

COTS Technology & Issues -Space Environments

Philip P. Shirvani

Center for Reliable Computing Stanford University

44th Meeting of IFIP Working Group 10.4 June 28, 2003

Acknowledgments

- Prof. Edward J. McCluskey
- Dr. Nahmsuk Oh
- Naval Research Laboratory (NRL)
- Funding: BMDO/IST, NASA

The Challenge – Stanford CRC ARGOS Project

 Determine to what extent commercial electronics, e.g., microprocessors and RAMs, can be used in space

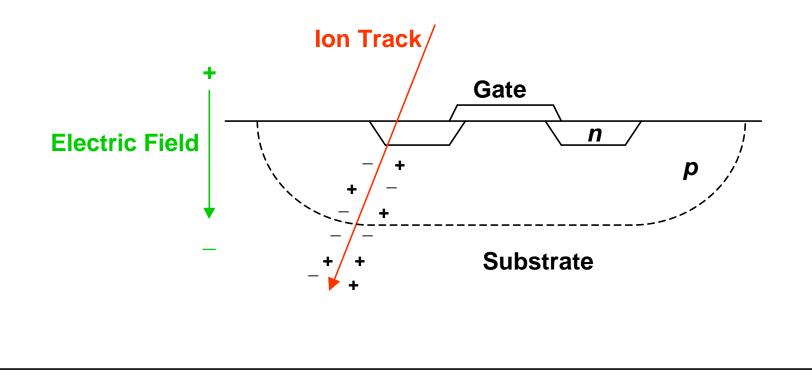
The Approach

- **1.** Design an Experiment to Collect Data
 - Actual satellite
 - Compare rad-hard and COTS boards
 - Evaluate fault tolerance (FT) techniques
- **2.** Develop Techniques for Fault Tolerance
 - Software based no special hardware
 - EDDI, CFCSS
 - Software-implemented EDAC
- **3.** Develop a Method
 - Estimate distribution of errors
 - In various functional units

Outline

- Motivation and Background
- ARGOS Space Experiment Setup
- Software-Implemented Hardware Fault Tolerance
- Experiment Results
- Conclusion

Motivation


- Reliable Computing in Space
 - Failures Caused by Radiation
 - e.g., Single-Event Upsets (SEUs)
- Problems
 - Costly classical solutions
 - Hardware duplication
 - Radiation-hardening
 - Increasing sensitivity to radiation
 - Deep submicron technologies

Radiation Sources

- Sources in Space
 - Radiation belts
 - Particles trapped in Earth's magnetic field
 - Solar winds
 - Galactic cosmic rays
- Sources on Earth
 - a-particles from radioactive material
 - Secondary particles from cosmic rays
 - Thermal neutrons

Radiation-Matter Interaction

- Electronic Charge Displacement (Ionization)
 - Electron-hole pair production
 - Short current pulse (causing an SEU)
 - Trapped holes in dielectrics

Radiation Effects

- Cumulative Long-Term Degradation
 - Total Ionizing Dose (TID)
 - Displacement Damage Dose (DDD)
- Single-Event Effects (SEEs)
 - Single incident ionizing particle
 - Permanent or transient effects
 - Global or local effects
 - e.g., Single-Event Upsets (SEUs)
 - Soft errors, soft fails, transients

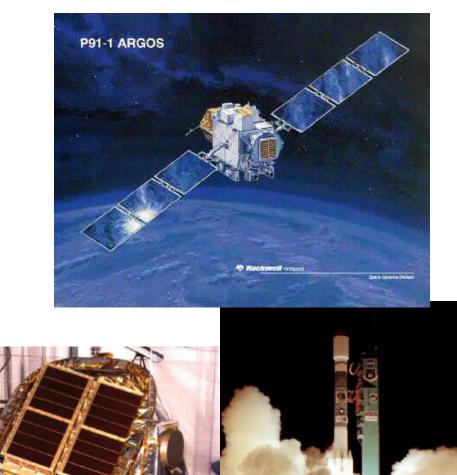
Mitigating Radiation Effects

- Fault Avoidance
 - Shielding
 - Heavy, large volume
 - Radiation hardening
 - Expensive, limited availability, old designs
- Fault Tolerance
 - Redundancy (hardware or software)
 - Overhead: price, performance, power, ...

