Probabilistic Quantification of
Survivability Properties

William H. Sanders
(Based on work with Adnan Agbaria, Tod Courtney, Michel Cukier, John

Meyer, Sankalp Singh, Fabrice Stevens, Franklin Webber, among others)

University of lllinois at Urbana-Champaign
Urbana, lllinois 61801
http://www.crhc.uiuc.edu/PERFORM/

Workshop on Measuring Assurance in Cyber Space
IFIP Working Group 10.4 — Monterey, CA, 2003
June, 2003
This research has been supported by DARPA
contract F30602-00-C-0172

d

Copyright 2003 William H. Sanders




Motivation

 Intrusion tolerance is an approach to security that aims to
iIncrease the likelihood that an application will be able to
continue to operate correctly in spite of malicious attacks that
may occur and may result in successful intrusions.

« Before intrusion tolerance can be accepted as an approach to
providing security, techniques must be developed to validate
its efficacy.

e Validation should be done:

— During all phases of the design process, to make design
choices

— During testing, deployment, operation, and maintenance, to
gain confidence that the “amount” of intrusion tolerance
provided is as advertised.

Copyright 2003 William H. Sanders



Existing Validation Approaches

« Most traditional approaches to security validation have
focused on avoiding intrusions (non-circumventability), or
have not been quantitative, instead focusing on and
specifying procedures that should be followed during the
design of a system (e.g., the Security Evaluation Criteria
[DOD85, 1S0O99])).

* \When quantitative methods have been used, they have
typically either been based on formal methods (e.g., [Lan81]),
alming to prove that certain security properties hold given a
specified set of assumptions, or been quite informal, using a
team of experts (often called a “red team,” e.g. [Low01]) to
try to compromise a system.

« Both of these approaches have been valuable in identifying
system vulnerabilities, but probabilistic techniques are also
needed.

Copyright 2003 William H. Sanders



Related Probabilistic Security Validation Work

« Several attempts have been made to use probabilistic methods
for assessing security:

— Littlewood et al., 1993: identified questions that need to be
answered to make probabilistic security evaluation viable

— Jonsson et al., 1997: built quantitative model of intrusion
based on attacker behavior (the only source of uncertainity
considered)

— Gong et al., 2001: 9-state model of an intrusion tolerant
system

— Jha and Wing, 2001, and Ortalo et al., 1999: constructed
scenario graphs for modeling known system vulnerabilities

« These approaches provide a good starting point. They show that:

— measures similar to those used in dependability evaluation
can be defined;

— it may be possible to model attackers; and

— the system can be represented using state-level models,
capturing either known or unknown vulnerabilities

Copyright 2003 William H. Sanders



Probabilistic Quantification of Security Issues

The effect of the attacker must be modeled, either explicitly or
logically. Focus should not be only on the worst-case scenario
(strongest possible attack), but the distribution of possible attacks

« Submodels of the intrusion tolerance mechanism being used, the
application being defended, and the resource/privilege state of
the system should be created

* Probability can enter the models through: a) inherent random
elements in the attacks and defense that make them
unpredictable, and b) abstraction the parts of the system,
especially the vulnerabilities and how they are exploited

« Appropriate level of detail/abstraction should be used:

— System submodels should represent the parts of the system
that are important relative to the type of attacks considered,
and the expression of the particular survivability measure

— Attacker submodel may either represent details of the intrusion
itself or represent the effect of the intrusion

Copyright 2003 William H. Sanders



Possible Probabilistic Validation Framework

/ Workload
!
v

/ Application \

:i Intrusion-Tolerance

Attacker Measure

VA

Mechanism

I

\ Resource/Privilege
State

System

Copyright 2003 William H. Sanders




Our Approach

* Probabilistic modeling using Stochastic Activity Networks
(SANs) of attacker effects and intrusion-tolerant mechanism

« Demonstration of approach by using SANs to model and
validate an intrusion-tolerant replication system, that is a
part of the Intrusion Tolerance by Unpredictable Adaptation
(ITUA) architecture

« Modular construction of model for easy adaptation to other
Intrusion-tolerant systems

« Definition of several measures on the model to characterize
the level of intrusion tolerance provided by the system, and
provide insights into the relative merits of various design
choices by studying variations in the measures in response
to change in system (and attack) parameters

Copyright 2003 William H. Sanders



Overview of ITUA Approach to Intrusion Tolerance

 Intrusion Tolerance by Unpredictable Adaptation (ITUA)
architecture is a middleware-based intrusion tolerance
approach that helps applications survive certain kinds of
attacks.

