

Bradley Wood

(bwood@bbn.com)

Senior Network Security Engineer BBN Technologies

Outline

- Motivation
- Experiences
- Alternatives

Motivation

- Why measure "adversary impact"?
 - Adversaries have a negative impact on systems.
 - We want to limit the adversary's impact...
 - without complicating the operator's life.

Approach

- Measure the effort required by an adversary to impart a negative impact...
 - Let's call this value Adversary Work Factor.
 - We want to <u>maximize</u> this value.

Complications

- Direct observation of an adversary is problematic.
- Alternative
 - Use a Red Team to model the adversary
 - Main advantage is that observation is easier
 - Risks:
 - Does a Red Team provide a good model of an adversary?
 - Processes resembles experimentation with humans.
 - Processes have many variables.

Experiences

- This approach used by DARPA since 1998 in the (former) Information Assurance program and elsewhere [Levin2003]
- Successes
 - Information sharing, document generation, data collection, common understandings
- Challenges
 - Cost
 - Fragility of research mechanisms

- Requirements:
 - Absolute measure of security
 - Relevant for a given application and environment
 - Promotes desired behaviors:
 - Fix the biggest problems first.
 - The higher the measure, the better the security.
 - Simple enough to be calculated by operators
 - Cheap enough for commercial use

Critical Security Rating (CSR)

\leftarrow Risks \rightarrow

Consequences

CSR Calcu	ılation for												
				A	ttack Vector 1		At	Attack Vector 2			Attack Vector 3		
				Outsider: Cyber			Outsider: Physical			ι	Ope		
			Likelihood 10					10					
Criteria	Description		Attack Space Distribution	Value	Pass/Fail	Score	Value	Pass/Fail	Score	Value	Pass/Fail	Score	Value
Flag 1		10	0.166666667	0.027778		0	0.027778		0	0.027778		0	0.027778
Flag 2		10	0.166666667	0.027778		0	0.027778		0	0.027778		0	0.027778
Flag 3			0.166666667	0.027778		0	0.027778		0	0.027778		0	0.027778
Flag 4		10		0.027778		0	0.027778		0	0.027778		0	0.027778
Flag 5		10		0.027778		0	0.027778		0	0.027778		0	0.027778
Flag 6		10	0.166666667	0.027778		0	0.027778		0	0.027778		0	0.027778
	Checking Sums	60	1	0.166667			0.166667			0.166667			0.166667
	Score Totals					0			0			0	
	Assumptions:												
	1	ļ											<u> </u>

↑ Mitigation Matrix ↑

CSR Values

- Consequence Values
 - What are the "bad things" to avoid?
 - How much do these impact our enterprise (percentages)
- Risk Values
 - Who or what might cause the "bad things"
 - How much do we worry about them (percentages)
- Mitigation Values
 - Is Consequence X mitigated against Risk Y?
 - Yes => Px*Py; No => 0
- CSR = Sum(Px*Py) for all X and Y values

Example

	Adversary					В		С		D		E		F		
					Outsider:		Outsider:				Operational		Knowledgable		Lifecycle	
	Description Rank Probability of Attack			Cyber 10 0.2222		Physical 9 0.2000		User: Supplier 8 0.1778		Insider 7 0.1556		Outsider 6 0.1333		Developer 5 0.1111		
	•				Pass/		Pass/		Pass/		Pass/		Pass/		Pass/	
Risk	Description	Rank	Priority	Value	Fail	Value	Fail	Value	Fail	Value	Fail	Value	Fail	Value	Fail	
Α	DOS of customer web interface	10	0.2041	0.0454	1	0.0408		0.0363	3	0.0317	7	0.0272		0.0227		
В	DOS of company trading capability	9	0.1837	0.0408	3	0.0367		0.0327	•	0.0286	3	0.0245		0.0204		
С	Steal \$\$\$	8	0.1633	0.0363	3	0.0327		0.0290		0.0254		0.0218		0.0181		
D	Cause 60% Slowdown, (>30 min)	7	0.1429	0.0317	7	0.0286		0.0254	ļ	0.0222	<u> </u>	0.0190		0.0159	ı	
Ε	Publicly Report Compromise	6	0.1224	0.0272	2	0.0245		0.0218	3	0.0190)	0.0163		0.0136	j	
F	Make Fraudulent trades	5	0.1020	0.0227	7	0.0204		0.0181		0.0159)	0.0136		0.0113	}	
G	Steal Customer Data	4	0.0816	0.0181	1	0.0163		0.0145	;	0.0127	7	0.0109		0.0091		

Score Totals

Observations

- Process was tested at a West Coast R&D laboratory with favorable results
- Process is still highly subjective
 - Burden is on the operator; similar to reality in many groups
- Process is much cheaper than a Red Team assessment
- Process can be completed by the operator
- Mitigation matrix needs some work.
- Effects can be extended to survivability factors

- In the beginning, we tried measuring
 Team Work Factor
 - Very informative process
 - Very expensive process
- New measure is the Critical Security Rating (CSR)
 - Potential to have a large positive impact
 - It is a new process that needs some work

Schudel and Wood, Adversary Work Factor as a Metric for Information Assurance, proceedings from the *New Paradigms in Security Workshop,* September 18-22, 2000, Ballycotton, County Cork, Ireland, published by the Association of Computer Machinery

Schudel and Wood, DARPA IA Red Team Experiments, *MILCOM 2000*, October 2000, proceedings published by the IEEE Press

Wood, Bouchard, and Farrell, Evaluating the Effects of Adversary Behavior on Dependable Systems, proceedings from the *2001 Dependable Systems and Networks Conference*, June 30 to July 4, 2001, Goteborg, Sweden, available from IEEE press

Kewley, D. and Bouchard, J., DARPA Information Assurance Program Dynamic Defense Experiment Summary, proceedings from the *IEEE SMC IAS Conference*, West Point, New York, June 2000

Levin, David, Lessons Learned in Using Live Red Teams in IA Experiments, Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX III), 22-24 April 2003, published by the IEEE press

Cyber-Security and the Insider Threat to Classified Information, published by the National Research Council, Computer Science and Telecommunications Board, 1-2 November 2000

Wood, Bradley, *An Insider Threat Model for Adversary Simulation*, proceedings from Workshop #2, Research on Mitigating the Insider Threat to Information Systems, August 2000, published by the RAND Corporation

Wood, Bradley, and Duggan, Ruth, *Red Teaming of Advanced Information Assurance Concepts*, proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX I), Volume II of II, January 2000, published by the IEEE