## An Architectural Perspective on Soft Errors from Cosmic Radiation

### Shubu Mukherjee

shubu.mukherjee@intel.com, VSSAD, MMDC, Intel Corporation

FACT (Fault Aware Computing Technology) Project Joel Emer, Shubu Mukherjee, Steve Reinhardt, and Chris Weaver Other Contributors Mike Kontz, currently in HP

44<sup>th</sup> IFIP WG10.4 Workshop on Hardware Design and Dependability, June 28, 2003

"If a problem has no solution, it may not be a problem, but a *FACT*, not to be solved, but to be coped with over time," Shimon Peres, Nobel Laureate 1994.



### **Evidence of Cosmic Ray Strikes**

Documented strikes in large servers found in error logs

 Normand, "Single Event Upset at Ground Level," IEEE Transactions on Nuclear Science, Vol. 43, No. 6, December 1996.

• Sun Microsystems, 2000 (R. Baumann, 2002 IRPS Workshop talk)

- Cosmic ray strikes on L2 cache with no error detection or correction
  - caused Sun,s flagship servers to suddenly and mysteriously crash!
- Companies affected
  - Baby Bell (Atlanta), America Online, Ebay, & dozens of other corporations
  - Verisign moved to IBM Unix servers (for the most part)



### **Reactions from Companies**

• Fujitsu SPARC in 130 nm technology

- 80% of 200k latches protected with parity
- compare with very few latches protected in Mckinley
- ISSCC, 2003

IBM declared 1000 years system MTBF as product goal

- for Power4 line
- very hard to achieve this goal in a cost-effective way
- Bossen, 2002 IRPS Workshop Talk



### Outline

Faults from Cosmic Rays
Terminology
Computing a chip,s Soft Error Rate
Redundant Multithreading
Summary





### Impact of Neutron Strike on a Si Device



Figure 3, Ziegler, et al., "IBM experiments in soft fails in computer electronics (1978 -1994)," IBM J. of R. & D., Vol. 40, No. 1, Jan. 1996.

• Strike creates electron-hole pairs that can be absorbed by source/diffusion areas to change state of device



# **Origin of Cosmic Rays**



Figure 2, Ziegler, et al., "IBM experiments in soft fails in computer electronics (1978 -1994)," IBM J. of R. & D., Vol. 40, No. 1, Jan. 1996.

#### • Cosmic rays come from deep space



# **Impact of Elevation**



Figure 8, Ziegler, et al., "IBM experiments in soft fails in computer electronics (1978 - 1994)," IBM J. of R. & D., Vol. 40, No. 1, Jan. 1996.

- 3x 5x increase in Denver at 5,000 feet
- 100x increase in airplanes at 30,000+ feet

intel

### **Physical Solutions are hard**

- Shielding?
  - No practical absorbent (e.g., approximately > 10 ft of concrete)
  - unlike Alpha particles
- Technology solution: SOI?
  - SOI probably no help in 250 nm and beyond
- Radiation-hardened cells?
  - 10x improvement possible with significant penalty in performance, area, cost
  - 2-4x improvement may be possible with less penalty
- We think some of these techniques will help alleviate the impact of Soft Errors, but not completely remove it



### Outline

Faults from Cosmic Rays
Terminology
Computing a chip,s Soft Error Rate
Redundant Multithreading
Summary





Shubu Mukherjee, FACT Project

### Strike on state bit (e.g., in register file)





SDC = Silent Data Corruption

• DUE = Detected & unrecoverable error

SER = Soft Error Rate = Total of SDC & DUE



## **Definitions 2**

#### Interval-based

- MTTF = Mean Time to Failure
- MTTR = Mean Time to Repair
- MTBF = Mean Time Between Failures = MTTF + MTTR
- Availability = MTTF / MTBF

### Rate-based

- FIT = Failure in Time = 1 failure in a billion hours
- 1 year MTTF = 10<sup>9</sup> / (24 \* 365) FIT = 114,155 FIT
- SER FIT = SDC FIT + DUE FIT



### IBM,s Soft Error Goals for Power4 (D.C.Bossen, 2002 IRPS Tutorial Reliability Notes)

| Error Type                   | IBM System MTBF      |
|------------------------------|----------------------|
|                              | Target at 300 meters |
|                              | (ref. D. Bossen)     |
| SDC (Silent Data Corruption) | 1000 years           |
|                              | (114 FIT)            |
| DUE for system crash         | 25 years             |
| DUE for application crash    | 10 years             |



### Outline

Faults from Cosmic Rays
Terminology
Computing a chip,s Soft Error Rate
Redundant Multithreading
Summary



# Measuring a Chip,s FIT

| Chip                                     | Physically bombard with neutrons in neutron accelerators |
|------------------------------------------|----------------------------------------------------------|
| Circuit Models +<br>RTL                  | Obtain raw error rate<br>Statistical fault injection     |
| Circuit Models +<br>Performance<br>Model | Obtain raw error rate<br>Work in progress in FACT group  |

• Like performance measurement



# **Computing FIT rate of a Chip**

- FIT Rate Law: FIT rate of a system is the sum of the FIT rates of its individual components
- Vulnerable Bit Law: FIT rate of a chip is the sum of the FIT rate of vulnerable bits in that chip!

