

https://www.dependability.org/wg10.4/

Overview of Two Related Topics

1. Resiliency: dependable Al/ML considering platform faults
2. Monitoring: safe perception

Dependability Research Lab inter Ia bS 2



Accelerators
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Dependability as Integral Part of Machine Learning
System Optimization

Dependability

Performance

Add Dependability to
System Optimization

State-of-the-Art System Optimization with
Performace vs. Accuracy Trade-Off

(e.g., float32 => bfloat16) Performance

Dependability Research Lab inter Ia bS 4



Research Questions?

= Dependability:
* \WWhat are the faults and failure modes to consider?
* |s dependability really a problem in machine learning?
= What is the target? 1057 range for hazards? Failures due to silent data errors?
= Can we trust Al/ML at all? Diversity arguments? Safety monitoring?

= Cost: overhead runtime and development
= Canitbe nearly free?

Dependability
= How to automate? .

= Balance: the guest for win-win situation f \

= |s there an optimal balance?
= Monitoring versus generalizability”? e )
Dependability Research Lab inte”abs 5
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From Data to DNNs (CNNs) to Execution

model
implementation

model impl.

“near” ideal model
(errors dueto

(requirements/ spec)

wmgane sp
- iJ.-‘E ,'.'Eg Hidden layers
ai2%d a2
-
R Sann o7 ] \ L =
) HEE. < (11 P ,
Enfaen e \ X7 / )
2o W HR e e
Lminm WY 'l 1
AEEGLE =RE
EEEE{ ( . E!
= BRAEs O 1 ol
(el [ Tais 5 Y w4 UnCertalnty
6 BT PR
bt i a’d E
f eiRiom 24 g epistemic
DUR W oz EE DLt Low opistemic
gEEeR Bl o eag I e o s oo
H. M D@ BEINI ning - :
5 5l # 2 D RERTRE RETL - L,
EDaea” Ba MERE s B
BT D ] sl - -

data uncertainty:
statistical fluctuations,
randomness

model uncertainty, bias, lack
of knowledge, conflict,
imprecision, incompleteness
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Summary

Model Creation Model Optimization Model Execution
(requirements) (performance) (platform errors)

| MOVIDIUS
inside’
=

Dependability
add dependability to
Performance “ system optimization ' ‘
State-of-the-art system optimization with
performance vs. accuracy trade-off Performance “
(e.g., fp32 => bfloat16)

Dependability Research Lab
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Common Elements in Intel CNN Al/ML accelerator HW
CPU extensions, GPGPU, VPU, ..

OOOOOOOOOO

pooling
3
L
= 1 i é 5
—
X 6@14x14 —D
4 S2 feature map r_——7

16@5x5

28x28 image 6@28x28 16@10x10
C1 feature map @ C3 feature map S4 feature map

£ .

Protection: memory
detection or correction

Protection: protection effectiveness <> performance !
| |
I (X < :

Dependability Research Lab inter Ia bS 8
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Accelerators in Practice
Tiger Lake and Ice Lake

= Tiger Lake with Intel X® accelerator

* |ce Lake: Advanced Vector
Extensions (AVX)

3rd Gen Intel® Xeon® Scalable Platform

2nd Gen Intel® Xeon® Scalable 3rd Gen Intel® Xeon® Scalable

Foatins Processor (Cascade Lake) Processors (Ice Lake) Notes
Cores per Socket 4-28 8-40 New Sunny Cove architecture
L1/L2/L3 cache per core 32KB/1MB/1.375MB 48KB/1.25MB/1.5MB Larger caches to enable fast access to

data

Memory Channels
and DIMM Speed

6
Up to 2933

8
Up to 3200

Huge boost in memory bandwidth &
support for Intel® Optane™ PMem

200
Processgr Interconnect: 20r3,.10.4 GT/s 20r3,11.2 GTls Improved bandwidth between
UPI links, speed processors

2x bandwidth and more PCle lanes to

PCle lanes per socket PCle 3.0, 48 Lanes (x16, x8, x4) PCle 4.0, 64 lanes (x16, x8,x4) support new Gen 4 SSD, Ethernet and

other adjacencies
AVX-512 AVX-512, VNNI, DDIO
Weikload Acceleration Instructions VNNI VAES, vPCLMULQDQ, VPMADDS52, Enable new capabilities and speedup
DDIO VBMI, PFR, Crypto, SHA extensions, performance