Problem Definition

- Computation in Radiation Environments
 - Without customized or rad-hard components

Solutions


- Commercial Off-The-Shelf (COTS) Components
 - Relatively cheaper and higher performance
- Software based FT Techniques
 - Reliability improvement for COTS

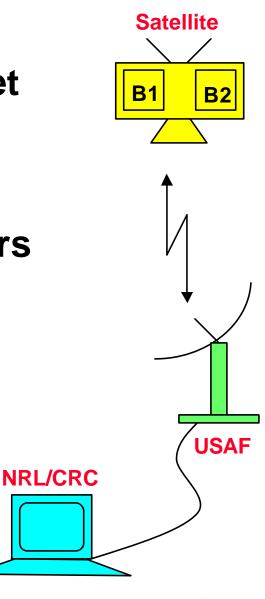
Outline

- Motivation and Background
- ARGOS Space Experiment Setup
- Software-Implemented Hardware Fault Tolerance
- Experiment Results
- Conclusion

Advanced Research and Global Observation Satellite

- Launch: Feb. 23, 1999
- Polar LEO orbit
 - 800 km Altitude, Sun Synchronous, 98° Inclination
- 9 Experiments
 - Including USA (Unconventional Stellar Aspect) experiment of NRL
 - Computing testbed

The ARGOS Project – Computing Testbed


- Reliable Computing in Space
 - Autonomous navigation and data processing
- Goals
 - Comparison of rad-hard & COTS components
 - Evaluation of software-based FT techniques
 - Collection of error data
 - From a real space experiment
 - No simulation or fault injection

Previous Work

- Ground Testing
 - Artificial fault injection
- Space Testing
 - University of Surrey [Underwood 98]
 - COTS SRAMs for micro-satellites
 - MPTB [Dale 95]
 - RAMs, microprocessor, photonic devices
 - Hiten Satellite [Takano 96]
 - Hardware FT technique

Computing Testbed

- Hard Board
 - Harris RH3000 rad-hard chip set
 - SOI SRAMs
 - Hardware FT techniques
 - Self-checking pair processors
 - EDAC for memory
- COTS Board
 - IDT R3081
 - No error detection hardware
 - No EDAC
 - Only software FT techniques

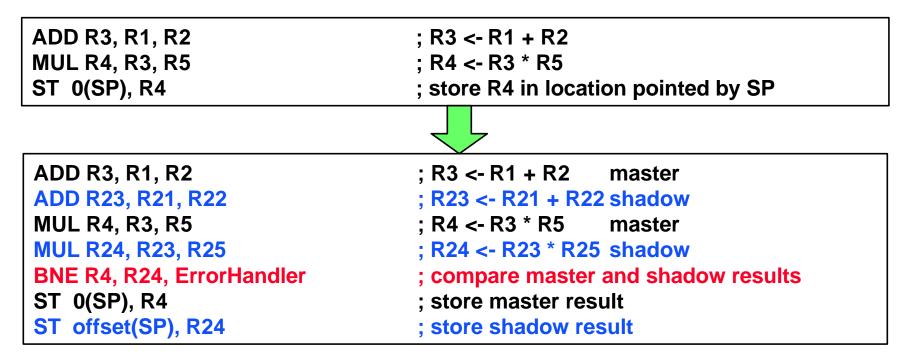
Outline

- Motivation and Background
- ARGOS Space Experiment Setup
- Software-Implemented Hardware Fault Tolerance
- Experiment Results
- Conclusion

Software-Implemented Hardware Fault Tolerance (SIHFT)

