

Leveraging <u>Networked Data for the</u> Digital Electricity Grid The Net2DG Project Research Report Francesco Brancati (ResilTech)

Project Facts

Call/Topic: H2020-LCE-01-2016-2017

(COMPETITIVE LOW-CARBON ENERGY).

Next generation innovative technologies enabling smart grids, storage and energy system integration with increasing share of renewables: distribution network

Type of action: Research and Innovation Action

Start Date: 01.01.2018

End Date: 30.06.2021

Duration: 42 months

EU Funding (total cost): 3,591,872.00EUR

Consortium

8 Partners from 4 European Countries

Aalborg Universitet	AALBORG UNIVERSITET	Denmark	Academia
Technische Universitaet Wien		Austria	Academia
GridData GmbH	ទា	Germany	Industry
ResilTech SRL	(T)	Italy	Industry
Fronius International GMBH	Fronius	Austria	Industry
Kamstrup AS	kamstrup	Denmark	Industry
Stadt Landau A.D. Isar	Stadtwerke LANDAU a.d.I S A R	Germany	Industry
Thy-Mors Energi Service A/S	HY MORS ENERGI	Denmark	Industry

Project Overview

Goals: enable and develop novel Low Voltage (LV) <u>grid</u> <u>observability applications</u> and Novel <u>control coordination</u> <u>approaches</u> for

- o voltage quality,
- o grid operation efficiency,
- LV grid outage diagnosis.

Expected Results: proof-of-concept solution based on OTS computing HW and available communication technologies

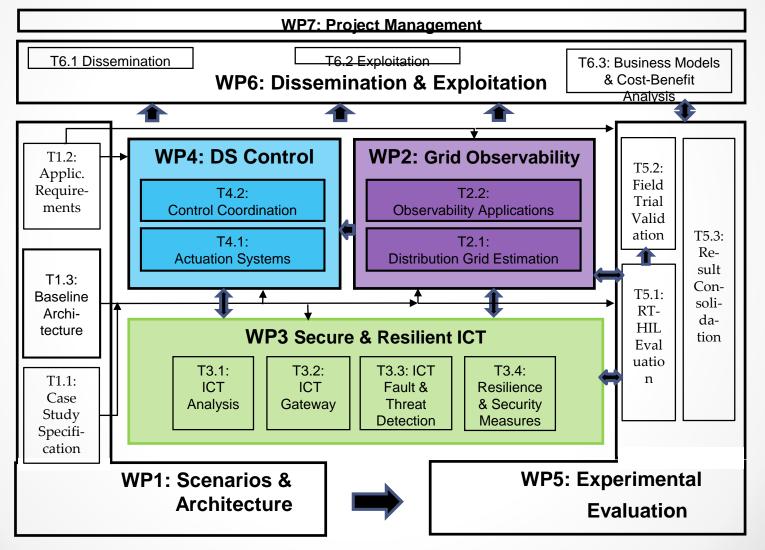
Strategy: correlating measurement data from

- o smart meters
- o smart inverters

with information from

Distribution System Operator (DSO) subsystems

Net2DG Targets


The Net2DG solution will allow regional DSOs the

- reduction of time to outage diagnosis by 70%
- o reduction of **grid-losses** in the LV grid by 10%
- anticipation and mitigation of 60% of the upcoming voltage quality problems.
- reduction of LV grid reinforcement investments for increased hosting of DER by 30%
 - (in comparison to the currently used worst case planning methods).

