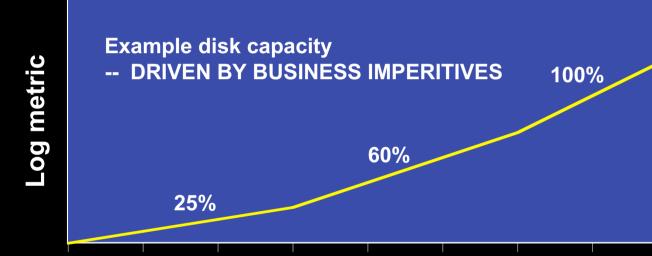


Emerging System Technologies


Technology and Business Driven Challenges

Basil Smith IBM T. J. Watson Research Center Hawthorne, NY 10532

Accelerating technology

Technology Improvement over Time

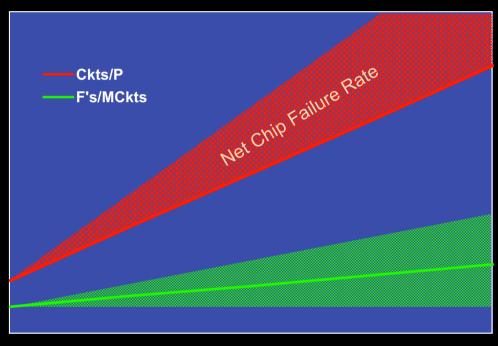
Years

Accelerating technology – other examples

- Semiconductor Technology
 - 3 years / generation to 2 years / generation

- Processor performance
 - 25% CGR to 60% CGR (system throughput)

- Optical link bandwidth
 - Now growing faster than 100% CGR (alas telcos faster than demand)

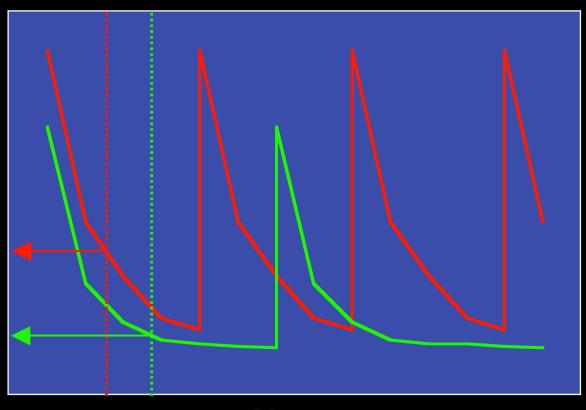

Becoming Technology Challenged (i.e., things are falling apart)

- Circuit Technology
 - Supply voltage (noise margins) 5V 0.4V
 - Operation with Gausian noise upsets
 - Deterministic to statistical design methodologies
 - Thinner insulation layers and high leakage
 - New materials (CU and high K)
 - Smaller features with SEU's in logic
 - 000
- Disk Technology (RAID 5 is now inadequate)
 - Tiny head flight distances
 - Increasing areal (bit and track) densities
 - Approaching paramagnetic limits
 - Smaller and less robust mechanical designs
 - Acoustical cross talk
 - 000

Base Semiconductor Technology

Circuit Failure Rate

Years


We are ignoring "learning curve" fundamentals

- "Hard" technology is raising and stretching learning curve
 - Things start out worse
 - Things get better more slowly
- Yet we are shortening technology cycles
- And introducing poorly understood technology faster

Ignoring the learning curve

Failure Rate

Years

But we see a strong marketplace bias toward "CRAP" (Commodity Reliability And

Practices)

- Google model Reliable Systems from CRAP
 - Massively parallel, with resulting massive redundancy
 - Simple fault detection mechanisms (time outs)
 - Disposable logic/nodes
 - Demonstrated preference to trade reliability for other metrics
 - \$'s/MB for disk vs. reliability
 - \$'s for cooling vs. reliability
 - Still things broken things have to be fixed
 - Cost of repair deceptively high
 - See some signs of backing off
 - Raw boards > 1U Servers > 2U Servers

But we see a strong marketplace bias toward "CRAP" (Commodity Reliability And Practices)

- Desktop Market
 - Performance over reason
 - Arguably for most of market
 - Now performance insensitive
 - But still investment in performance vs. reliability
 (i.e., why don't we have extremely reliable 1 GHz desktops)
 - ~Nil market for higher reliability drives
 - "SCSI" reliability vs. ATA reliability
 - Unwillingness to pay for even parity in memory
 - Given caches this could even be word or line parity (2% overhead)

So what should we do?

- Reliability cannot get much worse without becoming a maintenance/warranty headache
 - Much of the maintenance cost is labor costs of repair ops
- Fail in place could solve some maintenance / reliability problems
 - Common for memory spare chips, chip kill ECC, ...
 - Fail in place is out of the question without improving reliability
- Simple system level redundancy is going to have to work
 - Other options seem uneconomic
 - Need to be able to detect and correct multiple simultaneous fails
- Really good dependability will require better error detection
 - Undetected errors and data corruption are simply too likely with CRAP to achieve really dependable systems in many situations.
- Design mistakes all too likely, and source of common mode failures
 - A message straight from the learning curve
 - Fail in place will not work when its likely everything will fail