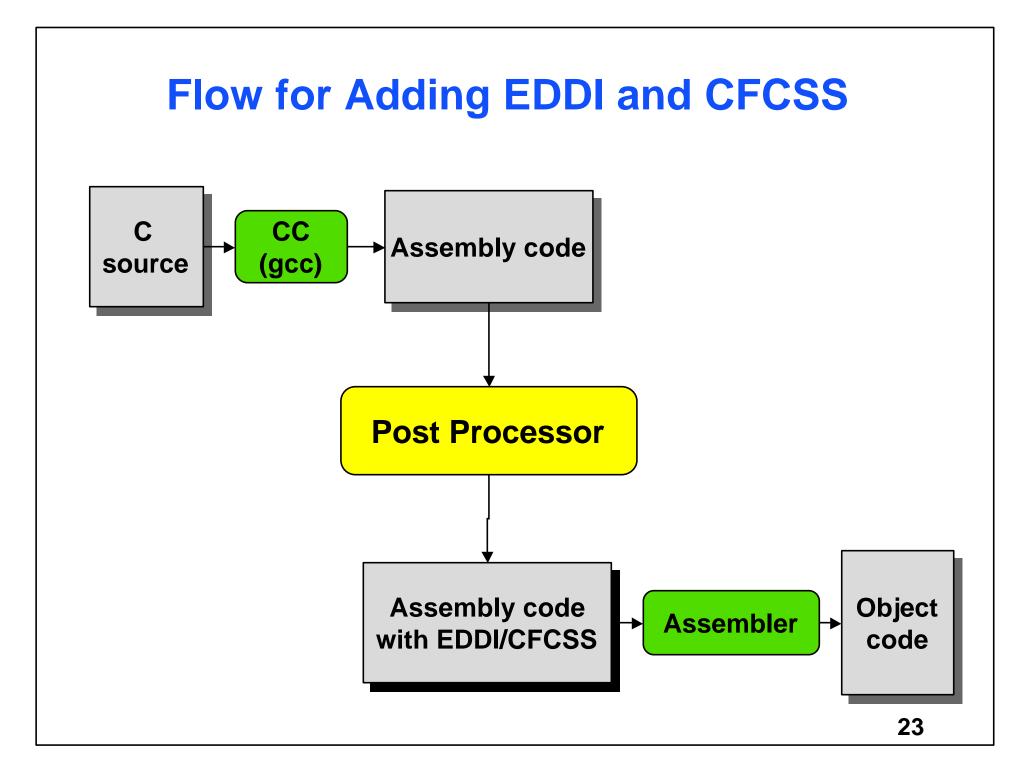
- Software-Implemented EDAC [Shirvani 00]
 - Error Detection And Correction (EDAC)
 - SEU protection for main memory
- Error Detection by Duplicated Instructions (EDDI) [Oh 02-1]
- Control Flow Checking by Software Signatures (CFCSS) [Oh 02-2]
- Software-Implemented Error Recovery