### • Total FIT =

- $\Sigma_{\text{(for each vulnerable device i)}}$  (raw soft error rate<sub>i</sub> \* vulnerability factor<sub>i</sub>)
- Vulnerability Factor = fraction of faults that become errors
- Vulnerability Factor is also known as "derating factor" and "soft error sensitivity (SES)."



# FIT Equation: Raw Soft Error Rate

FIT =  $\sum_{\text{(for each vulnerable device i)}}$  (raw soft error rate<sub>i</sub> \* vulnerability factor<sub>i</sub>)

### SRAM cells

- FIT/bit decreasing slightly across generations w/ usu. voltage scaling
- FIT/chip increasing overall
- Latch cells
  - FIT/bit constant across generations w/ usu. voltage scaling

### • Static Logic Gates

- ignored, see later
- Dynamic Logic
  - similar to latches



# **FIT Equation: Vulnerability Factors**

FIT =  $\sum_{\text{(for each vulnerable device i)}}$  (raw soft error rate<sub>i</sub> \* vulnerability factor<sub>i</sub>)

Vulnerability Factor =

**Timing Vulnerability Factor \* Architectural Vulnerability Factor** 

Timing Vulnerability Factor

fraction of time bit is vulnerable

Architectural Vulnerability Factor (AVF)

A fraction of time bit matters for final output of a program



# **Timing Vulnerability Factor**

### • SRAM cells

**- 100%** 

### Latch cells

**-~ 50%** 

### Static Logic Gates

- Shivakumar, et al. (DSN 2002) predict near zero today
- signal attenuation and latch window masking
- may be a problem in future

### • Dynamic Logic: reference Rachid Rayess

- $-1/2^{N+1}$ , where N = # pulldowns
- ¬ 2 pulldowns: ~13%
- ¬ 8 pulldowns: ~2%



### **Architectural Vulnerability Factor**

### • SRAM cells

- hold state, varies across structures

Latches

- hold state, varies across structures

• Static Logic Gates

- no clear answer, depends on circuit

### • Dynamic Logic

- similar to latches

ongoing work in architecture community



# **Punchline: Simple Conceptual Model**

- FIT rate = sum of FIT rate of "vulnerable" bits
- Vulnerable bits (RAM & latch cells)
  - for SDC, this means unprotected bits
- Rule of thumb: vulnerability factor
  - architectural vulnerability factor ~= 20%
  - timing vulnerability factor = 50% for latches & 13% dynamic

#### • Rule of thumb: raw FIT rate

- 0.001 – 0.010 FIT/bit (Normand 1996, Tosaka 1996)



### **# Vulnerable Bits Growing with Moore,s Law**



• Fujitsu SPARC has 20% of 200k latches vulnerable in 2003

- Higher SDC FIT from RAM cells, static logic, & dynamic logic
- Higher SDC FIT in multiprocessor systems
  - Gap ~= 100x for 8 processor system!



### Outline

- Faults from Cosmic Rays
- Terminology
- Computing a chip,s Soft Error Rate
- Redundant Multithreading
- Summary



### Fault Detection via Lockstepping (HP Himalaya)



Replicated Microprocessors + Cycle-by-Cycle Lockstepping



### Fault Detection via Simultaneous Multithreading



intel



28

# **Redundant Multithreading (RMT)** RMT = Multithreading + Fault Detection (& Recovery)

|      |                               | Multithreading (MT)                  | Redundant<br>Multithreading (RMT)              |  |  |  |
|------|-------------------------------|--------------------------------------|------------------------------------------------|--|--|--|
|      | Multithreaded<br>Uniprocessor | Simultaneous<br>Multithreading (SMT) | Simultaneous &<br>Redundant Threading<br>(SRT) |  |  |  |
|      | Chip Multiprocessor<br>(CMP)  | Multiple Threads<br>running on CMP   | Chip-Level Redundant<br>Threading (CRT)        |  |  |  |
| int_ |                               |                                      |                                                |  |  |  |

29

# **Sphere of Replication**



- Two copies of each architecturally visible thread
  - Co-scheduled on SMT core
- Compare results: signal fault if different



### **Basic Pipeline**



# Both leading & trailing threads would go through this pipeline



# Load Value Queue (LVQ)



- Load Value Queue (LVQ)
  - Keep threads on same path despite I/O or MP writes
  - Out-of-order load issue possible



