

Prof. Philip Koopman

Automated Vehicle Safety Update for 2021

February 2, 2021

Carnegie Mellon University

Where is the industry in general as of early 2021?

- Beyond the SAE Levels
 - Role of human vs. technology

Industry trends for 2021

- Role of standards
- Technical challenges
- Organizational challenges

Low Speed Shuttles

Low speed shuttles

- Up to 15 passengers
- Fixed route at perhaps 5-10 mph
- Demonstrations in cities worldwide

Safety approach

- Slow speed limits kinetic energy
- Often a non-driver safety conductor
- Example Mishaps

NHTSA lifts suspension of EasyMile vehicles

Smart Columbus

https://bit.ly/39ki41t

By <u>Cailin Crowe</u> Updated May 19 2020, 10:30 a.m. EDT •Published Feb. 27, 2020

- Shuttle hit by backing truck (Las Vegas, 2017)
- False alarm emergency stop with passenger injury (Ohio 2020)

Parcel Delivery

Parcels to stores, houses

- Short range delivery
- Roads, bike lanes, sidewalks
- Demonstrations in several cities

Safety approach

- Early: trailing vehicle
- Later: remote human
- Example Incidents

Nuro Gets First Commercial Autonomous Vehicle Permit in California

Prepare yourself mentally to see a Prius driving itself if you live in the Bay Area.

- Sidewalk bot blocks wheelchair ramp (Pittsburgh, 2019)
- Tension over use of sidewalk space

Driver-Monitored Automation

Automated driving of car or truck

- Continuous driver supervision
- OEMs in production already
- Safety approach
 - Human driver monitors automation
 - Human driver responsible for safety
- Example Mishaps
 - Multiple fatal Tesla crashes
 - Issue: driver complacency
 - Issue: under 10 seconds from OK to fatal crash
 - Tempe Arizona fatality in testing (Tempe, 2018)

NTSB: Tesla Autopilot, distracted driver caused fatal crash https://bit.ly/3bnk3EZ

By TOM KRISHER February 25, 2020

EDGE CASE RESEARCH

Fully Autonomous Operation

Fleet vehicles

- Waymo robotaxis deployed a limited scale
- Middle-mile trucks gained interest in 2020
- Many players pushing hard in this area

Safety approach

- Early: Human safety driver
- Later: Human on-call if car asks for help
- Example incidents
 - California reports indicate minor incidents in testing

Waymo's robo-taxi service opens to the public in Phoenix

Reuters	October 8, 2020 9:15 AM	AI	f	7	in

https://bit.ly/39j4yeC

fully self-driving Jaguar I-PACE electric SUV Image Credit: Waymo

Industry Trends

- Consolidation in the "race" to autonomy
 - It takes huge resources to succeed
 - Trend to OEM + ADS supplier teaming
 - Smaller players fail, team, or acquired over time
- Fully autonomous pivot toward freight
 - Low kinetic energy for last mile service
- Middle mile highways less chaotic than urban
 Shift of "SAE Level 3" vehicles to L3+
 - Strict L3 means human driver supervision
 - OEMs shifting to L3+ with car safe stopping on its own

https://bit.ly/3s9ZzW9

A User-Centric Classification

Koopman 8

Standards-Based Engineering Approach

SYSTE SAFET	M Y UL 4600		Safety Beyond Dynamic Driving		
DYNAM DRIVIN FUNCTIO	IC G SN ISO/PAS 21448	SaFAD/ISO TR 4804	Environment & Edge Cases	HIGHLY AUTOMATED	
FUNCTIONAL SAFETY CYBER- SECURITY	NAL ISO Y 26262		Equipment Faults	SAFETY CASE	
	R- SAE TY J3061	SAE 21434	Computer Security	UL 4600	
VEHICL SAFET	E FMVSS	NCAP	Basic Vehicle Functions		

2021 Technical Safety Challenges

Perception & prediction

- Safety of machine learning-based functions
- Need more than object motion tracking
- Safety of Intended Function (SOTIF)
 - Drive/Fix/Drive iteration with lots of testing
 - Waymo: 6M test miles; 65K deployed miles
 - How will safety be argued for larger fleets?
 - Likely will involve UL 4600 concepts and safety cases
- Getting from "works OK" to "safe"
 - You can brute force the first few "nines" ... but not all of them.
 - Field feedback into safety cases

Developing Trust for Full Automation

- Still an open world with unknowns & changes
 - Want "Positive Risk Balance" (safer than human driver)
 - But ... no human driver responsible
- Use Positive Trust Balance
 - Engineering rigor
 - Practicable validation
 - Strong safety culture and ...
 - Field feedback to handle surprises

UL 4600 ties feedback to Safety Case

TRUSTWORTHY POSITIVE RISK BALANCE

Safety Arguments (Safety Case)

- Claim a property of the system "System avoids pedestrians" Argument – why this is true "Detect & maneuver to avoid" **ARGUMENT 1** Evidence – supports argument **EVIDENCE 1** • Tests, analysis, simulations, ... Sub-claims/arguments address complexity
 - "Detects pedestrians" // evidence
 - "Maneuvers around detected pedestrians" // evidence
 - "Stops if can't maneuver" // evidence

Safety Performance Indicators (SPIs)

SPIs monitor the validity of safety case claims (UL 4600)

Examples of SPIs

- "Acts dangerously" is only one dimension of SPIs
 - Violation rate of pedestrian buffer zones
 - Time spent too close per following distance math
- Components meet safety related requirements
 - False negative/positive detection rates
 - Correlated multi-sensor failure rates
- Design & Lifecycle considerations
 - Design process quality defect rates
 - Maintenance & inspection defect rates
- Is it relevant to safety? Safety Case SPIs

2021 Safety Themes

- Positive Trust Balance:
 - Engineering Rigor, Validation, Feedback, Safety Culture
 - Standards-driven safety
 - Transparency
- Safety Performance Indicators (SPIs)
 - Continual improvement & updates
 - Field feedback: development; deployed
- Scalability past pilot vehicles
 - Accurate perception/prediction is still work in progress
 - Transition from brute force data to safety case approach

EDGE CASE RESEARCH

2021 Organizational Safety Challenges CASE RESEARCH

- Significant pressure to deploy
 - Flurry of empty driver seat demos in late 2020
 - Can teams take the time needed for safety?

Industry transparency needed

- Safety collaboration rather than competition
- Public trust in face of an adverse news event

Ensuring robust safety cultures

https://youtu.be/nhqyrze30bk Yandex demo video,

Ann Arbor MI, Aug 2020

- Silicon Valley culture + automotive culture + no human driver
- We need to get this right to succeed!

EDGE CASE RESEARCH WE DELIVER THE PROMISE OF AUTONOMY