TME, SGX
Intel® Optane™ PMem 200 series,

Intel® Optane™ P5800X SSD, Intel
DC P5510 SSD. Intel E810-C ethernet

Faster, Store More, Proces

Platform Adjacencies

Designed to M

Performance made flexible.

source: 3rd Gen Intel Xeon Processor on intc.com

DRL

Dependability Research Lab

Introducing 11th Gen Intel” Core™ Processor

New Willow Cove Cores
Up to 4 Cores / 8 Threads
Up to 4.8GHz

New Iris® X¢ Graphics
Up to 96EU — Up to 2x Higher Performance
Intel” Deep learning Boost: DP4A for Al

New Converged Chassis Fabric
High Bandwidth / Low Latency
IP and Core Scalable

New 2x MEDIA Encoders
Up to 4K60 10b 4
Up to 8K30 10b 4:2:

New Memory Controller
LP4/x-4266 4x32b up to 32GB
DDR4-3200 2x64b up to 64GB

New 4 x Display Pipes
Up to 1 x 8K60 or 4 x 4K60
DP1.4 HBR3, BT.2020

1¢t Integrated Thunderbolt™ 4
Full 4x DP/USB/PCle mux on-die
Up to 40Gbps bi-directional per port

New Image Processing Unit (IPU6)
Video up to 4K90 resolutions (initially 4K30)
Still image up to 42 megapixels (initially 27MP)

Thunderbolt 3

New GNA 2.0

Enhanced Power Management
Autonomous DVFS

15t Integrated PCle Gen 4 (CPU)
Low Latency, High Bandwidth
SSD or Discrete Graphics Direct CPU Attach

For more complete information about performance and bencl

Low Power, High Performance
Intel” Iris” X® Graphics

New X®-LP microarchitecture
Up to 96 EUs
Up to 1.35 GHz

2X bandwidth
memory fabric

New high-efficiency thread control
with software score boarding

Up to 48 texels/clock
Up to 24 pixels/clock

New 8-wide vector units with

support for Intel” DL Boost: DP4a End-to-End Compression

New L1 data cache
Up to 3.8 MB L3

PIXEL BACKEND l PIXEL BACKEND. I PIXEL BACKEND

L3 CACHE
===

Variable Rate Shading

e information about perfc on details in section 4)

37

source: 1lth Gen Intel Core Processor onintc.com
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https://d1io3yog0oux5.cloudfront.net/_9b8eafa09fdfe29a2b5075a02e147fa8/intel/db/861/8457/pdf/Intel-Blueprint-Series_11th-Gen-Intel-Core-Processors.pdf
https://d1io3yog0oux5.cloudfront.net/_9b8eafa09fdfe29a2b5075a02e147fa8/intel/db/861/8627/pdf/FINAL_3rd+Gen+Intel+Xeon+Scalable+Platform.pdf

Fault / Error / Failures

DRL Dependability Research Lab Intel Confidentia intellabs 1©



Hardware Faults — Error - Failures

current/voltage pulse does not result in error no error

e ronsient o~ T T T T T T T T T S S TS T S e E TS
i - - Core: NMOS Dielectric Reliability seu
H . in Single bit upset
t aging effects - N —
operation U e na e oo
U 1LE+OT digital single muit.cell upset \ mult-bit upset
oo
) 1E+06 “miff"ﬂm-< SERl mg:ffm.
widespread -— S
E TE#04 - a32nm Logic mm e P e /.m ,:sf:,,mm
Non-destructive

burn-in

[

-

o

q_) 1 1 . . = 1E003 22nm Logic

5 thinking Sightings / errata / o | T et
— |d ea I . rEey | TmmERC dngle eifbgk::\ Destructive

@O known Issues M e SEHE
= e SEGR/SEB single event hord
o * SoC: same reliability as corresponding Logic node shgle event gate rupture/slngle event bura-out o
. database + Strong reliability gains on both Tri-gate technologies INTIALRADIATON EvEnT E—  IMPACTATGRCUIT LEVE, S— Soeor o
time Copyright JEDEC.