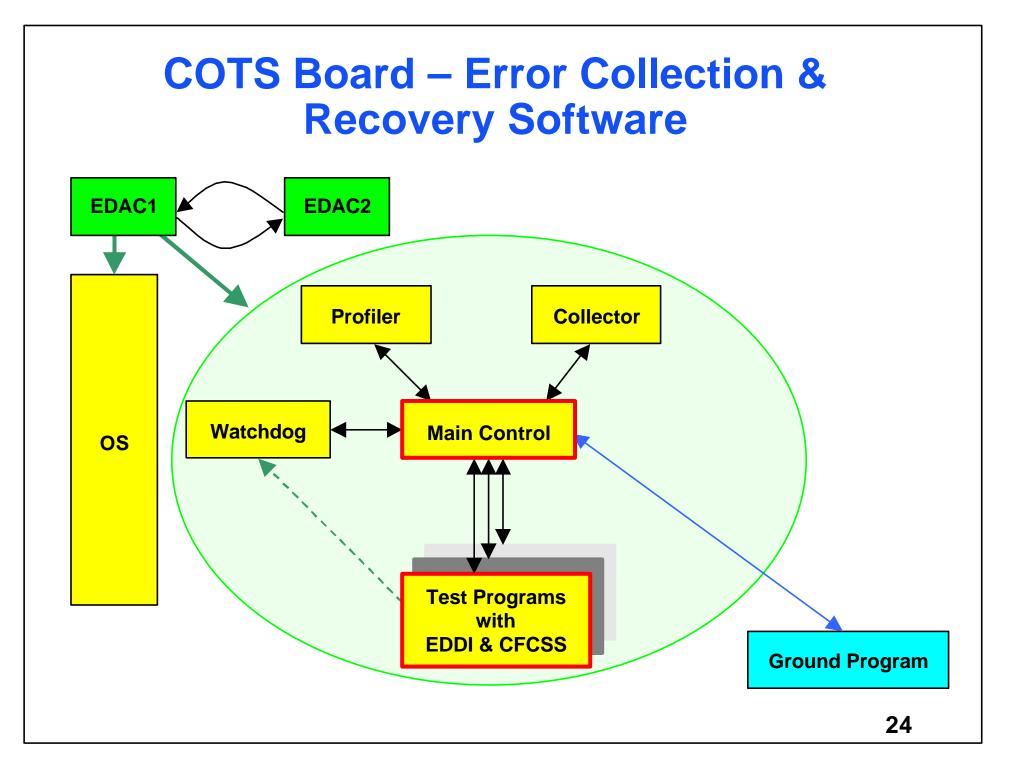
Software-Implemented EDAC


- Intercepting all Reads and Writes
 - Infeasible in software
- Periodic Scrubbing
 - Scrubbing:
 - Reading out memory and correcting errors
 - Periodic:
 - e.g., every 30 seconds
 - Limited to memory blocks with fixed contents:
 - Code segments
 - Read-only data segments

Self-Repair for EDAC Software

- Issue
 - SEU in code segment of EDAC software
 - Cannot repair itself
- Solution
 - Cross-Checking Pair
 - Each copy scrubs the other one
 - Assuming single error


Error Detection by Duplicated Instructions (EDDI)


- Duplicate Instructions
 - Master and shadow instructions
- Compare Master and Shadow Results
 - Detect transient errors in computations

Control Flow Checking by Software Signatures (CFCSS)

- Assigned Signature Analysis Method
 - Unique signature for each basic block
- Interblock Control Flow Checking
 - Correct sequence of blocks followed
- Signature Comparison
 - Pure software
 - No extra hardware

