

Stopping the Barbarians at the Gate: Protecting End User Devices from Security Attacks

Karthik Pattabiraman

Pritam Dash, Mehdi Karimi, Aarti Kashyap, Zitao Chen, Guanpeng Li, Ekta Aggarwal, Maryam Raiyat, Amita Kamath, Julien Gascon-Samson, Farid Tabrizi, Andre Ivanov **University of British Columbia, Vancouver, Canada**

Cyber-Physical Systems (CPS): End User Devices

Cyber-Physical Systems (CPS): End User Devices

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY–WITH ME IN IT

Smart meters can be hacked to cut power bills

< Share

Technology correspondent, BBC News
O 16 October 2014 | Technology

Smart meters widely used in Spain can be hacked to under-report energy

use, security researchers have found.

Nest Thermostat Glitch Leaves Users in the Cold

Disruptions By NICK BILTON JAN. 13, 2016

The Nest Learning Thermostat is dead to me, literally. Last week, my once-beloved "smart" thermostat suffered from a mysterious software bug that drained its battery and sent our home into a chill in the middle of the night.

Leads

Although I had set the thermostat to 70 degrees overnight, my wife and I were woken by a crying baby at 4 a.m. The thermometer in his room read 64 degrees, and the Nest

Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses

Daniel Halperte ¹	Thomas S. Haydt-Benjamin ¹	Benjamin Ransford [†]
University of Washington	University of Massachusetts Ambere	University of Massachusets Ambere
Suns S. Cark	Betrena Defind	Wil Morgan
Investy of Manachastic Anhere	University of Manachastre Ambere	University of Manufactures Ambere
Keen Pr. PD ⁺	Talayoshi Kohne, P1D ⁴	William III Manel, MD, MPIP
Inventy of Movahouts Anhere	University of Walkington	BDMC and Bergad Medical Scheel

All of the second and the constraints of the bits o

(a) side vides (a) Service of a service o

This paper, copyright the IEEE, will appear in the proceedings of the 2005 IEEE Symposium on Security and Princey

Pacemake

Courtesy of

0 (

CPS Challenges

Real-time constraints

Hard to Upgrade

Resource constraints

Have human interactions

Why should we care about end device security ?

- Often the first entry point for attackers (weakest link in the trust chain)
- Cause large-scale disruptions by taking over many end-user devices

BlackIoT: IoT Botnet of High Wattage Devices Can Disrupt the Power Grid

Saleh Soltan Department of Electrical Engineering Princeton University ssoltan@princeton.edu Prateek Mittal Department of Electrical Engineering Princeton University pmittal@princeton.edu

H. Vincent Poor Department of Electrical Engineering Princeton University poor@princeton.edu

Abstract

We demonstrate that an Internet of Things (IoT) botnet of high wattage devices-such as air conditioners and heaters-gives a unique ability to adversaries to launch large-scale coordinated attacks on the power grid. In particular, we reveal a new class of potential attacks on power grids called the Manipulation of demand via IoT (MadIoT) attacks that can leverage such a botnet in order to manipulate the power demand in the grid. We study five variations of the MadIoT attacks and evaluate their effectiveness via state-of-the-art simulators on real-world power grid models. These simulation results demonstrate that the MadIoT attacks can result in local power outages and in the worst cases, large-scale blackouts. Moreover, we show that these attacks can rather be used to increase the operating cost of the grid to benefit a few utilities in the electricity market. This work sheds light upon the interdependency between the vulnerability of the IoT and that of the other nationalis and as the nation and subar.

Figure 1: The MadIoT attack. An adversary can disrupt the power grid's normal operation by synchronously switching on/off compromised high wattage IoT devices.

History Lesson: Barbarians at the Gate (410 AD)

Image source: https://ludwigheinrichdyck.wordpress.com/2018/03/24/barbarians-at-the-gate-the-410-sack-of-rome/

This Talk

- Motivation
- Attacks on Embedded and IoT devices [ACSAC'19][ACSAC'16]
- Intrusion Detection Systems for Smart Devices [FSE'17][CPS-SPC'18]
- Ongoing work and conclusion

Past Work: Formal Analysis of Smart Meters

- Formally model the states of the CPS [TECS][ACSAC'16]
- Combine with formal attacker models
- Model-check the system for security invariants
 - Identify unsafe states and paths to unsafe states
 - Automatically mount the attacks on the system

Robotic Vehicles (RV)

- Autonomous UAVs and Rovers.
 - Delivery
 - Warehouse Management
 - Surveillance
 - Cinematography

Autonomous RVs are increasingly becoming popular. RV missions are time critical.

Motivation

- GPS spoofing [ION GNSS'12], Optical spoofing [CCS'11]
- Acoustic noise injection in MEMS gyroscope [Usenix'15],
- MEMS accelerometer [Euro S&P'17]

However, all these techniques assume there's no protection deployed.

Can an attacker remain stealthy and trigger adversarial actions?

