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Outline

• the problem, its components, difficulties
– why quantitative assessment
– merits of alternative approaches
– difficulties of detailed modelling

• ways forward with analysis of test / operational data
– "conservative Bayes" approaches
– focusing on risk in operation, "bootstrapping" confidence

• tentative conclusions
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Why quantitative, probabilistic assessment

• knowing how hard it is to get it right, many scoff at request 
for numbers: probabilities, expected numbers (of 
accidents, of fatalities)

• "don't make up numbers! Just invest in hazard analysis, 
good design, V&V"

wrong

• that investment is of course necessary
• but some requirements are inevitably quantitative

– "kill fewer than x extra people per year", "improve road safety"
.... you need to check on a rational basis whether that 
investment is likely to achieve  (have achieved) the target

• especially for novel, complex systems!
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Premises for this talk

The main difficulty is not random hardware faults, EMI etc
• good fault-tolerant design will cut down their contribution to 

a small enough level, which we can trust to be that low
much of the reasoning can assume independence between basic 
unwanted events

The main concern is "systematic" failures:
• due to software/design bugs, imperfect machine learning
• they happen with high probability on specific situations

• Although level 3 poses specific problems, most of the 
discussion will apply to all levels
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Well-known difficulties in assessing autonomous 
vehicles

• vital components use machine learning: this typically 
undermine the very basis of "usual" verification methods

• sufficient safety is achieved through many redundancies 
(diverse sensors and processing; independent safety 
monitors)

they reduce risk, but it is hard to quantify by how much

• system boundaries:
– early steps to autonomy make drivers the last line of defence:

+ effectiveness harder to assess than for inanimate systems, and likely 
to evolve (decreasing)

+ a car navigates a society of other cars, pedestrians, cyclists, horses, ...  
how to assess risk from interactions?
among heterogeneous, learning components in evolving ecosystem?

– bad people will attack your computer-controlled cars
I'll ignore these latter problems. Let's walk before trying to run
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What is the quantitative requirement? A range of opinions

• we'd like AVs to be no more dangerous than human 
drivers

– average drivers (which includes the drunk and the crazed)?
– some object, and propose a target 10-100 times better
– ... or somewhat better: Kalra and Groves * estimate that 

introducing soon AVs that shave off  10% of current fatalities would 
save more lives over 30 years than waiting for AVs that save 90%

(note: the public may dislike the risk transfer and uncontrollability)

• we'll take as reference "just as good on average":
of the order of 1 fatality per 100 million miles driven, 10-8

fatalities/mile

• hard to demonstrate! 

* N. Kalra and D.G. Groves "The Enemy of Good - Estimating the Cost of 
Waiting for Nearly Perfect Automated Vehicles", RAND Corporation 2017
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Usual ways of quantifying (predicting) risk / safety

... range between two extreme approaches
• bottom-up, clear box:

– from detailed understanding of your design and its components
– your probability of accident is some function of many parameters 

that describe these details.
– great for insight to drive design, not that trustworthy for prediction 

with complex systems
– requires accurate knowledge about too many things

• black box: 
operate your system, count how frequently it has failures / 
hazardous behaviour / accidents: 
all do this

– good "proof of the pudding" empirical, end-to-end
– but perhaps cannot afford driving many hundred million miles 

before you start selling 
– apart from its practical difficulties (monitoring)
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Note on fault tolerance, diversity... vs clear-box approach

• Diverse sensors feeding into similar/diverse processing; 
separate safety systems (monitor/safe response); ...

• All clearly useful, essential!
• Determining how much they give us is hard

"Systematic" failures, due to software/design bugs, imperfect 
machine learning
• happen with high probability on specific situations

("failure regions" in the space of   stimuli X states)
• for the various subsystems in a fault-tolerant system

– we don't know the failure regions
– we don't know how much the failure regions of different 

subsystems overlap
– we don't know how often those stimuli randomly arise that strike 

those regions and overlaps
(we have studied this for a long time and developed some ways of helping.
See www.csr.city.ac.uk/diversity )
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Safety subsystems / monitor / guards

• separate and independent "safety monitors" (detecting 
hazardous situations and responding) are useful for safety

– consensus opinion: cf debate yesterday, various standards and 
industry documents

• simple ones may be "perfect" : no systematic false 
negative failures

– this is not certain: it depends on reasoning that may have mistakes
• the more complex the environment, the less likely is 

perfection
– due to errors, necessary trade-offs with false alarms
– in some cases, we can reason using the probability of the monitor 

being perfect to support some conservative argument/claim (see 
e.g. [Littlewood et al, 2011-13-17]

• in general the actual safety gain from the safety monitor 
depends on which hazardous states the primary control 
system allows/generates
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Let us turn to the black box measuring approach