* Uses an intrusion-tolerant group communication system

* Integrates a set of COTS security tools, that together with
the IT-GCS, to detect corrupt processes

* Provides a decentralized replica management facility that
responds (possibly in an unpredictable way) to intrusions.
The system deals with arbitrary failures of replicas and
management entities.

Copyright 2003 William H. Sanders



ITUA Architecture

« System is divided into multiple security domains, each with one
or more hosts, implementing an attacker boundary

« Managers: Each host runs a manager. Managers:

— Are part of a communication group (manager group). IT-
GCS used to multicast messages within a group

— Determine the group structure of managers and replicas
— Propagate information regarding important state changes

— Convict corrupt members of the system to prevent known
processes from corrupting the system

« Application replicas: Application objects are replicated by the
middleware and distributed across security domains.

— Any number of applications allowed

— A security domain can have only one replica from each
application

— All replicas of an application group form a group

Copyright 2003 William H. Sanders




Pictorial View

=

rFS&(:uritg,rr Domain

Grml.lps Manager

Manager :Fleplicatiun

: - == I E Host
/ @/H”}Segurity Domain |

7 Sensor-
Actuator

- ey
= L
o
l -
. = @ Replica
" =
= .
.

/1 ®/ /ir h@:/:: 'Security Domain

7 =

/fl 8/ | @8/ /@
/SA// A//Sf'_“‘%A// A//sr'“"'m/ |

Copyright 2003 William H. Sanders




Overview of ITUA Replication System

 Members of group need to reach consensus to:

— Convict a corrupt member of the group (replication or
manager group)

— Help managers decide where to place a new replica
(manager group)

* Any number of members of a group may be in a corrupt,
but not yet detected state.

 We assume:

— Byzantine fault tolerance using authenticated
Byzantine agreement under a timed asynchronous
environment.

— (=) less than a third of the currently active group
members can be corrupt and still allow the group to
reach a consensus.

Copyright 2003 William H. Sanders



Detection of and Recovery from Corrupt Replicas

« By other replicas in its replication group when it exhibits corrupt
behavior during group communication

— Detection and conviction by the correct members of the group
if less than a third of currently active members corrupt

— Convicted replica excluded from group communication

— Each correct replica of the group informs its manager, which (if
it is not corrupt itself) propagates the information among the
manager group

— If enough correct managers, they reach a consensus, and pick
a random domain (which does not already have a replica of
that application) and a random host within the domain to
restart the replica

* By the intrusion detection software running on its host

— Detects intrusions into the host operating system or a replica
running on the host

— Informs the local manager about the detection. Further
dissemination and subsequent restart of replica(s) similar to
detection by replication group

Copyright 2003 William H. Sanders



Preemptive Action of Managers

 Managers take preemptive action by convicting and excluding
the security domain (and all the hosts/replicas therein) that
had the corrupt replica.

— Motivation: good chance that attack might have propagated
to other hosts in the domain.

— Replicas killed as a result may have to be restarted in other
domains.

 We have also analyzed and compared an alternative
approach in which only the host running the corrupt replica is
excluded.