- Cyber component
- Physical component

Autonomous Control in RVs

- Control algorithms
 - Position Controller
 - Attitude Controller

- Modes of Operation
 - A typical drone mission → at least 3 modes.

Control-based Attack Detection Techniques

- Control Invariants (CI) [CCS'18]
 - State Space Model to predict target angles.
- Extended Kalman Filter (EKF)
 - Residual analysis → sensor or actuator attacks

Limitations in Control-based Detection

- Fixed threshold
 - Large threshold to reduce False Positives (FP).
 - Environmental factors friction, wind
 - Sensor faults.
- Fixed Monit
- Often fail to
 - Takeoff
 - Waypoir

Stealthy Attacks

False Data Injection Artificial Delay Switch Mode Attack

Attack Model

137.49, -139.22

- Cannot have root access to the RV system.
- Does not know the physical properties and detailed specifications of the RV.

137.50, -140.40

137.50, -139.40

Attack 1: False Data Injection Attack

- Tampering sensor measurements
 - Inject false data \rightarrow sensor
 - Acoustic noise

- False Data Injection
 - Delivery at a wrong location
 - Misplacements in warehouse

• [Usenix'15] Son et. al. Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors

Attack 2: Artificial Delay Attack

- Delay system operations
 - Mode changes
 - Motor commands
- Artificial delay attack
 - Delay receiving commands
 - Delays RV mission

Attack 3: Switch Mode Attack

- Initiated when a mode change is triggered.
 - Steady-state flight \rightarrow Land
 - Takeoff \rightarrow Waypoint
- Switch mode attack
 - Gain elevation instead of landing
 - Potential crash

Results and Evaluation

- RQ1 How much effort does the attacker need to expend to derive the state estimation model?
- RQ2 What are the impacts of the stealthy attacks on the subject RVs?
- RQ3 How effective are the attacks in achieving the attacker's objectives?

- ArduPilot http://ardupilot.org/
- Pixhawk https://pixhawk.org/
- Aion R1 Rover https://www.aionrobotics.com/r1

RQ1: Attacker's Effort

- Attacker's effort in deriving the state estimation model.
- Two Phases
 - Model extraction phase
 - 15 missions each subject RV.
 - Model testing phase
 - 5 missions each subject RV.
- Convergence
 - 5-7 missions for all the subject RVs.

R2Q: Impacts of Stealthy Attacks

- False data injection attack
 - Deviates RV from its trajectory.
- Artificial delay attacks
 - Delays mission time
 - Drones \rightarrow At least 25%
 - Rovers \rightarrow At least 30%
- Switch mode attack (for drones)
 - Crash landing
 - Land at wrong locations.

Original Mission Time

Attack Videos

False Data Injection Attack

Challenges in Detecting Stealthy Attacks

- Injected manipulations do not cause any immediate observable effects
 - Difficult to differentiate between attacks and drags due to wind or frictions.
- Modelling the dynamic non-linear properties of RV's controller.
 - e.g., mode changes in during a mission
 - Difficult to consider effects of protracted attacks over a long time

Robotic Vehicles: Summary

- Vulnerabilities in control theory based attack detection techniques
- Demonstrate three types of stealthy attacks on RV systems
 - Attacks deviate a RVs by more than 100 meters, increases duration of RV mission by 25-30%, even result in crashes.
- Demonstrate techniques to automate the attacks on a class of RVs.

Artifacts: https://github.com/DependableSystemsLab/stealthy-attacks

This Talk

- Motivation
- Attacks on Embedded and IoT devices [ACSAC'19][ACSAC'16]
- Intrusion Detection Systems for Smart Devices [FSE'17][CPS-SPC'18]
- Ongoing work and conclusion

Motivation

• Goal: Provide low-cost security for CPS

- Satisfying resource and real-time constraints
- No human intervention needed
- Is able to detect zero day attacks

Insight: Leverage properties of CPS for intrusion detection

- Simplicity and timing predictability
- Learn invariants based on dynamic execution
- Monitor invariants at runtime for violations

Intrusion Detection Systems (IDS)

Signature-based IDSs [CSUR2014]

Anomaly-based IDSs [Computers&Security2009]

Specification-based IDSs [SmartGridCom2010]

- Static analysis
- Dynamic analysis

Dynamic Analysis Techniques

- Invariant Examples
 - Energy usage >=0
 - Current Past <= Threshold

Main Idea

Methodology

ARTINALI: A Real Time-specific Invariant iNference ALgorIthm

- 3 dimensions
- 6 classes of invariants

CPS Platforms for Evaluation

- Advanced metering infrastructure (AMI)
 - SEGMeter
 - <u>http://smartenergygroups.com</u>