# **Store Queue Comparator (STQ)**



- Store Queue Comparator
  - Compares outputs to data cache
  - Catch faults before propagating to rest of system





#### • Branch Outcome Queue

- Forward leading-thread branch targets to trailing fetch
- **100% prediction accuracy in absence of faults**





#### • Line Prediction Queue

- Alpha 21464 fetches chunks using line predictions
- Chunk = contiguous block of 8 instructions



### **SRT Evaluation**

Used SPEC CPU95, 15M instrs/thread

 Constrained by simulation environment
 → 120M instrs for 4 redundant thread pairs

 Eight-issue, four-context SMT CPU

 128-entry instruction queue
 64-entry load and store queues
 Default: statically partitioned among active threads
 22-stage pipeline
 64KB 2-way assoc. L1 caches

¬3 MB 8-way assoc L2



### **SRT Performance: One Thread** (Using Alpha 21464-like processor simulator)



- One logical thread → two hardware contexts
- Performance degradation = 30%
- Per-thread store queue buys extra 4%



### **SRT Performance: Two Threads** (Using Alpha 21464-like processor simulator)



- Two logical threads  $\rightarrow$  four hardware contexts
- Average slowdown increases to 40%
- Only 32% with per-thread store queues



# **Redundant Multithreading (RMT)** RMT = Multithreading + Fault Detection (& Recovery)

|                                    | Ţ                        | Multithreading (MT)                                        | Redundant<br>Multithreading (RMT)                                |
|------------------------------------|--------------------------|------------------------------------------------------------|------------------------------------------------------------------|
| Multithread<br>Uniprocess          | led S<br>For N           | Simultaneous<br>Multithreading (SMT)                       | Simultaneous &<br>Redundant Threading<br>(SRT)                   |
| Chip Multip<br>(CMP)               | processor N<br>r         | Multiple Threads<br>running on CMP                         | Chip-Level Redundant<br>Threading (CRT)                          |
| Uniprocess<br>Chip Multip<br>(CMP) | or N<br>processor N<br>r | Multithreading (SMT)<br>Multiple Threads<br>running on CMP | Redundant Thread<br>(SRT)<br>Chip-Level Redun<br>Threading (CRT) |

39

### **Chip-Level Redundant Threading**

 SRT typically more efficient than splitting one processor into two half-size CPUs

What if you already have two CPUs?
 - IBM Power4, HP PA-8800 (Mako)

Conceptually easy to run these in lock-step

 Benefit: full physical redundancy
 Costs:

- Latency through centralized checker logic
- Overheads (misspeculation etc.) incurred twice
- CRT combines best of SRT & lockstepping
   requires multithreaded CMP cores



# **Chip-Level Redundant Threading**



41



#### Shubu Mukherjee, FACT Project

### **CRT Performance**



 With per-thread store queues, ~13% improvement over lockstepping with 8-cycle checker latency



### **More Information**

### Publications

- S.K. Reinhardt & S.S.Mukherjee, "Transient Fault Detection via Simultaneous Multithreading," International Symposium on Computer Architecture (ISCA), 2000
- S.S.Mukherjee, M.Kontz, & S.K.Reinhardt, "Detailed Design and Evaluation of Redundant Multithreading Alternatives," International Symposium on Computer Architecture (ISCA), 2002
- Papers available from:
  - http://www.cs.wisc.edu/~shubu
  - http://www.eecs.umich.edu/~stever

#### Patents

- Compaq/HP filed eight patent applications on SRT
- Several more to be filed by Intel in the coming years



## Summary

#### • Soft Errors: real problem today

- industry seeing this now

#### • MAJOR problem in next few technology generations

- problem scales with # chips and Moore,s Law
- industry will have a hard time making chips reliable
- FACT project
  - working on various aspects of fault measurement, detection, and recovery
  - Redundant Multithreading: example of a cost-effective solution
    - explored implementations in multithreaded processors & CMPs



# **BACKUPS FOLLOW**



# Faults, Errors, Failures

(From Pradhan, "Fault-Tolerant Computer System Design")

#### • Fault

- defect in hardware or software component
- defect for cosmic ray = upset from high-energy neutron strike

#### • Error

- manifestation of a fault, resulting in deviation from accuracy
- faults cause errors (but, not vice versa)
- a masked fault is not an error!
- vulnerability factor = fraction of faults that cause errors (Intel term)

### • Failure

- non-performance of expected action
- errors cause failures (but not vice versa)
- a corrected error doesn,t cause a failure



### **Three Views of Soft Errors**

#### • The Architect,s View

- "(Soft) Errors are the crab grass in the lawn of computer design," Itanium Architect, Feb. 2003.
- > Architects don,t want to deal with soft errors
- The Physicist,s View
  - "You can deny physics only for so long," Ted Equi, Hewlett-Packard, early 2003.
  - Technology has no practical solution to completely eliminate soft errors

#### • The Pragmatist,s View

- "If a problem has no solution, it may not be a problem, but a FACT, not to be solved, but to be coped with over time," Shimon Peres, Nobel Laureate 1994.
- Inspired the birth of the FACT (Fault Aware Computing Technology) project in VSSAD.