Software Modules

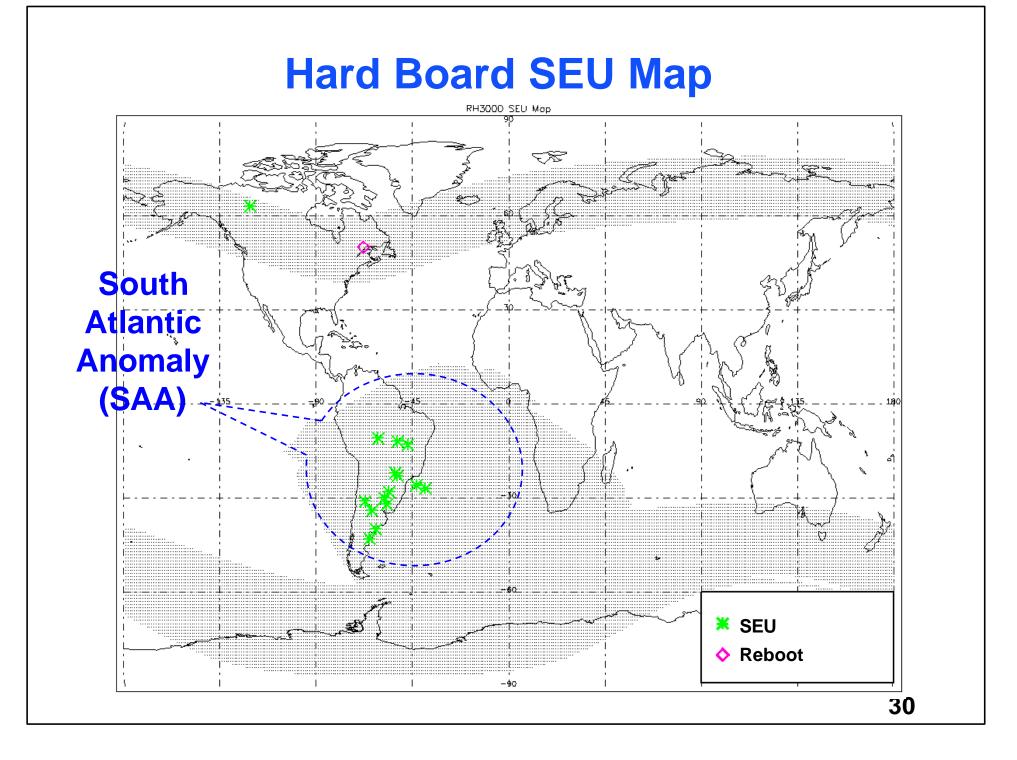
- Main Control
 - Overall coordination
- Watchdog Timer
 - Detect hang-ups
- Profiler
 - Measure each task's CPU time
- Collector
 - Store information about errors
- Cross-Checking EDAC Pair
 - Detect and correct memory errors

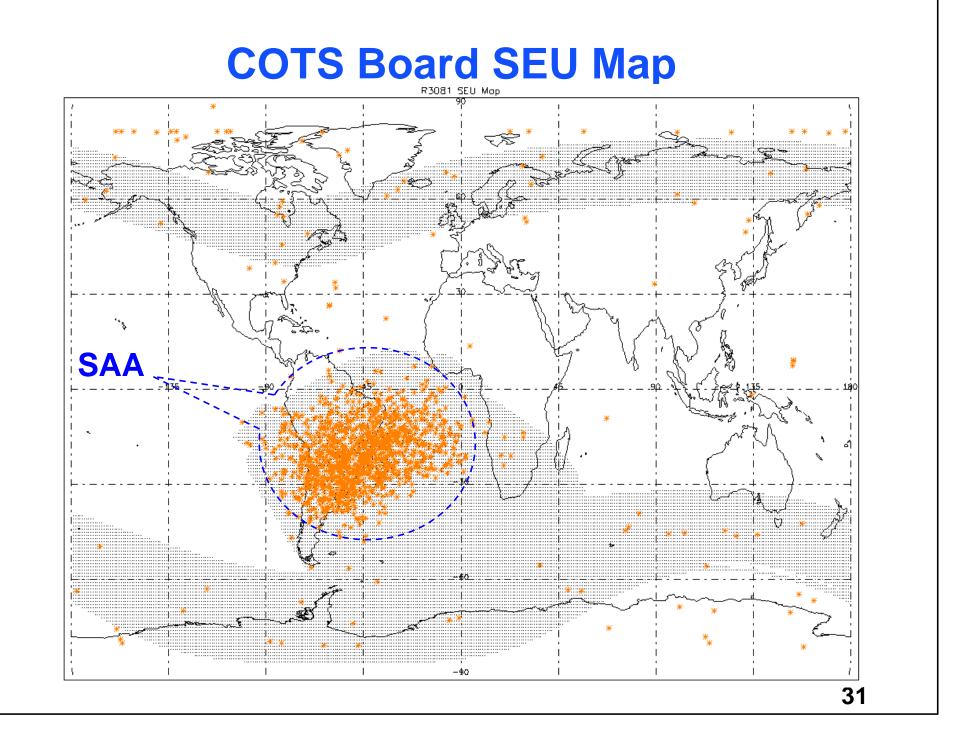
Error Recovery

- Goal
 - Automatic recovery
 - Without assistance from ground station
- Mechanism
 - Separate task for each module (multitasking)
 - Independent contexts
- Steps
 - **1. Error is detected**
 - 2. The erroneous task is terminated
 - **3.** Code segment of task is checked by EDAC
 - **4.** The task is restarted