TRANSIENT

STUCK-AT OPEN BRIDGING
ERROR CIRCUIT ERROR
ERROR

SINGLE EVENT ‘ SINGLE EVENT MULTIPLE MULTIPLE
HARD ERROR : \ TRANSIENT, CELL BIT
(LATCHUP) UPSET UPSET UPSET

production (reliability, DPM)
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Dependable Al / ML - Resiliency

High-Performance Computing  Safety-critical Applications

c Input CNN for Image Classification Program
O Image Output
+ 3 dlge G888
Tensorflow Q- Input % % % % % % lq;{ Output
' o " .. .. L,
OPyTorch @ S S 3 S s 57T
@ c cc c c c O
0 G 00 0 0 O e
® - ONONE) 00O O
>
o &
£ =
< 2 !
o) :
& ¢ E [ enennermives ]
@ \-g E or:;XPI
(0 e
£ 5
1 7
| |
oneAPI
E 5
£ 2
LG —
o T

System View
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Dependable Al / ML - Resiliency

High-Performance Computing  Safety-critical Applications

e Input CNN for Image Classification Program
g Image Output
= 566 068686 o
Tensorflow Q- nput | @ @ @ ®® ® 0| output
go] > HEHN .. BEE. . B .
OPyTorch @ S S 3 S s 57T
o c cc 11 B
m 0G0 11 B
® OO0 00O
z =
) =
£ =
5% l
& 5S¢ & [ eneonnprmives ]
@ ..._g E oneAPT - >
L 5 =
2283
oneAPI £ 82
[0} — E 00
€& O £ O
— | - (0]
S = S0 3
0T
System View Dependability Threats
B~ Dependability Research Lab inl:elwlabs 13




Dependable Al / ML - Resiliency

High-Performance Computing  Safety-critical Applications

dependability / reliability target
—7

e Input CNN for Image Classification Program
g Image Output
9 556 686 o
TensorFlow % Input EEE E _lr>ls~ E{ QO | Output
OPyTorch 9 " EEE T EER-E[
© ccc ccc o
sl 360 6o Y
® o OO0 ©OO
z =
(@) —
c >
5% l
& 5S¢ E [ enebnnermitves ]
@ ..._g E oneAPT - >
© 5 = c =
D_ - —
1 °° =275
oneAPI S €95
0] - = C ® (0] .
£ 5 o =42 € 5 Influence Hardware Protection
S 3 o 3 S =
i v 85
O T QT
System View Dependability Threats

Error Impact Estimation Influences Hardware Protection

B~ Dependability Research Lab inter labs 14




Dependable Al / ML - Resiliency
High-Performance Computing  Safety-critical Applications
Dependability Means

c Input CNN for Image Classification Program
O Image Output
+ 3 EEE EEE B 5 &
TensorFlow o Input GG ARG § Output 5 o
' o] o ] D g = O & @
OPyTorch  § 11 B 11 Bl gl acl
© c cc =l =l = O O =
o 000 11 B
® - OO0 00O © £
z =
O =
£ = l
o . .
e 2 co 4 e ¥ Tooling / Middleware 1
& 58 5 [ enconnprmitives ] e 5873 .
55 3 s £ g%ﬁ OpenVIN® oneAPI
{ =9 2833 ; Resient
oneAPI £ g 5 3
(0] - = C ® (0] .
s - O F =¥ € 5 Influence Hardware Protection
o =2 o =2
5 TN 5P
= 0T
System View Dependability Threats Details on Dependability Means

Research Question: Mitigation Mechanisms at SW & Tooling Level
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Dependable Al / ML - Resiliency
High-Performance Computing  Safety-critical Applications
Dependability Means

c Input CNN for Image Classification Program c Robust DNN Architectures
g Image Output - c g
LA EEE ERE B . O __ 09 2 1 - R
TensorFlow % Input oo ® T Q | Output 9 -6 '8 ko % example Eﬁ EE ’a;
OPyTorch 3 all | Bl | OB ’ -0 g O o md | B ] | B mdi'%d
o c cc ccc o Ll e = 8 1 10
M QO 0 O 0 0 O e c m 88 S8 &
® OO0 ©OO©O © o
zZ = S
= l
© . .
e 2 co p e ¥ Tooling / Middleware 1
& 585 & [ oneonNprmitves ] L s 583 y .
85 g s £ 8 Er OpenVIN® oneAPI
I S838% ® S “Resilent
oneAPI £ g 5 3
(0] - = C ® (0] .
s - o =42 € 5 Influence Hardware Protection
Sz 5o 3 Sz
"(E = o/ E =
= 0T
System View Dependability Threats Details on Dependability Means

Research Question: Resilient Networks
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Range Supervision
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‘Independent” Additional Info?

information related to “safety” (ranger bounds)

Intput > » Output

I Activation Function

Used to extract
activation value ranges

Neuren

LN EERRENI T lﬂl"\l Hxlﬂﬂ“l@ 1:‘!“05!.!—('\,
W £ A FRAL rals Rllﬁ G:!

