plausibility 
Checks [3]

https://www.mobileye.com/responsibility-sensitive-safety/
https://ieeexplore.ieee.org/iel7/9304518/9304528/09304571.pdf
https://arxiv.org/pdf/2009.14756


Static Occupied Cells
Dynamic Occupied Cells
Free Cells
Unknown

[1] G. Tanzmeister and D. Wollherr, “Evidential Grid-Based Tracking and Mapping,” 
[2] D. Nuss, et al., “A random finite set approach for dynamic occupancy grid maps with real-time application”
[3] Christopher Diehl, et al. “Radar-based Dynamic Occupancy Grid Mapping and Object Detection”, ITSC 2020

• Promising results in cluttered & dynamic environments
• Fusion of Lidar [1][2] and Radar sensor[3] information
• Classical algorithm – redundancy towards ML algorithms

[3] 
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Object Verification

Objects
• Position
• Velocity
• Dimension

Sensors
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True Positives False Negatives

ITSC2020 – Towards Online Environment Model Verification | Cornelius Buerkle, Fabian Oboril & Kay-Ulrich Scholl



Objects
• Position
• Velocity
• Dimension

Calculate similarity / distance of velocity 
distribution of each cell in object region with 
velocity distribution of object

Sensor checks Plausibility checks
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https://arxiv.org/abs/2009.14756
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Results – Plausibility checks velocity 

• Increasing speed error faults dv injected. Here, dv 
= 0 means no faults injected

• Recall ~ 0.98 and Precision ~ 0.98 with the given 
parameters for dv ≥ 3m/s (or ~11km/h)

• False positive rate (FPR) in absence of faults ~ 0.5%
• Measured against ground truth, where avg velocity information 

estimates were added (pos diff over time from last time step).
• Rather insensitive to speed error.

Chance of error injection per vehicle and time step: 0.25
Scenario time: Nuscenes clip of ~125 time steps
Time intervals: ~0.2s



AD Application Level (SYSTEM LEVEL)CHIP LEVEL

Powerful computing  e.g.
to master perception challenge

BOARD Level

Safety Monitoring (Doer/Checker) for 
systematic and random hardware faults

Powerful Computing and Accelerator

High integrity and availability requires 
simple approaches

Simple Checker App. –
e.g. Responsibility Sensitive Safety (RSS)

Complex AD Stack  (with AI like DNN in 
perception, powerful multi-level )

Main lane 
Main function
Main value

ASIL decomposition

Monitor lane 
Safety function
Safety value 

Intelligent diagnostic 
& monitoring

MonitorReliability Integrity Robustness
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