- Smart Artificial Pancreas (SAP)
 - OpenAPS
 - <u>https://openaps.org/</u>

Experimental Setup

Targeted Attacks

CPS Platform	Targeted attack	Attack entry point
AMI (SEGMeter)	Meter spoofing [ACSAC2010]	Deception on A
	Sync. Tampering [ACSAC2010]	Deception on D
	Message dropping [CCNC2011]	DoS on A
SAP (OpenAPS)	CGM spoofing [Healthcom2011]	Deception on A
	Stop basal injection [BHC2011]	Deception and DoS on C
	Resume basal injection [BHC2011]	Deception and DoS on C

Take away :ARTINALI detected all the targeted attacks

System.Console.WriteLine("The address sto Console.WriteLine(Environment.NewLine); TypedReference secondtr = __makeref(se IntPtr second = **(IntPtr**)(&second item.Console.WriteLine("The address)

IntPtr first = **(IntPtr**)(&firstt)

Smart facial recognition system (CVE-2016-1516)

Artificial delay insertion Delayed state State space Synchronization tampering in smart meter, [ACSAC2010]

False Negative (FN) Rate

- ARTINALI-based IDS reduces the ratio of FN by 89 to 95% compared with the other tools across both platforms.
 - SEGMeter

False Positive (FP) Rate

- ARTINALI-based IDS reduces the ratio of FP by 20 to 48% compared with the other tools across both platforms.
- SEGMeter FPR (%)- 95% confidence interval 30 25 (15-12)/15=20%improvement 20 15 10 5 0 Daikon Texada Perfume ARTINALI

Summary of ARTINALI

- ARTINALI: A Multi-Dimensional model for CPS
 - Captures *data-event-time* interplay
- Compared to other techniques
 - Increases the *coverage* of IDS
 - Decreases the rate of *false positives*
- However, ARTINALI still has high false-positives (FPS)
 - Can we reduce FPs further ?

CORGIDS: Correlation-Based Detection

Physical invariants

Hidden Markov Model (HMM)

Finite model used to **describe probability** distribution over possible sequences of a given system.

Example: Reinforcement learning and pattern recognition such as speech,

handwriting and gesture recognition

HMM

- Finding correlations in multidimensional, nonlinear time series systems like CPS.
- Likelihood of data belonging from a dataset.

Experimental setup

• Unmanned Aerial Vehicle (UAV)

ArudPilot's Software in the Loop (SITL)

(http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html)

• Smart Artificial Pancreas (SAP)

Open Artificial Pancreas System (OpenAPS) (https://openaps.org/)

Evaluation

TESTBED	TARGETED ATTACKS	FP (%)	FN (%)
UAV	Battery Tampering	0.0	12.20
	Flooding	0.0	11.30
	Distance Spoofing	0.0	12.80
SAP	Insulin Tampering	5.60	4.20
	Glucose Spoofing	2.80	8.40

Summary of CORGIDS

- Physical properties of CPS are indicative of its behavior.
- HMM are good at finding correlations among properties.
- CORGIDS had higher Precision and Recall than ARTINALI

This Talk

Motivation

- Attacks on Embedded and IoT devices [ACSAC'19][ACSAC'16]
- Intrusion Detection Systems for Smart Embedded Devices using Dynamic Invariants [FSE'17][CPS-SPC'18]
- Ongoing work and conclusion

DNN based CPS are Replacing PID controllers

ACAS Xu (Airborne collision avoidance system X manned) -DNN -> Small changes to the original inputs can result in crashes.

-> The boundary values on which the DNN is trained can result in

Artificial Pancreas System -

DNN

- Crashes of Unmanned vehicles
- wrong amounts of insulin delivery to patients

ReLUSyn: Synthesizing Data Ranges for Attacks

- Encoding the DNN as a 0-1 MILP Problem
- Allows to build a query mechanism to find the FDI attacks
 - Providing speed up over brute force

- ReLU activation function--non-linear function
 - Cannot be encoded as an ILP Problem
 - ReLU is however piecewise linear
 - 0-1 MILP allows to represent ReLU as piecewise linear

Preliminary Results: Brute force vs 0-1 MILP

Artificial Pancreas System- (1 layer + 50

Brute force	neurons/layer)		0-1 MILP
Time = 10 sec	+ Search time to find ri	ight inputs	< 1 sec/ attack

ACAS Xu- (5 layer + 50 neurons/layer)

Brute force	0-1 MILP	
Time = Timeout	~ 10 secs/ attack	
Brute Force	0-1 MILP	
Running through all the iterations	Simple query mechanism	
Time out in ACAS Xu	Optimal FDI	
No automations	Fully automated 49	

Conclusions

• End Devices in CPS are important to be protected from attacks

- Provide a conduit for attackers to get a foot-hold into the system
- Can cause large-scale disruptions of critical infrastructures

• Attackers can remain stealthy by leveraging properties of the CPS

- Knowledge and physical access to the CPS
- Need host-based intrusion detection systems for security

Host-based IDS for end-user devices

- Leverage invariants and machine learning to learn CPS behaviors
- Detect attacks proactively with low false-positives

Questions? karthikp@ece.ubc.ca