### References

#### Documented Strikes

- (Sun Microsystems) R. Baumann, "Soft Errors in Commercial Semiconductor Technology," 2002 IRPS Tutorial Notes
- Normand, "Single Event Upset at Ground Level," IEEE Transactions on Nuclear Science, Vol. 43, No. 6, December 1996.

#### • Raw soft error rate: 0.001 – 0.010 FIT/bit

- Y.Tosaka, S.Satoh, K.Suzuki, T.Suguii, H.Ehara, G.A.Woffinden, and S.A.Wender, "Impact of Cosmic Ray Neutron Induced Soft Errors, on Advanced Submicron CMOS circuits," VLSI Symposium on VLSI Technology Digest of Technical Papers, 1996.
- Normand, "Single Event Upset at Ground Level," IEEE Transactions on Nuclear Science, Vol. 43, No. 6, December 1996.

#### • IBM Goals

 D.C.Bossen, "CMOS Soft Errors and Server Design," IEEE 2002 Reliability Physics Tutorial Notes, Reliability Fundamentals, pp. 121\_07.1 – 121\_07.6, April 7, 2002.



### FIT/bit for SRAM Cells decreasing

- Shivakumar, et al., "Modeling the Effect of Technology Trends on the Soft Error Rate of Combinatorial Logic," DSN, 2002.
  - FIT/bit decreasing, FIT/chip increasing
- Hareland, et al., "Impact of CMOS Process Scaling and SOI on the soft error rates of logic processes," 2001 Symposium on VLSI Technlogy Digest of Technical papers
  - FIT/bit decreasing
- R.Baumann, 2002 IRPS Tutorial Notes
  - FIT/bit decreasing because of voltage saturation
  - FIT/bit increasing in products with B10



### **FIT/bit for Latches Constant**

- Shivakumar, et al., "Modeling the Effect of Technology Trends on the Soft Error Rate of Combinatorial Logic," DSN, 2002.
  - ¬ prediction using models
  - FIT/bit constant (within 2x error range)
- Karnik, et al., "Scaling Trends of Cosmic Rays induced Soft Errors in Static Latches beyond 0.18μ," 2001 Symposium on VLSI Circuits Digest of Technical Papers
  - Neutron beam experiment
  - FIT/bit constant
- λ Internal Intel experiments/data
  - projects that FIT/bit will remain constant (within 2x error bar)



## **Raw FIT Equation**

- Raw Neutron FIT rate
  - → ∝ Neutron Flux \* Area \* e -(Qcrit/Qs)
- $\lambda$  When Qcrit >> Qs
  - exponential dominates
  - we are still in this region
- $\lambda$  When Qcrit <= Qs
  - reached saturation
  - area dominates, so FIT/bit will continue to decrease with area



# e<sup>-Qcrit/Qs</sup> trends (Shivakumar et al., DSN 2002)



- exp(-Qcrit/Qs) increasing
   area decreasing quadratica
- area decreasing quadratically



# **SRAM: FIT/bit decreasing**



• Source: Shivakumar, et al., DSN 2002



# Latch: FIT/bit roughly constant



• Source: Shivakumar, et al., DSN 2002



# **Timing vulnerability Factor for latches**



intel

Shubu Mukherjee, FACT Project

### **Soft Error Issues**

- 1. Why is soft error a problem today?
  - Industry is at the cross-over point
  - Future is worse, IF we don,t do anything
- 2. What about system FIT contribution?
  - System FIT decreased dramatically (e.g., RAID, ECC on DRAM)
  - Large part of system moving on-chip (e.g., memory controller)
- 3. Is this a server problem or a desktop problem?
  - Definitely a server (e.g., data center) problem
  - Desktop problem from IT manager,s point of view
- 4. How do software bugs compare to soft error rates?
  - Limited # of bugs in mature software (e.g., servers, company environment)
  - If we don,t do anything, soft errors will be your dominant failure rate



### **Energy Spectrum of Cosmic Ray Particles**



Figure 4, Ziegler, et al., "Terrestrial Cosmic Rays," IBM J. of R. & D., Vol. 40, No. 1, Jan. 1996.

- Neutrons constitute > 96% of cosmic ray particles at sea level
- Higher # of lower energy particles (significant)

intal

# Ted Equi, "You can deny physics only for so long!"