• detailed modelling hits some serious limitations, so we 
consider just looking at success (or not) in operating a 
vehicle (road testing, or "real" use)

• for example,  we may want to support statements like
"for a desired goal that this system do not cause accidents 
at a rate greater than [...] per mile driven;
after observing 0 accidents in [...] miles in road testing, we 
have [...]% confidence that the goal is satisfied"
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The 100 million miles problem

• after a car drove – say – 1 million miles without fatalities
• how do we know whether it would kill less than one person 

per 100 million miles? (is it just one every 10 million?)
(if you had fatalities, the answer is easy)

– Kalra & Paddock at RAND reported*: 
95% confidence in ~10-8 probab. of fatality/mile) would require 275 
million miles of test driving
(12.5 years of continuous driving for 100 vehicles at 25 miles/hour)

• operational testing alone cannot give confidence of safety 
over longer future operation 

• not news **
• implication: you need to consider all the evidence you 

know before you start driving ... 
and even then, it may be very hard

*  "Driving to safety: How many miles of driving would it take to demonstrate autonomous 
vehicle reliability?(Transp. Research Part A: Policy and Practice 94 (2016) 182–193)
** Littlewood & Strigini, "Validation of ultra-high dependability for software-based systems, 
Comm. of the ACM 36 (1993) 69–80, http://openaccess.city.ac.uk/1251
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therefore...

• to account for what we knew before the road testing
• combining all the evidence in a rational way
• we apply Bayesian inference, a standard method for these 

goals

• to learn how much confidence is  then justified about future 
operation

• and identify gaps that need to be filled by appropriate 
evidence



The Bayesian approach, in brief

• we see the unknown rate of failures, or accidents etc as 
a random variable, with a probability distribution

• development and verification support belief in a 
distribution for this variable (prior distribution)

prior prob. density function

rate of unsafe events

prob.
density
function



The Bayesian approach, in brief

• we represent the rate of failures, or accidents etc as a 
random variable, with a probability distribution

• development and verification support belief in a 
distribution for this variable (prior distribution)

• then, observing the driving with zero/few unsafe events 
changes it ("posterior distribution") 

• increasing confidence in low rates of unsafe events

prior prob. density function

posterior  probability
density 

function

rate of unsafe events

prob.
density
function
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A difficulty, and our "conservative Bayesian inference"

In Bayesian reasoning, the prior distribution
• is a crucial input
• to represent what we have reason to believe before obtaining new 

evidence (like road testing)
• based on quality of development, design precautions, verification 

activities, ...
• all important evidence, but hard to translate into a mathematical 

distribution

• common advice: use standard mathematical functions
• ... the engineers are asked to pretend they know more than they do
• which may produce seriously optimistic errors

• in CBI we take the opposite approach
• state less information, just what you have really a basis (argument) for 

believing, and ...
• ... we will give you the worst-case implications:

what you can claim conservatively, given those actual prior beliefs
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Example [Zhao et al., 2019]

Suppose
• a requirement for confidence c in "probability of fatality per 

mile" (pfm) better than a stated bound p

• design, quality of development, verification steps, historical 
experience give prior confidence q that a goal "pfm is no 
more than e" is achieved, where e < p

• there is a lower bound pl on the pfm considered feasible

• these bound the set of prior distributions that are possible
• so, after seeing n miles without fatalities, we can find how 

much confidence c , at least, can be had in pfm ≤ p
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Autonomous vehicles and CBI

Kalra et al paper "Driving to safety" ("RAND") vs CBI (from ISSRE 2019 paper):

• extreme claims can still be unaffordable to prove
– but we can show how much can be claimed and the contribution of the 

other evidence: prior confidence q of achieving the objective does matter
• we also addressed other questions from the "Driving to safety"  paper

– e.g.: if an accident does occur, how much accident-free driving would suffice to 
restore justified confidence?
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summary ... what do we gain?
• probability that real risk ≤ target value as function of

prior confidence and fatality-free test miles
– e.g.: given 90% prior confidence q of achieving pfm goal e 

(based e.g. on simple safety guards with strong assurance, simulation 
testing, ...)

– the bound p is demonstrated at 95% probability with one fourth
the fatality-free miles driven needed to achieve 95% confidence 
in Rand study

– but with only 10% prior confidence q, more miles needed than in 
Rand study

• highlights the small print: sub-arguments required, e.g.
– reliability arguments for the safety monitors used
– if machine learning is allowed after deployment, arguments that 

it does not reduce effectiveness of safety guards
– arguments for validity of results despite evolution of the driving 

environment
(cf discussion in [Zhao et al, 2020])
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What is missing?