Outline

- Motivation and Background
- ARGOS Space Experiment Setup
- Software-Implemented Hardware Fault Tolerance
- Experiment Results
- Conclusion


Hard Board – Test Programs


- Memory Test
 - Write a pattern in a block of memory
 - Loop
 - Read back and check for correct pattern
- Sine Table Generation
 - Load table
 - Loop
 - Calculate a sine table entry
 - Compare with entry in table

Hard Board – Experiment Results

Program	Data Size (KB)	Running Period (days)	Num. of Errors
Memory Test	256	140	4
	512	349	4
Sine Table	128	191	3
	512	250	9

- All Errors Detected by Software
- No Parity or EDAC Errors
- Agreement in Self-Checking Pairs
- ⇒ Suspected Source of Errors
 - Shared components, e.g., data buffers

COTS Board – Experiment Results

- Mostly Memory SEUs
 - 5.55 SEUs/MByte per day
- Software-Implemented EDAC
 - Protected memory size: 450KByte
 - Running time: 329 days
 - Errors Detected and Corrected: 831
- Reliability Improvement
 - Time to crash:
 - 2 days without software EDAC
 - 20 days with software EDAC

Memory SEUs

• Fixed Pattern Test: 55 hex = 01010101 binary

Data Size	Running Period	Num. of Errors	SEU / MB per Day
512KB cached	18 days	41	4.56
256KB cached	36 days	48	5.33
128KB cached	84 days	54	5.14
128KB non-cached	84 days	59	5.62

Overall Results

- Average SER = 5.55 SEUs/MB per day
- MBUs: 1.44%

Pattern Sensitivity of SEUs

Pattern (hex)	Errors		0 to 1 bit-flips		1 to 0 bit-flips	
	Num	%	Num	%	Num	%
00,00,00,00,	45	15.0	45	100.0	0	0.0
FF,FF,FF,FF,	45	15.0	0	0.0	45	100.0
00,FF,00,FF,	34	11.3	12	35.3	22	64.7
FF,00,FF,00,	36	12.0	15	41.7	21	58.3
AA,AA,AA,AA,	43	14.3	23	53.5	20	46.5
AA,55,AA,55,	52	17.3	23	44.2	29	55.8
55,55,55,55,	46	15.3	17	37.0	29	63.0
Total	301	100.0	135	44.9	166	55.1

COTS Board – Error Detection Coverage

- Test Programs
 - Insert sort, Quick sort, and FFT
- Error Detection Techniques
 - EDDI + CFCSS + Watchdog Timer
- Checking for Undetected Errors
 - Sort check
 - Checksum of FFT results

Error Detection Coverage

Test Program	Num.	Errors Detected			
	of Errors	EDDI	CFCSS	Watchdog Timer	Undetected Errors
Insert Sort – Int.	156	156	_	_	_
Insert Sort – FP	21	21	_	—	_
Quick Sort – Int.	43	31	5	6	1
FFT – FP	102	99	1	2	—
Total	322	307	6	8	1

- 99.7% Detection Coverage
- 98.8% Successful Recovery

Throughput Comparison

- Hard Board
 - 10 MHz, no cache memory
- COTS Board
 - 25 MHz, 4KB I-cache, 16KB D-cache
 - 25 times faster without SIHFT
 - SIHFT Overhead
 - EDDI & CFCSS: 170%
 - Software EDAC: 3%
 - One order of magnitude faster

Outline

- Motivation and Background
- ARGOS Space Experiment Setup
- Software-Implemented Hardware Fault Tolerance
- Experiment Results
- Conclusion