 We assume system is left to itself with minimum human
intervention:

— We do not model manual repair of excluded hosts/domains.
— Hence, system, as modeled, can run out of domains to

restart new replicas to replace the killed ones

Copyright 2003 William H. Sanders



Example Attacker Model

« We model the effect of model successful intrusions

« Attackers can target host OS and services, application objects, or
even the management infrastructure

« We consider three distinct classes of attacks (Jonsson 1997):

— Script-based attacks: most frequently attempted, fairly high
chances of detection

— More exploratory attacks: less frequent, employed by more
experienced attackers using combination of tricks and exploits,
lesser chances of detection

— Innovative attacks: rare, but difficult to detect
 Attackers learn from successful intrusions:

— Corruption of a host increases the likelihood of corruption of
other hosts in its security domain

— Intrusion into the host OS greatly increases the chances of
iIntrusion into other assets on the host

Copyright 2003 William H. Sanders




Probabilistic Model Overview

« We use Stochastic Activity Networks (SANs) as our
probabilistic modeling formalism.

« Qur approach consists of:

— Construction of atomic SAN models for various
components of the architecture: a host, an application
replica, and the management algorithm.

— Composition of the atomic SAN models to construct a
SAN model for the overall architecture.

— Definition of measures in terms of model behavior.

— Simulation of model behavior to obtain values for
measures.

Copyright 2003 William H. Sanders




infiltration by IDS, misbehavior by
infiltrated replicas and its detection
by other replicas.

-/

Management submodel models
the process of recovery by the
management infrastructure
through the starting of new
replicas

I  Jepe. . B3
et
. w1 =
.‘:- . ... 1 miti R L -
i -] - I - - 2
1] i =1
o e .
- -' . ik B ]
. .
e -
-'-. - { = it
Replica submodel models behavior
of a single replica: starting of replica,
attacks on replica, detection of

Example Probabilistic Survivability Model

Composed Rep/Join
T q Model
. AJain
Repl Rap 2
Jain, | Rep
-~ .--f \ S@Curiey Lo ain
Appligacian Management
I
iy J Submade
Aaglica
[ ] L]
- | S . . ®
it sl it g - = ; o nernd s =
. * ...E; | — G =1 L
- T g T - - .t. - >
.I' . w eifge i ‘ r r S rIaE ey
e . T _ S 3
/ / BTN
- ]
=1 L Ll .‘ I. b_ BiTLE
Host submodel models the ||~ i - . i y e .
activities on a single host: Pl N < . 0 .1
attacks on host, detections s e L i I
and false alarms by IDS, s » - 4>
starting replicas and e A i B
management entities, and o N e . " .
shutting down N o, |

Copyright 2003 William H. Sanders




Implementation in Mobius

& ITUAorig: ITUA_model = 1B]%]
File  Eclit ~ Panel 'f&-lrl.u.m"g.lmsl mudule
Fie Bl Pansi PantiSoe Hee [ECSRTTPISTTRRINT AT

Fie Bd Hep

(=17

T
Simulation Parameters 1{ Netwirk Setup { Fun Simulation  Simulatien infa

=led

+

Expariment Status # CPLE

Batehes

Terminabe seleched Experimend |

Expanment 18 |No Resulis o a L PR — |
Experemien 28 Mo Resuls i} i}
Expanmend 39 Mo Resulis 1] 1]
£ permant 52 Mo Resuls |0 0 il |
Eaperemierd 133 |Wo Resuls 1] 0
i i el - “Iﬂd E.“m'l-“ __J
bty i =
Anoiitat /_,_,| Experiment 12 Running Batches 458 Runaing Tirme: 80005 seconds
PRi=ton il CLLLLLLLOLL LR L]
o) \H“*-\., wpmi_nt] Mian Values:
Submodel E furiavailagility_5_idt .00 62061436 oi- 0 GO0I5E-4
pll:a mr_somat funavailagility_10_id2 0.001 2044581 +f- 6 347 944E-4
. ' Poad_5 [3.836828 +f- 033970483
Fvs_muaresger i _reglices_5 6201 2663 +i- .00B53I061 3
L 2 e
< - paad_11) [4.1 84683 [+~ 0.0%41 3655
Mabius Pa » furireliability_5_id1 .01 5393043 - 0.01124TAST
fmib?u s Jone st funnaliabilmy_10_ia2 1.0348345 +- 0.016634632
N TUA mod fosts_comugt_100 09654327 [++ 0 0053556855
jum_dormaing_5 [1.2030564 [+ 010389547
um_domains_10 [2419214 [+ 014270231
1_,&.1‘:””5_5””5(”“. | ISy — Grrmamer | e B
ml.l:ﬁl
Host_module Wersior Mdeeus Simulator 1.3.0-ces i_ﬂ' .
== Q
" Simulating Mode i