. SGxdnclas
SOCENE SAREERAENE e £ OSUNE § 0800E
P b A e e T
E- s HEEe s 190 NG ImAY L oare L

enforce ranges

"lznnmneﬁnﬁ“gn-cs:a !Ai==
‘SR SONEL GadENEEZOA BOR E SaRE 0.
‘BRONOIESOT HEW OA-A0c k<. SHAnOnsCe

. convolution pooling dense
convolutiol

pooling dense

dense

o oEed
‘:35&;‘5&3““9.'-‘«“;:3‘;5%&
RONELR Bh deee AR ; ALAES . THAT

=

1
1
120 - F5 full

84 - F6 full

—
] 0

Usedto train — 2 —
= S2 feature map |—- 16@5x5
28x28 image 6@28x28 16@10x10
C1 feature map C3 feature map SO S k
‘ =
- \
Encoded: (= =) A
M S AN/ < N
Nl B
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Chen et al 2020 (“Ranger”)

Ranger — Intuition (l) e

Hoang et al, 2019 (“ClipAct”)

No fault Weight fault
(a) No protection (c) Ranger
It 7.5 r 10
2000
F 5.0
5
Convl L 25 1000 - J
Relu Loo Lo — e 0
Correct classification Mis-classification Correct classification Ranger [}-20 - =l 2
(fault-free) (fault occurs) (fault occurs) MaxPool fo00 [ ] .
Ranger [0 8 - 2000 -
gl
Conv2 L, 3 o - .
Relu 'c
Ranger | 20 %) 4000 15
MaxPool " E 5000 10
Ranger 9 =
Reshape B 0 Lo
Ranger b5 .2 L 3000
U 10
L1 L2  Output Fc1 [ < 2000
Relu >
i . ; h L i Ranger Lo
i * Signficant error P Insignificant error H o
(resultin SDC) i i (tolerated by DNN and not result in SDC) fell o4
_____________________________________________ T Ranger 02
FC3 | L 0.0
01 2 3 45 6 7 8 9 ' 01 2 3 456 7 8 9 ) 012 3 45 6 7 8 9 ’
Classes

= |nsert customizable protection layers (“Ranger layers”) for activation range restriction
=  Bound extraction from an independent dataset (e.qg. training data)
= No retraining of parameters needed

BIX{Il Dependability Research Lab intell |a bS 19




Distribution of accuracy results in 500 epochs:

myg o= NoRanger
Ra nger — I ntu It ion I I Faults: 1 Faults: 3 Faults: 10
500
400
0.75 Jpy mmmmmmmomm o —— Ranger
/ —}— NoRanger 5 300 2] 9
Accuracy g g g
inthe Accuracy g g g
= 200 hat =
absence  0.70 A recovery wrt
of faults baseline
> 4 100 A
v y
o
g 0.65 - Accuracy re oM - - 1 - -
© 0.4 0.6 0.0 0.5 0.0 0.5
— wrt unprotected . accuracy accuracy accuracy
o) system
2 Ranger
0.60 - Faults: 1 Faults: 3 Faults: 10
500 A E E
400 -
0.55 A
g 300 o 9
0 2 4 6 8 10 g g g
faults 200 7 -
* Large fault injection space: 1 weight fault in conv layers means fault 1001
rate of ~6.7e-8.
g . 0 u T T -
* Ranger mitigates the detrimental effect of faults per epoch by 04 06 0.0 0.5 0.0 05
accuracy accuracy accuracy

eliminating “outliers”, and shift bulk towards maximum accuracy
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Hoang et al, 2019 (“ClipAct”)
Geissler et al., 2021 (AlSafety workshop, accepted)

Range restriction alternatives

Corrupted feature map

No fault Weight fault Weight fault
(c)Ra (d) Clipping (e) Rescaling (f) Backflip (g) Fmap

(a) No protection

75 7.5
2000
5.0 5.0
Convl 2.5 [ 1000 25
Relu 0.0 Lo 0.0
Ranger 20 15
MaxPool 4000 10
Ranger 10 $ - 2000 5
e
Conv2 Lo 3 o o
Relu =
< 15
Ranger 20 %’ 4000
£ 10
MaxPool o o 2000 ,
Ranger 9
Reshape 0w 0 0
52 | 3000
Ranger pras} 7.5
FC1 10 2 2000 50
Relu s 1000 2.5
Ranger Lo o] 0.0
FC2 » Lo.3 o o3 0.4 y 04
Rel [ ! .
elu 02 0.2 02 0.2
Ranger Lo L o1 Fo2 01 0.2
FC3
L oo 0.0 L o0 0.0 0.0 0.0 0.0
01 23 456 7 809 01 2 3 456 7 89 012 3 4 56 7 809 012 3 45¢6 7 89 01 2 3 45 6 7 89 01 2 3 456 7 8 9 01 2 3 456 7 8 9
Classes
Goal is to restore the topology of feature maps after a soft error.
0 a2 "
BIX{Il Dependability Research Lab |ntel |a bS 21




Some Ranger Findings

* |fbounds are extracted from appropriate data, there is almost no reduction
of the baseline accuracy.

