Diverse Redundancy & Testability: Key Drivers for Intelligent Vehicle Dependability

Nirmal R. Saxena NVIDIA Jan 30, 2021

Storyline

- Intelligent Car Model
- Auto Safety Standard
 - Safety Targets vs. Accident Metrics
- Testability
 - DL Accuracy vs. Safety
 - Systematic Faults & Validation
 - Transient & Permanent Faults
- Diverse Redundancy
 - Reliability Models
 - Need for Diversity– Systematic Faults

Cameras & Sensors in an Intelligent Vehicle

Source: Waypoint - The official Waymo blog: Introducing the 5th-generation Waymo Driver: Informed by experience, designed for scale, engineered to tackle more environments

Control System Model– Intelligent Car

ISO26262 Auto Safety Specification

Random Hardware Faults Targets

Hardware Random Fault Metrics	ASIL B	ASIL C	ASIL D
Permanent Fault Coverage (SPFM)	90%	97%	99%
Transient Fault Coverage (SPFM)	90%	97%	99%
Latent Fault Coverage (LFM)	60%	80%	90%
Hardware Failure Probability (PMHF)	$100 \text{FIT} \\ \leq 10^{-7} / hr$	$100 \text{FIT} \\ \leq 10^{-7} / hr$	$\begin{array}{l} 10 \text{FIT} \\ \leq 10^{-8}/hr \end{array}$

FIT = Failures in Time, Time = 10⁹ Hours. 1 FIT = 10⁻⁹ *failures/hour*

- ASIL Automotive Safety Integrity Level
- SPFM Single Point Fault Metric
- LFM Latent Fault Metric
- PMHF Probabilistic Metric for Hardware Failures

nt of Kautz nodel Pease ation Lawct by ment s innter: has and 1spionglopault ous" em; ork and ılu-

Book- The Theory and Practice of Reliable System Design, Daniel P. Siewiorek & Robert S. Swartz

Fault Tolerant Time Interval (FTTI)

Urban Driving 25 MPH

Accident Statistics– US

Reference: National Highway Traffic Safety Administration (NHTSA): www.nhtsa.gov

Description	2013 Statistics	2015 Statistics
Fatal Crashes	30,057	35,092
Driver Related Fatal Crashes	10,076	10,265
Non-Fatal Crashes	5,657,000	6,263,834
Number of Registered Vehicles	269,294,000	281,312,446
Licensed Drivers	212,160,000	218,084,465
Vehicle Miles Travelled	2,988,000,000,000	3,095,373,000,000
Fatal Crash Rate in FITs	250 – 500	283 - 566
Non-Fatal Crash Rate in FITs	46K – 92K	51K – 102K

ASIL D 10 FITs is ~ 50x Improvement over Fatal Crash Rate & 4 Orders of Improvement in Non-Fatal CR FITs

Economic Cost of Traffic Crashes (2010) \$242 Billion

Published AV Non-Fatal Crash FIT Rate = 150K

Object Detection & Path Planning– Contextual Accuracy

Object Detection, Path Planning & Other Al Functions Need Enormous Computational Power

https://www.anandtech.com/show/11913/nvidia-announces-drive-px-pegasus-at-gtc-europe-2017-feat-nextgen-gpus

Compute Workload : Perception

Perception Challenge : Achieve "perfect" Object Detection Accuracy Deep Learning = State of the Art Method

Detection Accuracy & Systematic Faults (SW Bugs)

- When does Detection Accuracy Matter?
 - Traffic Light Detection: Red, Green & Orange (100%)
 - Objects in and around Path Plan (100%)
 - Distant Objects Not in Path Plan (0%)
- Validation of SW & Drive System Software Stack
 - Augmented Virtual Reality
 - Evaluate Millions of Scenarios
 - Simulate Millions-of-Miles-Traveled in a Day
 - Use Massively Parallel Super Computers
 - Dangerous Scenarios with No Physical Harm
 - Compute for Safety

Nvidia DRIVE Constellation in Datacenters

Transient Fault Injection

Accelerated Neutron Beam Testing

- Radiation experiments beam testing campaigns
 - Weapons Neutrons Research @ LANSCE
 - ChipIR microelectronics @ Rutherford Appleton Laboratory
- 2000 years of exposure to terrestrial neutron flux
- Experiment Design