ARGOS Conclusions

- Rad-Hard Board
 - Failures despite all hardware FT techniques
 - Single points of failure
- COTS Board
 - Effective software FT techniques
 - Error detection, correction and recovery
- COTS + SIHFT
 - Viable techniques
 - Low radiation environments (such as LEO)

The Challenge

 Determine to what extent commercial electronics, e.g., microprocessors and RAMs, can be used in space

The Answer

- COTS + SIHFT
 - Viable for low radiation environments

Demonstration

- Successful operation of COTS + SIHFT in ARGOS
 - Inspite of 5.55 SEUs/MByte per day

References

- [Dale 95] Dale, C.J., et al., "Fiber Optic Data Bus Space Experiment on Board the Microelectronics and Photonics Test Bed (MPTB)," *Proc. of the SPIE – The Intr'l Society for Optical Eng.*, Vol. 2482, pp. 285-293, April 1995.
- [Oh 02-1] Oh, N., P.P. Shirvani and E.J. McCluskey, "Error Detection by Duplicated Instructions In Super-scalar Processors," *IEEE Trans. on Reliability*, Vol. 51-1, pp. 63-75, Mar. 2002.
- [Oh 02-2] Oh, N., P.P. Shirvani and E.J. McCluskey, "Control Flow Checking by Software Signatures," *IEEE Trans. on Reliability*, Vol. 51-1, pp. 111-122, Mar. 2002.
- [Shirvani 00] Shirvani, P.P., N. Saxena and E.J. McCluskey, "Software-Implemented EDAC Protection Against SEUs," *IEEE Trans. on Reliability*, Special Section on Fault-Tolerant VLSI Systems, Sep. 2000.
- [Takano 96] Takano, T., et al., "In-orbit experiment on the fault-tolerant space computer aboard the satellite Hiten," *IEEE Trans. on Reliability*, Vol.45, No. 4, pp. 624-631, Dec. 1996.
- [Underwood 98] Underwood, C.I., "The Single-Event-Effect Behavior of Commercial-Off-The-Shelf Memory Devices – A Decade in Low-Earth Orbit," *IEEE Trans. Nucl. Sci.*, Vol. 45, No. 6, pp. 1450-1457, Dec. 1998.

Publications

- Shirvani, P.P., "Fault-Tolerant Computing for Radiation Environments," CRC-TR 01-6 (Ph.D. Thesis), Stanford University, Stanford, CA, June, 2001.
- Shirvani, P.P., N. Oh, E.J. McCluskey, D. Wood and K.S. Wood, "Software-Implemented Hardware Fault Tolerance Experiments; COTS in Space," *Proc. International Conference on Dependable Systems and Networks* (FTCS-30 and DCCA-8), Fast Abstracts, pp. B56-7, New York, NY, June 25-28, 2000.
- Shirvani, P.P., and E.J. McCluskey, "Fault-Tolerant Systems in a Space Environment: The CRC ARGOS Project," *CRC-TR 98-2* (CSL TR No. 98-774), Stanford University, Stanford, CA, December 1998.
- Lovellette, M.N., K.S. Wood K.S., D.L. Wood, J.H. Beall, P.P. Shirvani, N. Oh, E.J. McCluskey, "Strategies for fault-tolerant, space-based computing: Lessons learned from the ARGOS testbed" *Proc. Aerospace Conf.*, 2002. IEEE, Volume: 5, pp. 2109-19, 2002.

Acronyms

- ARGOS Advanced Research and Global Observation Satellite
- **CFCSS** Control Flow Checking by Software Signatures
- **COTS** Commercial Off-The-Shelf
- **EDAC** Error Detection And Correction
- **EDDI** Error Detection by Duplicated Instructions
- FT Fault Tolerance
- **LEO** Low Earth Orbit
- MBU Multiple-Bit Upset
- **OS Operating System**
- SAA South Atlantic Anomaly
- **SEU** Single Event Upset
- SIHFT Software-Implemented Hardware Fault Tolerance