Copyright 2003 William H. Sanders




Measures Considered

« We defined the service by an application to be improper if
its replication group suffers a Byzantine fault: a third or
more of the currently active replicas are corrupt.

 We defined several measures on the model to assess the
survivability of the architecture

— Unavailability for an interval. fraction of time the
service was improper for an interval;

— Unreliability for an interval: the probability that service
was improper at least once during the interval,

— Number of replicas of an application uncorrupt at a
given time instant;

— Fraction of corrupt hosts in a domain when the
domain is excluded; and

— Fraction of excluded domains at a given time instant.

Copyright 2003 William H. Sanders



Base Input Parameter Values

« Our main purpose was to demonstrate the efficacy of the
approach and do a comparative analysis of various design
choices by studying trends, and study system’s sensitivity to
Important parameters.

 Several parameter values varied during studies, but unless
otherwise specified, following values were used:

— Cumulative base attack rate on the system was 3 successful
Intrusions per hour. Actual attack rate will generally be higher
as a result of factors such as attack spread within domain and
quick intrusions into replicas/manager on an intruded host.

— Cumulative false alarm rate was 2 false alarms per houir.

— Distribution of attacks on a host (OS and services): 80%
script-based, 15% more exploratory, and 5% innovative.

— Intrusion detection probabilities: 90% for script-based on hosts,
75% for more exploratory on hosts, 40% for innovative on
hosts, 80% for replicas and managers.

— Infiltration of a host increased the chances of corruption of
other entities on the host five-fold.

— A corrupt replica exhibited corrupt behavior twice per hour.

Copyright 2003 William H. Sanders



Input Parameter Values

* The type and accuracy of input parameter values depends on
the stage of development of the system being validated, and
knowledge about possible attackers. Even if accurate input
parameter values not available, the model can be used to:

— Study the trends in the system’s security, which can be
used to guide the system design process, by making
design choices that improve the survivability of the system.

— Provide insights into requirements of particular system
components to achieve desired overall survivability, e.g.,
maximum false alarm rate, required detection probability,
maximum reaction and restoration time.

* Modeling-based validation can be used throughout the
lifecycle of an intrusion-tolerant system, exploring the design
space and making appropriate choices at each step of the
design process.

Copyright 2003 William H. Sanders



Result Overview

. We used the Mobius tool to design the SANs, define the
measures on the model, and design the studies and
obtain results via simulation.

« We conducted the following studies:

— Determination of preferable distribution of hosts into
domains by comparison of intrusion tolerance of the
system for

o different distributions of a constant number of hosts
Into domains

» different numbers of hosts distributed into a fixed
number of domains

— Comparison of the relative efficacy of the host-
exclusion and domain-exclusion management
algorithms.

Copyright 2003 William H. Sanders




Impact of Different Distributions of a Constant

Number of Hosts into Domains

 \We distributed 12 hosts into 1,2,3,4,6 or 12 domains. We considered
applications with 7 replicas each.

a.435 I I n T T 1 | | — T T
£ applications —%— n £ applications —+—
n H.4 |- 4 applications E c H.9 4 applications —B— -
+ & applications O e & applications —e—
c  B.35 2 applications ~32 8.8 F 2 applications —+— -
oS + 0
o 8.3 4 27 e.7 -
o E Zw
o+ B,25 . Sw 8.5 |
Em o3
- B.z2 . ww H.5 F
m + oo
>0 P
mLe  BA.15 - - A.4 -
e o c
- m
B.1 . + B.32
5 oo
*  B.8% 4 £7 e.z}
Lo
5] A.1
5] c 4 =] g 18 12 5]
Host= per domain Host= per domain

« System more available with fewer hosts per domain, because that allows for
more domains and we do not run out of domains to restart replicas when several
domains have been excluded.