DRAM ECC	SRAM ECC
OFF	OFF
ON	OFF
ON	ON

Flight path of neutron beam

Accelerated Beam Testing Results

SDC: Silent Data Corruption

Accelerated Beam Testing Results

Zero SDC Events

Permanent Fault Injection

Permanent Fault Injection Results

- Faults in input batches: SDC (+ inclusion) < 1.8%
- Faults in weights:

Object detection networks are vulnerable to permanent faults ¹⁹

Object Detection Conclusion

- Without protection-object detection networks show high SDC rate
 - Unlike classification networks that show resilience to transient errors
- Zero SDC with chip-level protections
 - For transient faults
- Not all permanent fault are detected by ECC/Parity:
 - Raw permanent FIT rate (hundreds) vs raw transient FIT rate (tens of thousands)
 - Offline structural tests during key-off and key-on events,
 - Online periodic tests (meeting FTTI requirement)

Road to Resiliency

Markov Chain Analysis– Need Physical Redundancy

Dual Redundant System

N. Saxena

Backup Standby Model– Markov Chain

N. Saxena

Probability of Backup Markov Chain States

Probability of being in M, B state, $P_{m,b}(t) = e^{-2\lambda t}$

Probability of being in B state, $P_b(t) = \frac{\lambda_{due}}{\lambda} (e^{-\lambda t} - e^{-2\lambda t})$

Probability of being in M state, $P_m(t) = e^{-\lambda t} - e^{-2\lambda t}$

Probability of being in Fail State,
$$F(t) = 1 - \left(\frac{\lambda + \lambda_{due}}{\lambda}\right)e^{-\lambda t} + \frac{\lambda_{due}}{\lambda}e^{-2\lambda t}$$

$$MTTF = \int_0^\infty t \frac{dF(t)}{dt} dt = \frac{1}{\lambda} + \frac{\lambda_{due}}{2\lambda^2} asymptotically approaches \frac{3}{2\lambda} (when \lambda_{sdc} = 0)$$

1.5x Gain in MTTF over Simplex or 1.5x Reduction in Effective Failure Rate over an infinite drive time N. Saxena

Is MTTF Sufficient to Distinguish Two Systems?

Failure Probability Reduction metric as a function of mission time distinguishes various redundant systems [Mitra, Saxena, McCluskey 2004]. S. Mitra, N.R. Saxena, and E.J. McCluskey, "Efficient Design Diversity Estimation for Combinational Circuits," *IEEE Trans. Comp.*, Vol. 53, Issue 11, pp. 1,483-1,492, Nov. 2004 S. Mitra, N.R. Saxena and E.J. McCluskey, "Common-Mode Failures in Redundant VLSI Systems: A Survey," *IEEE Trans. Reliability*, Special Issue on Fault-Tolerant VLSI Systems, Vol. 49, Issue 3, pp. 285-295, Sept. 2000.

1/29/21

Reliability Gain with Perfect Duplex $\times 10^6$ in 2 Hour Drive Time

Back-Up Standby Model– SPFM Sensitivity

Duplex System with Decoupled Checker

Duplex System PMHF largely Independent of SPFM of Mission Primary or Secondary System

Design Diversity

Coping with Systematic Hardware and Software Design Errors

- [Siewiorek et. al. 1978] (byte reversal copies C.mmp processor)
- [Sedmak and Liebergot 1980] (complementary function diversity in VLSI)
- [Chen and Avizienis 1978] (N-version programming, SIFT software implemented fault-tolerance)
- [Horning et. al 1974] (Recovery Blocks) [Patel] RESO Technique
- [Amman and Knight 1987] (Data Diversity)
- [McCluskey, Saxena, Mitra 1998] Diversity for Reconfigurable Logic & Quantifying Diversity

Conclusions

Road to Resiliency \Rightarrow Dual Redundancy or Graceful Degradation

- Mitigates Permanent Fault Testing
- Higher Availability During Mission Critical Time (Drive Time)

Systematic Faults

- Rigorous Testing and Validation Need 3-to-4 Orders of Improvement
- Physical Redundancy with Design Diversity