* |mpact depends on data representation: For FP32 and the given setup,
almost all misclassifications happen due to flip in the MSB.

* Error detection: Strong correlation between out-of-bound events and
misclassification. Range supervision provides very high recall (>0.99),
precision can be lower (>0.82) due to false positives.

» Error mitigation: Very high, especially Clipper/Backflip. SDC rate is
reduced by up to ~b0x, to <0.5% in the studied setups.

 Some details @ Geissler et al. Towards a Safety Case for Hardware Fault Tolerance in
Convolutional Neural Networks Using Activation Range Supervision, AISafety WS 2021

* Overhead: practically for free in practical scenarios

Dependability Research Lab intelk Ia bS 22



Dependability

/ \\ Summary & Outlook (Resiliency)

Performance | I

= Dependability: some faults are real
(see also recent publications [1, 2])

! =

= Cost: automation and low overhead key to
acceptance

= Software and tools play a larger role these days =~ sowution  [EER

= Opensource and open languages
= Libraries oneDNN / oneAP 1 £

oneAPI oneAPI

= Cross-architecture languages, compilers, and tools  Intel® oneAPI DPC++/C++ Compiler and Runtime

= DPC++ =[S0 C++ and Khronos SYCL™ and community
extensions

= OpenVIN® tool Clang/LLVM
= Researchers can engage in open source push

Special thanks goes to DRL team and Karthik Pattabiraman ‘ ’ * ’

CPU GPU FPGA S
[1] https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf [2] https://arxiv.org/abs/2102.11245 Accelerators

DESIGN

ARCHITECTURE

DPC++/C++ Source Code

DPC++/C++ Runtime

B~ Dependability Research Lab intel labs
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https://arxiv.org/abs/2102.11245

Monitoring for Safe Perception
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Safe Perception - Monitoring

= Perception in complex environment with multi-level
approaches to improve safety:

. Application-level context (view angles,
infrastructure involvement, ...)

: System-level context (diverse space and object
representation, sensors, monitors, ...)

Dependability Research Lab intelh Ia bS 25



Largest Benefits from Infrastructure
VS. single automated car

Single car Infrastructure

ol
¢ a1

* Additional independent
source of perception

* Extended field of view
* Different perception
vantage points

* Extended compute and
energy envelope

https://www.geospatialworld.net/news/mobileye-join-hands-enable-crowd-sourced-hd-mapping-automated-driving/
https://wtvox.com/fashion-innovation/the-future-of-driving-with-v2v-and-v2i-technology/

Dependability Research Lab intelw labs 26
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DRL

Providentia++ A= SEoR w T fortiss

= Basis of the digitalized
highway of the future:
Real-Time Digital Twin
for Smart Highway &
Smart City

» Benefits:

Electrical '

* Real life use case for W/ <onetforedee
dependability work o

» Test bench for work of Intel Labs (ASMRL & DRL teams)

= Work with IO TG Autonomous Transportation and Infrastructure

Dependability Research Lab

V2 HUAWEI £ = =2 |nte| e TI.ITI -

intel labs
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DRL

Primary
Space

Monitor '

Space

Monitor Architecture at Board Level
with Application and Application Monitor

How to implement a system that can monitor & recover function:

 requiring significant less complexity
* not decreasing availability of the primary channel

» Planning »

Y RSS[1] [
Checks [2] [ Checking for correctness easier than J

calculation of the correct result

SJi0lenloy

Correct
Primary
Space

Plausibility
Checks [3]

[1] https://www.mobileye.com/responsibility-sensitive-safety/
[2] https://ieeexplore.ieee.org/iel7/9304518/9304528/09304571.pdf
Dependability Research Lab [3] https://arxiv.org/pdf/2009.14756 intel labs
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https://www.mobileye.com/responsibility-sensitive-safety/
https://ieeexplore.ieee.org/iel7/9304518/9304528/09304571.pdf
https://arxiv.org/pdf/2009.14756