Net2DG Work Structure

understanding system behaviour

..... by analyzing the low voltage grid from three different angles:

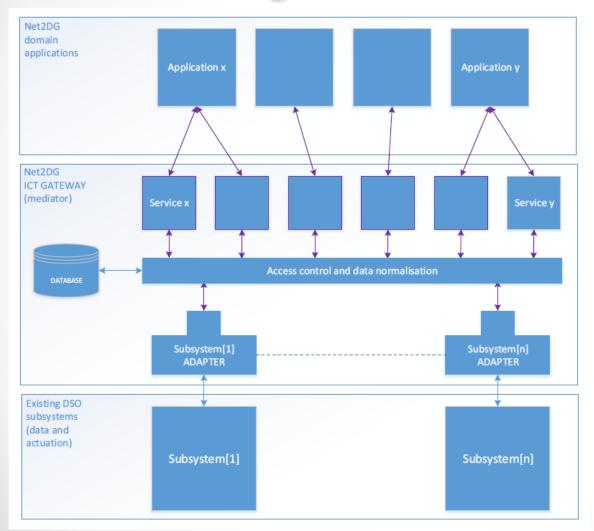
- Understanding what creates **outages** in the low voltage grid.
- Understanding of barriers for achieving operational efficiency in the low voltage grid operation.
- Understanding what conditions create problems in delivering optimal voltage quality to end-consumer.

Definition and prioritization of a set of 12 use-cases

....based on concrete problems and interest from the two DSOs in the consortium and from the 11 reference group members - DSOs and DSO organizations in Austria, Germany, and Denmark.

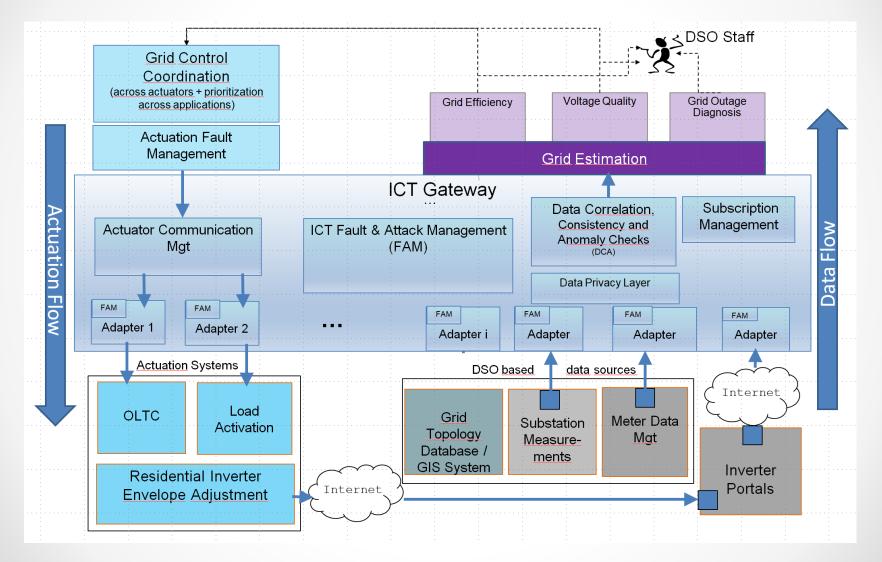
- 1. Outage Detection
- 2. Outage Diagnosis
- 3. Preventive Maintanence
- 4. Neutral fault detection
- 5. Neutral fault diagnosis and location
- 6. LV Grid Monitoring
- 7. Automatic Voltage Regulation
- 8. Loss Calculation and Recording
- 9. Loss Minimasation through grid reconfiguration