These models assume a stationary world
• the system does not change

– but actually manufacturers keep updating their systems

• the environment does not change
– but it will
– periodic changes (day-night, summer-winter), static differences 

(cities, climates, cultures), trends like increasing penetration of AVs

– to account for this, we'd want to understand the kind of changes... 
difficult

– some options we are exploring
+ predictions that are robust to change (e.g. [Bishop]
+ monitoring the operational profile for change and adjust predictions 

[Pietrantuono et al 2020]
+ consider those simple changes that we understand, e.g. improvements 

(less harsh environment or safer system) [Zhao et al 2020]
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Some changes are "probably for the better"
Example
• I used the vehicle for a long time, no accidents...
• I upload an upgrade, intended to make it safer...
• New vehicle!

– must I consider it as having zero experience? All that 
operation proves nothing?

– it seems crazy!!   But how much does it prove?
or
• you intentionally tested in demanding environments 

(real / simulated)
– so that you could deploy "with confidence" in a more benign

environment
– how much confidence should you derive from that "stress 

testing"?

• we can study this as a function of the confidence in 
improvement (or doubt about it)  [Zhao et al 2020]
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A better viewpoint: probability of failure in operation

so far we have seen that
• we can take into account knowledge prior to road testing
• there are gains
• but to overcome the paucity of testing compared to your 

extreme requirements, you need very strong claims before
it – not commonly believable as of now

Let's switch viewpoint. What if 
instead of demanding 10-8 or 10-10

we simply ask: 
how confident can we be in having no (few enough) 
fatalities in a reasonable period of future operation?

"How many mishaps" is the real measure of interest, after all
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What we can we demonstrate about risk in operation?

• e.g. with a prior probability that your mishaps of interest 
are very rare by construction 

• with an amount observed safe operation for a 
• you forecast a small enough probability of mishaps over 

some future multiple of that amount
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That means, for instance...

• can trust better than 94.5%  probability of having no mishaps in an amount of 
future operation 5 times the amount of observed mishap-free operation if you 
have 90% prior confidence that you achieved a much better probability

• start with strong a priori arguments, guard against the surprise that they may 
be wrong

You can bootstrap your confidence by operating your systems while collecting 
more evidence
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That meant, for instance...

• If you have driven 6.5 M miles without fatalities and seek assurance about the 
next 65,000 miles, 10% prior confidence that you achieved much better gives 
you 99.9% confidence of no mishaps
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"Bootstrapping" of confidence

• suppose you start with operating, e.g., 1 vehicle for 1 year

• and at the end of the year you achieved sufficient 
confidence in 0 mishaps for, e.g., tfut/tpast=5 more vehicle-
years of operation

(5 vehicles for another year or 1 for 5 years)

• after that, if all goes well, you accumulated 6 mishap-free 
vehicles-year: y

can confidently run 6*5=30 more vehicle-years

• you can support constant confidence in an exponentially 
growing fleet

• or when fleet growth less than exponential, the 
accumulated experience increases your confidence and/or 
your time horizon
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What does this "bootstrapping of confidence" give?

• a strong guarantee ("10-8" or better) for the whole lifetime 
of a model fleet cannot be had

• but we can reason whether the risk accepted by operating 
the vehicle is acceptable

• allows decisions that limit risk to the public
• the vendor remains exposed – as now – to the risk of 

being badly wrong: "grounding", recalls

• presupposes good practices like extensive monitoring of 
operation, and uses their results

• it resembles the approach taken now! 
• But the mathematics allows us to assess the right 

confidence to be had, given what we know or believe
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Steps for application 

• These methods support useful broad-brush reasoning
• Steps for use with specific industries/vehicles include

– identifying local knowledge that supports other forms of prior beliefs 
+ and extend the CBI theorems to include them

– discuss the arguments/evidence supporting the required 
assumptions ("subclaims")

– detailing the links of this quantitative reasoning to a safety case
– all this involves use of existing practice of analyses, data collection

+ adapting the argument to match the evidence actually collected
+ or the evidence collection to help the assurance arguments

– include relevant "safety indicator measures"
+ e.g., reliable counts of demands on safety monitors and their 

response?
– potentially evolving a composite argument from sub-arguments

+ for subsystems
+ for regimes of operation, ODDs
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Conclusions?

• Given that quantitative assessment is hard for
– new systems
– requirement of high confidence in extreme safety, early on

• Formal mathematics detects fallacies but also gives 
directions for improvement

• focusing on shortish term "deploy or not?" decisions seems useful, 
even for supporting longer term operation

• we demonstrated methods that seem promising and practical to 
extend

• The formal statistical methods  have two advantages
– they allow verification of sound reasoning
– impose explicit statement of assumptions and the burden to argue

them
• Regarding AVs now, what we have suggests

– ability to argue for future operation by small increments
– usefulness of work on supporting strong confidence prior to 

operational testing
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Thank you...

Questions, comments?
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