
Emerging System Technologies

Technology and Business Driven Challenges

Basil Smith
IBM T. J. Watson Research Center
Hawthorne, NY 10532

Emerging System Technologies © 2002 IBM
Corporation

Accelerating technology

Technology Improvement over Time

Years

L
o
g
 m

et
ri
c

25%

60%

100%
Example disk capacity
-- DRIVEN BY BUSINESS IMPERITIVES

Emerging System Technologies © 2002 IBM
Corporation

Accelerating technology – other examples

• Semiconductor Technology

– 3 years / generation to 2 years / generation

• Processor performance

– 25% CGR to 60% CGR (system throughput)

• Optical link bandwidth

– Now growing faster than 100% CGR (alas telcos faster than demand)

Emerging System Technologies © 2002 IBM
Corporation

Becoming Technology Challenged
(i.e., things are falling apart)

• Circuit Technology
– Supply voltage (noise margins) 5V – 0.4V
– Operation with Gausian noise upsets
– Deterministic to statistical design methodologies
– Thinner insulation layers and high leakage
– New materials (CU and high K)
– Smaller features with SEU’s in logic
– o o o

• Disk Technology (RAID 5 is now inadequate)
– Tiny head flight distances
– Increasing areal (bit and track) densities
– Approaching paramagnetic limits
– Smaller and less robust mechanical designs
– Acoustical cross talk
– o o o

Emerging System Technologies © 2002 IBM
Corporation

Base Semiconductor Technology

Circuit Failure Rate

Years

Ckts/P

F's/MCkts

Ne
t C
hip

 Fa
ilur

e R
ate

Emerging System Technologies © 2002 IBM
Corporation

We are ignoring “learning curve” fundamentals

• “Hard” technology is raising and stretching learning curve
– Things start out worse

– Things get better more slowly

• Yet we are shortening technology cycles

• And introducing poorly understood technology faster

Emerging System Technologies © 2002 IBM
Corporation

Ignoring the learning curve

Failure Rate

Years

Emerging System Technologies © 2002 IBM
Corporation

But we see a strong marketplace bias toward “CRAP”
 (Commodity Reliability And
Practices)
• Google model – Reliable Systems from CRAP

– Massively parallel, with resulting massive redundancy

– Simple fault detection mechanisms (time outs)

– Disposable logic/nodes

– Demonstrated preference to trade reliability for other metrics

– $’s/MB for disk vs. reliability

– $’s for cooling vs. reliability

– Still things broken things have to be fixed

– Cost of repair deceptively high

– See some signs of backing off

– Raw boards > 1U Servers > 2U Servers

Emerging System Technologies © 2002 IBM
Corporation

But we see a strong marketplace bias toward “CRAP”
 (Commodity Reliability And
Practices)

• Desktop Market
– Performance over reason

– Arguably for most of market

– Now performance insensitive

– But still investment in performance vs. reliability
(i.e., why don’t we have extremely reliable 1 GHz desktops)

– ~Nil market for higher reliability drives

– “SCSI” reliability vs. ATA reliability

– Unwillingness to pay for even parity in memory

– Given caches this could even be word or line parity (2% overhead)

Emerging System Technologies © 2002 IBM
Corporation

So what should we do?

• Reliability cannot get much worse without becoming a
maintenance/warranty headache

– Much of the maintenance cost is labor costs of repair ops

• Fail in place could solve some maintenance / reliability problems
– Common for memory – spare chips, chip kill ECC, …

– Fail in place is out of the question without improving reliability

• Simple system level redundancy is going to have to work
– Other options seem uneconomic

– Need to be able to detect and correct multiple simultaneous fails

• Really good dependability will require better error detection
– Undetected errors and data corruption are simply too likely with CRAP to achieve

really dependable systems in many situations.

• Design mistakes all too likely, and source of common mode failures
– A message straight from the learning curve

– Fail in place will not work when its likely everything will fail