10. Loss Minimisation using interaction with flexible energy resources


11. Calculate and Visualize energy/power exchange in interconnection points to TS and overall in DS grid

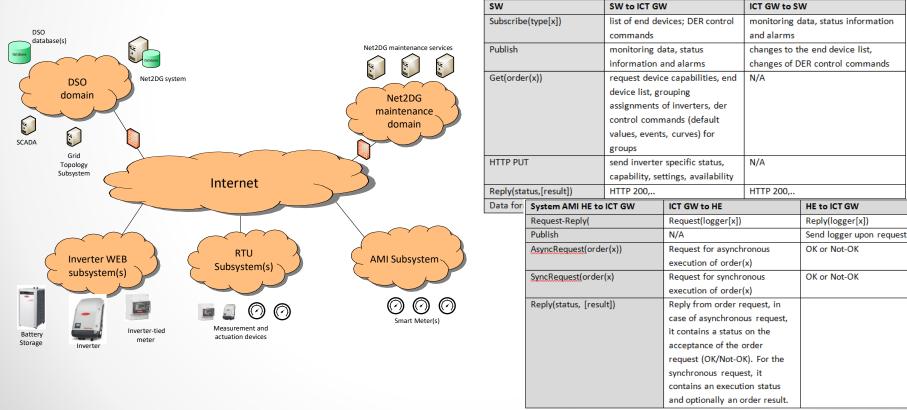
12. Recommend improvements to the DS grid to minimise energy exchange from TS grid

High Level Architecture



- We have established the system architecture and its basic constructions for subsystem interaction
- It is based on sound principles from system-ofsystems and can fit into an existing system landscape for a small or medium sized DSO in the European setup.

More Refined Architecture



ICT Analysis

SW

- Identification and analysis of communication technologies
- Identification and description of subsystems' interfaces

ICT Analysis

AMI - List of measures

 Identification of information each subsystem is able to provide

 e.g., measures, events, alarms, topological grid information

AMI - List of alarms

AMI HE to ICT GW	Description
Overvoltage L1 to L3	Set if overvoltage on phase
UndervoltagerL1 to L3	Set if undervoltage on phase
Missing phase fault L1 to L3	Set if phase is missing
Phase Voltage sequence	Set if phase voltage sequence is reversed
Earth Fault	Set if earth fault is detected
Magnetic detection	Set if magnetic field is detected - Tampering
ReversePhaseCurrent L1 to L3	Set if reverse current is detected on phase
VoltageAsymmetryStatus	Set if voltage asymmetry is above 2%
Powerfail	Set if power fail is registered
NoPhaseCurrent L1 to L3	Set if no current is registered on phase

AMI HE to ICT GW	Specification				
Voltage Quality	Phase, event, mean/max/min. value				
Load Profile	Active & Reactive energy				
Power Quality	Frequency counter,				
	voltage variation ±10%,				
	rapid voltage changes,				
	power interrupts,				
	voltage dips and swells,				
	voltage THD L1 to L3,				
	current THD L1 to L3.				

Inverter SW - List of alarms and status information

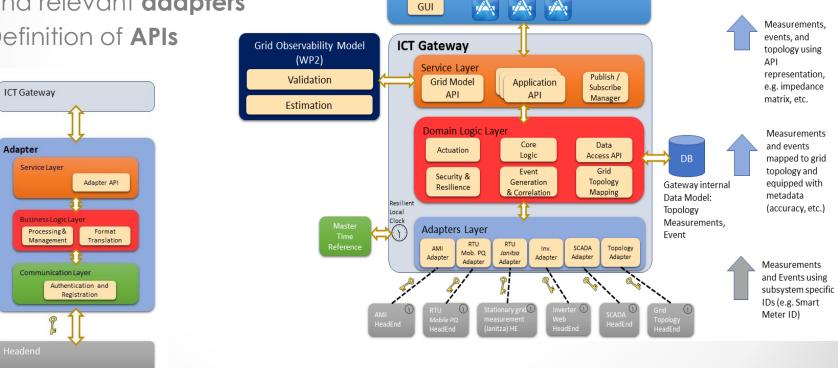
SW to ICT GW	parameter	description	resolution
Alarms	Over Current	Out of boundaries depending on	Posted as they occur
	Over Voltage	the country regulations	
	Under Voltage		
	Over Frequency		
	Under Frequency		
	Voltage Imbalance	Asymmetric voltage in the grid	1
	Low Input Power	To be defined	1
Status	Operational State	To be defined, most likely:	To be defined
Information		standby	
		Inverter is off	
		Inverter is shutting down	
		Inverter starting	
		Inverter working normally	
		Power reduction is active	
		One or more faults present	
		Inverter is currently being updated	
	Connection Status	No communication possible	1