* Resources are wasted when we have more hosts per domain, since corruption of
a small fraction of hosts results in an exclusion of a large number of hosts.

Copyright 2003 William H. Sanders




Impact of Different Numbers of Hosts into a
Constant Number of Domains

« Determine gains by putting more hosts per domain into a fixed number of domains,
and evaluate the cost/benefit tradeoff.

* Number of domains was fixed at 1. Number of hosts per domain was varied from 1
to 4. The study had 4 applications with 7 replicas each.

d4.885 T T T T T 8.83 T T T T T
for interwal [Bs 51 —— for interwal [B, 5] ——
@.8a87 | for interval [8, 18] —B— o 8.88 - for interwal [@, 18] —8—
B.87
o B.886 -
b *  B.86
—~ A.B85 o
= = 8.85
LI-N-1:T C
- o B.a4
m
> B.EE3 v
m £ @.e3
< =
=  @.eaz A, @2
B.@a1 ¥ B.61
ET I I I | I A
1 1.5 c 2.9 3 2.5 4 1 1.5 c 2.5 3 3.9 4
Humber of hosts per domain Humber of hosts per domain

« System more available when fewer hosts per domain:
— Probability of intrusion into a host same for all experiments

— More hosts imply greater chance of one of them being corrupted, resulting in
exclusion of its domain (upon detection).

Copyright 2003 William H. Sanders



Comparison of Domain-exclusion and Host-exclusion
Management Algorithms

« Two ways to respond to detection of corruption of a host or a replica:

— Exclude the entire domain that contains the host (preemptive
response).

— Exclude only the detected host, saving resources.

— Presence of a corrupt host increases the rates of successful
Intrusions into other hosts in its domain.

— Attack-spread is a model parameter characterizing how much
influence the corruption of host has on attack rates for other hosts,
and how quickly this influence spreads.

— We studied the efficacy of the two management algorithms for
different rates of attack spread.

— We used the following parameter values:
* 10 domains with 3 hosts per domain
» 4 applications with 7 replicas each

 Attack spread rate of varied from 0 (low) to 10 (high). A
spread rate of 5 or more should be considered quite high.

Copyright 2003 William H. Sanders



Comparison of Domain-exclusion and Host-exclusion
Management Algorithms

A.2
T T T T T T T
Host exclusion —+— Host exclusion —+—

B.89 | Domain exclusion —8— Domain exclusion —8— T

Uhreliakility for
the first S5 time unit=s
Uhavailakility for
the first 18 time units

E“ | | | | @, 84 | | | |
5} Z 4 & = 14 5} c 4 & = 14

Rate of attack =spread Rate of attack spread

* In the short run (5 hours):

— Host exclusion performs better for low attack spread rates, domain
exclusion slightly outperforms for high attack spread rates.

* Inthe long run (10 hours):

— Domain exclusion outperforms host exclusion for most values of
attack rates.

« Domain exclusion scheme relatively insensitive to attack spread rate.

Copyright 2003 William H. Sanders



Summary

* Probabilistic evaluation/validation is an viable technique for
choosing among design alternatives and validating intrusion-
tolerant systems

|t should be used in all phases of a system’s lifecycle:
requirement specification, early/detailed design,
Implementation, testing, deployment, and maintenance

* Models are useful for making comparative studies and
evaluating design alternatives, even if exact parameter values
are not known

« Better parameter value estimation is necessary, for
implemented systems, to quantify intrusion tolerance obtained

* Much more work is needed to build better models, particularly
better attack models, and to better determine input parameter
values!

Copyright 2003 William H. Sanders




Thank you!

for more information, see our papers at
DSNO3, and LADCO03, found at

http://www.crhc.uiuc.edu/PERFORM/




