Stopping a Rapid Tornado with a Puff

José Lopes and Nuno Neves

Email: nuno@di.fc.ul.pt LASIGE, University of Lisboa

•

Example: Point-to-multipoint communication

- For a large number of receivers TCP does not scale
 - every receiver requires a separate data stream
 - sender needs to keep track of what arrives at each receiver
- UDP can be used
 - o scales effortlessly
 - o best effort: loss rate $\uparrow \Rightarrow$ degraded experience
- Difficult to provide a scalable broadcast service on the Internet
 - it would be interesting to have reliability whilst retaining UDP's efficiency

FEC and fountain codes

- Forward Error Correction (FEC)
 - o split data into symbols (e.g., packets)
 - encode symbols in a way that introduces redundancy capable of recovering missing symbols
- Fountain codes
 - o endless supply of encoded symbols
 - recover original data with any K encoded symbols (with high probability)

Rapid Tornado Codes

- Raptor codes are the most recent fountain codes
- Their secret lies in applying a "pre-code" to the source symbols, before encoding
 - o which reduces complexity to O(1) (per-symbol)
- RaptorQ is their flagship
 - o efficient encoding/decoding \Rightarrow permanent inactivation
 - o steeper overhead-failure curve ⇒ non-binary alphabets
 - o standardized as IETF RFC 6330
- Systematic code ⇒
 encoded symbols = source + repair symbols

Transmission overview using RaptorQ

Decoding failure probabilities

Incredibly <u>low probabilities</u> of failure against accidental faults

	K (number of source symbols)											
	0 Overhead [·10 ⁻³]			1 Overhead [·10 ⁻⁵]			2 Overhead [⋅10 ⁻⁷]					
Loss	10	26	101	10	26	101	10	26	101			
10%	0	5.4	5.7	0	0	3.8	0	0	2.5			
20%	0	4.0	4.8	0	2.3	2.4	0	0	0.5			
50%	0	3.9	4.9	0	1.6	2.5	0	0.9	1.2			
60%	4.8	4.1	4.9	0	1.5	2.2	0	0	2.1			
85%	0	12.7	4.7	0	0.8	2.4	0	0	1.3			

NOTE: *overhead* number of received encoding symbols more than K; experiments were run between 20 to 30 million times for each setting

Can we stop RaptorQ with a puff?

Successful attack: through malicious faults force a decoding failure (of a source block)

Rationale behind the attack

- Assume an attacker on the network that attempts to prevent decoding
- The attacker can create erasures on specific packets of the network
- Instead of randomly picking the encoding symbols, she/he cleverly chooses which packets may or may not reach the receiver

Objective:

- 1. How big of an impact can the attacker have?
- 2. Can the attack be done in a stealth way?

•

Rational behind the attack (2)

Attacker: picks these encoding symbols to erase

for overhead = 1, the first K+1 encoding symbols are used to attempt decoding

We want to have 100% impact while minimizing the erasures remaining stealth

Over K	10	26	32	42	55	62	75
0	3	3	2	2	2	2	2
1	7	4	5	2	4	3	4
2	12	9	7	10	5	5	5
Over K	84	91	101	153	200	248	301
0	2		2	2	1	2	3
1	6	8	7	3	8	4	2
2	7	4	9	4	10	11	15
Over K	355	405	453	511	549	600	648
0	2	2	1	1		1	1
1	2	8	2	7	2	4	2
2	10		14	50	5		
Over K	703	747	802	845	903	950	1002
0	1	1	1	1	2	1	1
1	3	8	6	3	2	6	4
2	7			57			

Thank you! Any questions?

This was:

Stopping a Rapid Tornado with a Puff

José Lopes and Nuno Neves