ICT Analysis

- Analysis of Data Volume on interfaces of ICT Gateway
 - 4 cases for the analysis:
 - Case 1.1: field test case A (~100 households for Landau)
 - Case 1.2: field test case B (~2000 household for TME, potential largest extent of field trial)
 - Case 2: full TME grid (~50.000 households)
 - Case 3: full scale, a large medium sized DSO level (~500.000 households)

Case	AMI	Inverter	Inverter	Stationary	Streetlight	Grid	Total
		web	Modbus	PQ		topology	
1.1	382kB	7MB	3.5MB	50kB	4.8kB	37.5kB	11MB
1.2	7.6MB	21MB	10.5MB	1MB	96kB	22.5MB	62.7MB
2 (Land)	191MB	526MB	263MB	5MB	2.4MB	18.75MB	1GB
2 (TME)	191MB	526MB	263MB	5MB	2.4MB	0.5GB	1.5GB
3 (Land)	1.9GB	7.8GB	3.9GB	50MB	24MB	187.5MB	13.9GB
3 (TME)	1.9GB	7.8GB	3.9GB	50MB	24MB	5GB	18.7GB

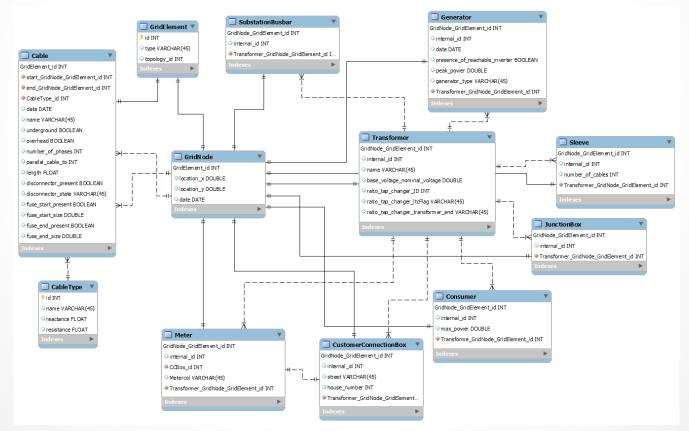
Estimation of total data volume per day for the various cases



Applications

The ICT Gateway Design

- Definition of ICT Gateway architecture
- Design of main functionalities and relevant adapters
- Definition of **APIs** •


Application Layer

The ICT Gateway Data Model

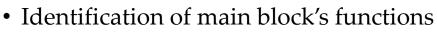
Definition of ICT GW Data Model

Functional

Block Model

Threat Analysis

 $\mathbf{1}$


Risk

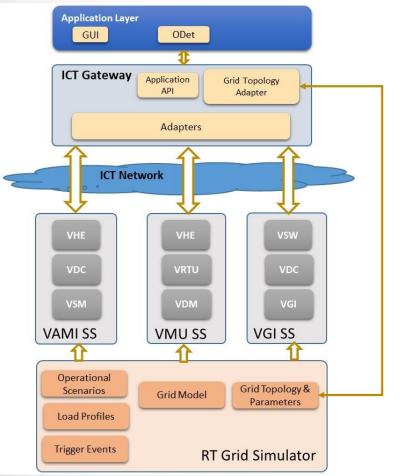
Assessment

Countermeasures Identification This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 774145

Threats and hazards analysis

- Identification of interfaces and data flow
- HAZOP analysis technique
- Analysis through guidewords for functions and interfaces:
 NOT, OTHER THAN, REPETITION
 - NOT, CORRUPTION, DELAY, MISROUTE, EAVESDROP, SCAN, SPOOF
- Identification of potential deviations from nominal behaviour
- Identification of consequences
- Identification of potential causes
- Probability of occurrence
- Severity of the impact
- Combination of probability and severity
- Recommendations for mitigation of the identified threats
- Requirements

