
1

© H. Kopetz 29/06/03 Introduction

Challenges, Opinions,
Perspective and Proposals

H. Kopetz

June 2003

2

© H. Kopetz 29/06/03 Introduction

What have we Learnt?
♦ The rate of transient failures of SoCs is on the increase due to

the following
• Single event upsets
• Signal integrity problems
• Variations due to manufacturing
• Degradation problems after shipment

♦ The single bit-flip model is out

♦ In ultradependable applications, we need fault-tolerance at the
architecture level to achieve the desired level of dependability

♦ The initial cost of a SoC is so high, that only applications that
require millions of chips can afford their own SoC

♦ Radiation hardened chips can be replaced by fault-tolerant
architectures based on commodity SoCs

3

© H. Kopetz 29/06/03 Introduction

Some Consequences for Safety-Critical Systems

♦ We cannot assume that in ultradependable applications a single
SoC can contain more than a single Fault-Containment Region
(FCR)--not independent enough.

♦ The physical structure of an ultradependable distributed
application is determined by the requirement to support enough
independent FCRs such that the required dependability can be
achieved by fault-tolerance at the architecture level.

♦ Since it must be assumed that an SoC can fail in an arbitrary
failure mode, the encapsulation and fault isolation mechanisms
within an SoC are not in the same criticality class as the fault
isolation mechanisms between SoCs.

4

© H. Kopetz 29/06/03 Introduction

Independence of Fault Containment Regions

The diversity of Fault Containment Regions (FCRs) that are
located on a single chip is compromised by:
♦ Same Physical Space (Physical Proximity Failures)
♦ Same Mask (Mask Alignment Issues)
♦ Same Bulk Material
♦ Same Wafer Production Process
♦ Same Power Supply
♦ Same Earthing
♦ Same Timing Source
♦

Although some of these dependencies can be eliminated,
others cannot.

5

© H. Kopetz 29/06/03 Introduction

Independence of FCRs
There are two basic mechanisms that compromise the
independence of FCRs
♦ Missing fault isolation
♦ Error propagation

The independence of failures of different FCRs is the most critical
issue in the design of an ultra-dependable system:
♦ Is it justified to assume that a single silicon die contains two

independent FCRs?--NO
♦ Can we assume that the failure modes of a single silicon die are well-

behaved (e.g., fail-silent) to the required level of probability?-- NO
♦ How can we make sure that FCR failures are not correlated, even at a

very low level of correlation (e.g., 1 in 1000)?

6

© H. Kopetz 29/06/03 Introduction

Architecture based Fault Isolation

TTP/C-C1-based hardware prototype with XILINX 600k
FPGA (tested by IST project FIT):

Heavy Ion Experiments (at Chalmers):

Bus topology: 37036 faults--78 error propagations (0.21 %)

Star topology: 26600 faults-- 0 error propagation

Software Implemented Fault Injection (Vienna):

Bus topology: 562122 faults--14 error propagations (0.02 %)

Star topology: 541744 faults-- 0 error propagation
Published at DSN, San Francisco, June 2003

Formal Verification using Model Checking (SAL, UPPAAL2k) and Theorem
Proofing (PVS) is ongoing in the NEXT TTA Project.

7

© H. Kopetz 29/06/03 Introduction

Open Questions:

♦ Is it possible to build ultradependable control systems out
of commodity SoCs?”

♦ Can we use the architecture-based fault tolerance to cover
the transient failures of commodity SoCs as well?

♦ What are the constraints for integrating safety-critical and
non safety critical functions in the same SoC in order to
reduce the overall cost?

♦ What is the best way to deal with state-corruption that is
caused by transients?

8

© H. Kopetz 29/06/03 Introduction

What is State?
“The state enables the determination of a future output solely on the
basis of the future input and the state the system is in. In other word,
the state enables a “decoupling” of the past from the present and
future. The state embodies all past history of a system. Knowing the
state “supplants” knowledge of the past. Apparently, for this role to be
meaningful, the notion of past and future must be relevant for the
system considered.” (Taken from Mesarovic, Abstract System Theory, p.45)

 A system-wide consistent notion of a discrete time is a prerequisite for
a consistent notion of state, since the notion of state is introduced in
order to separate the past from the future.

Fault-masking by voting (TMR) requires a consistent notion of
state in distributed Fault Containment Regions (FCRs) and thus a

consistent notion of gobal time.

9

© H. Kopetz 29/06/03 Introduction

The Concept of Critical State

OutputInput compu-
tation

h-state

Start End

10

© H. Kopetz 29/06/03 Introduction

Critical-State-Aware System Design

♦ The critical state of an SoC is the part of the state that is essential
for the future safe behavior of the SoC.

♦ After a transient SoC failure, a relevant version of the critical
state must be reloaded into the SoC as fast as possible.

♦ The part of the critical state that cannot be recovered from the
sensors in the environment must be stored in distinct fault
containment regions.

♦ The recovery problem is reduced, if the stored critical state is
small in size.

♦ We must identify and reduce the size of the stored critical state
of a distributed system by an application specific analysis of the
stored critical state requirements.

11

© H. Kopetz 29/06/03 Introduction

Conclusion

♦ The upcoming SoCs pose a number of
challenging research issues, driven by concerns
of dependability and economics.

♦ How can we build ultradependable systems out
of commodity SoCs?

♦ We need a new approach to system design at the
application level: critical-state-aware system
design.