Dynamic Occupancy Grid

Bl Static Occupied Cells

B Dynamic Occupied Cells
[ ] FreeCells
[ ] Unknown

* Promising results in cluttered & dynamic environments
* Fusion of Lidar [1][2] and Radar sensor[3] information
* Classical algorithm — redundancy towards ML algorithms

[1] G. Tanzmeister and D. Wollherr, “Evidential Grid-Based Tracking and Mapping,”

[2] D. Nuss, et al., “A random finite set approach for dynamic occupancy grid maps with real-time application”
[3] Christopher Diehl, et al. “Radar-based Dynamic Occupancy Grid Mapping and Object Detection”, ITSC 2020

DIl Dependability Research Lab
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Sensor Checks - Position

Sensors

Object Bounding Box
& state covariance

BIX{Il Dependability Research Lab

4

Dynamic Occupancy Grid

y

Object Grid

&
DD

Consistency

4

Conflict

Objects
* Position

* Velocity
e Dimension

Object Verification

'Tf

True Positive False Positive

False Negative

intel labs =0



Results: True Positives & False Negatives

2.5
Objects in scope Missing Objects
Correct Confirmed - - - - Missing Objects Detected - - - -
2 — B 2 -
2 s
i g
c ‘s
v 2
o o
L _ Qo 1+ .
g ! E
=] 35
= =
0 J ) | Ok===eeweeeaue . . . . 0000000000000 0000000000000 |
Time Time
True Positives False Negahves

> ITSC2020 — Towards Online Environment Model Verification | Cornelius Buerkle, Fabian Oboril & Kay-Ulrich Scholl

BI=M Dependability Research Lab intelk Ia bS 3l




Objects
Position

Velocity checks Velocity

Dimension

Sensor checks Plausibility checks

Calculate similarity / distance of velocity
distribution of each cell in object region with
velocity distribution of object

a Prediction1
Vo =

Position, Position,

occupancy grid velocity information V' (() Correct Velocity

e G @

Vo Predicti
Position, rediction, Position,

y ocity 3, False Velocit
object velocity 3, (o) https://arxiv.org/abs/2009.14756 ’
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https://arxiv.org/abs/2009.14756

Time intervals: ~0.2s

Results — Plausibility checks velocity |ssmmes s

0.04 T T

- T —

Precision
Recall

0.035 1

0.03 1

0.025 1

0.02 1

false positive rate

0.015 1

0.01 1

0005F S o I

dv

* Increasing speed error faults dv injected. Here, dv
= 0 means no faults injected

* Recall ~ 0.98 and Precision ~ 0.98 with the given
parameters for dv 2 3m/s (or ~11km/h)

* False positive rate (FPR) in absence of faults ~ 0.5%

* Measured against ground truth, where avg velocity information
estimates were added (pos diff over time from last time step).

* Rather insensitive to speed error.
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Addressing Safety at Different Levels ...

Main lane
Main function
Main value

Monitor lane

Safety function

Safety value

CHIP LEVEL

Powerful computing e.g.
to master perceptlon challenge

! L L By
! ;":; i e N TS '
5 0 O :
l

High integrity and availability requires
simple approaches

Reliability  Integrity Robustness

Dependability Research Lab

BOARD LEVEL

Powerful Computing and Accelerator

‘ intel" —
« intel)
P)I.(;ErgslM ‘ L—’ *

nsice | nErvANA | 8 IRELSY
3 2 inside” L’
Mol STRATIX’

inside”

Safety Monitoring (Doer/Checker) for

systematic and random hardware faults

Monitor ASIL decomposition

Intelligent diagnostic
& monitoring

AD APPLICATION LEVEL (SYSTEM LEVEL)

Complex AD Stack (with Al like DNN in
perception, powerful multi-level )

AD Vehicle System

Sensors

Perception

Safety layer Safety layer

Simple Checker App. -
e.g. Responsibility Sensitive Safety (RSS)

.can sometimes be synergetic

intel labs 34




Summary (Monitoring)

= Monitoring at different levels helps dependability (i.e. safety in this context)

= Application-Level Monitor approaches could help to solve the safety
challenge for automated vehicles (AVs)

« Showed initial realization for monitors of object information based on sensor and
plausibility checks

 Demonstrated feasibility with evaluation results in simulation

* Challenges:

=  Sensor checks rely on quality of dynamic occupancy grid and sensor preprocessing
= Erroneous cells occupation decrease availability or error detection

= Diversity arguments and proofs for effectiveness

= Error detection effectiveness to be further investigated (incl. latent errors)
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