Threats and hazards analysis: results


- The analysis and risk assessment led to identify hazardous events to be addressed to avoid/prevent hazards
- Measurement data for grid observability is a relevant asset to be safeguarded with respect to faults and cyber-attacks
 - Mining this information could lead to instability of the grid, customers' dissatisfaction, loss of money

Source I	Destination I	Data	Guideword	Threat/Hazard Description	Consequence	Cause	Probability	Severity	Risk	Mitigation/Countermeasure	Probability	Severity	Risk
		flow/Information					(Pre-	(Pre-	Classification		(Post-	(Post-	Classification
							Mitigation)	Mitigation)	(Pre-		mitigation)	mitigation)	(Post-
									Mitigation)				mitigation)
HeadEnd I				Message is corrupted:	 ICT GW does not reply to registration. 			Catastrophic	Intolerable	 Authentication techniques 	Remote	Catastrophic	Tolerable
	1	from the field		- the message is not accepted	- ICT GW addresses wrong data and event	- Interference	Probable			- Security Policies	ι		
			1	- the message is acceptable but	thinking they are correct.	- Interruption of data	1 1			- Maintenance procedures	ι,		
1			· · · · · · · · · · · · · · · · · · ·	wrong	(transmission	L ,			- Encryption schema (TLS)	τ.		
			1	() () () () () () () () () ()	ι	- Cable disconnection	L ,			- Error and corruption detection mechanisms	τ.		
			1	t h	1	- SW bug	1			- Anomaly detection	ι,		
1			1	t h	Ψ	- HW fault	1 1			- Intrusion detection	ι,		
1			1	t h	Ψ	- Malware	1 1				ι,		
1			1	L	ι	- Data Injection	L ,				τ.		
			1	t h	1	- Man in the Middle	1				ι,		
				L I	ι	1	L ,				ι		
HeadEnd	CT GW	Measurements I	DELAY	Message is delayed during	- ICT GW cannot promptly react to events or	- SW bug	Highly	Catastrophic	Intolerable	- Timestamping	Highly	Serious	Tolerable
		from the field			address fresh data.		Probable				Probable		
			· · · · · · · · · · · · · · · · · · ·			- Network Congestion				- Anomaly detection			
				t i i i i i i i i i i i i i i i i i i i	ι	- Network Disconnection	L .				ι		
			1	t h	Ψ	- Malicious code installed	L N				ι,		
			1	L		interests so as in interest		1	I		L	1	I

Experimental Evaluation

- assessing core functionalities
 of developed solutions
- Real-Time HIL approach by using a relevant laboratory environment ->
 - scalability and applicability of the developed solutions in a wider context
 - cover grid conditions that may be difficult to experience during the limited time of the field trails
 - field trials using specific functionalities relevant for the given site test
 - give the confidence to the DSOs regarding the benefits of using the novel applications developed
 - collect data for model validation

Planned 2020 activities

- Prototype of the first version of ICT GW and Adapters
- Refinement of Data Model
- Integration of components
- Updated of ICT GW functionalities based on
 - lab and field deployments (WP5), further requirements from the application development (WP2)
 - input from DSO after release of the prototype version

Planned 2020 activities

- Prioritization of threats to identify and design the advanced ICT GW functionalities contributing to security and resilience
- Set up for evaluation of the detection system to be performed based on traces collected from laboratory and field trials
- Definition of countermeasures to counteract identified faults and attacks

Conclusion

- Net2DG creates software solutions for DSOs,
 - which can be installed quickly and easily
 - o and result in cost savings for DSOs.
- Net2DG solutions will reduce grid losses and outages and help with the optimization of grid operation and maintenance
 - using available grid measurement data.
- Net2DG will help regional DSOs become early adopters of digital technology
 - o for LV outage diagnosis, grid operation efficiency and voltage quality.
- Net2DG will enable an extended hosting capacity for the integration of renewable energy sources in the low voltage grid
 - by the active use of remotely controllable end-devices in the field.