
1

A Defense-Centric Attack
Taxonomy

Roy A. Maxion

Dependable Systems Laboratory
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Email: maxion@cs.cmu.edu

IFIP WG 10.4 Workshop on Measuring
Assurance in Cyberspace

26 June 2003

Monterrey, California

Copyright, Roy Maxion 2003 © 2

Acknowledgements

Kevin Killourhy

Kymie Tan

DARPA

2

Copyright, Roy Maxion 2003 © 3

Observation

Most of the known attack taxonomies are
constructed from the attacker’s perspective;
that is, they are attack-centric.

For the attacker, if one attack fails, choose
another attack from the same taxon; try
again.

Such taxonomies are great for the attacker
… … but less attractive for the defender.

Copyright, Roy Maxion 2003 © 4

Goal

Predict if an IDS will detect a given attack.
Need to know attack manifestations … but ...
Manifestations are not provided by any current
taxonomies (closest is Kumar, but too abstract,
and focused on signatures).

Compare two taxonomies for equivalence.
Attack-centric and defense-centric.
Note that this is for anomaly detection …
regarded as the best hope for detecting novel
attacks, masquerade attacks, and other attacks
detectable through profiling.

3

Copyright, Roy Maxion 2003 © 5

Example attack-centric taxonomy

None applicable: these attacks did not fit anywhere in the LL taxonomy.

Example: attacker has many
choices of U2R attacks.

Question: can all U2R attacks be detected by same detector?

Copyright, Roy Maxion 2003 © 6

Example defense-centric taxonomy

Note: All attacks that manifest as “A” will be
detected by a detector that can detect “A”.

4

Copyright, Roy Maxion 2003 © 7

What to do?

Build a taxonomy that is defense-centric.
Check that it obeys classic taxonomic rules.
Assemble a collection of programs that
could operate as attacks.
Run these programs native to observe their
normal behavior.
Run them again, in attack mode, to observe
their attack behavior (manifestations).
Determine whether the manifestations
mirror the classes of the attack-centric
taxonomy, or not.

Copyright, Roy Maxion 2003 © 8

What to do … pictorially?

Do the attacks on the left map directly to the classes on the right?

5

Copyright, Roy Maxion 2003 © 9

Examples of extant taxonomies

Equivalence partitioning (Puketza)
Based on the likelihood of a particular IDS detecting an
attack. (Not an actual taxonomy, but suggestive of one;
could conceptually be used by a defender.)

Flaw classifications (Landwehr)
Based on the kinds of programming flaws that facilitate
attacks (e.g., buffer overflow)

Attack classifications (Lindqvist & Jonsson)
Based on intended effect of attack (e.g., denial of service)

Signature classifications (Kumar)
Based on the complexity of attack signatures

Attack types (Lippmann et al. (LL))
Based on the intended effect of the attack (e.g., elevating
user to root)

Copyright, Roy Maxion 2003 © 10

Landwehr et al. (flaw classifications)

6

Copyright, Roy Maxion 2003 © 11

Lindqvist & Jonsson (attack classifications)

Copyright, Roy Maxion 2003 © 12

Kumar (signature classifications)

7

Copyright, Roy Maxion 2003 © 13

Lippmann et al. (LL) (attack types)

Copyright, Roy Maxion 2003 © 14

What’s wrong with these taxonomies?

Nothing is wrong with them.
They just serve purposes different from the
one we have in mind (except Kumar).
Actually, we don’t know if they serve our
purpose or not, so we need to test the
hypothesis that they do.
But we only have time to test one of the
taxonomies, so which one, and why?

8

Copyright, Roy Maxion 2003 © 15

Choosing which extant taxonomy to test

Puketza - did not produce a taxonomy
Landwehr - did a taxonomy of flaws, not of
manifestations
Lindqvist & Jonsson - reasonable candidate
Kumar - dealt with signatures; too abstract
to be useful
Lippmann et al. (LL) - reasonable candidate,
very well known, familiar, intuitive

Copyright, Roy Maxion 2003 © 16

Why choose the Lincoln Lab taxonomy?

Very well-known attack taxonomy.
Lincoln Laboratory 1998 IDS evaluation project.

Exemplifies attack taxonomies in general.
Inclusive enough to be taken seriously.
Simple enough to work with.
Intuitive.
Familiar to most researchers in the field.
Takes an attack-centric perspective; groups
attacks based on how an attacker would use
them.

9

Copyright, Roy Maxion 2003 © 17

What are the LL attack classes?

User-to-root (U2R)
An attacker with the privileges of a regular user can use
the attack to gain root privileges on the target machine.

Remote-to-local (R2L)
An attacker with an Internet connection canuse the attack
to gain a local account on the target.

Denial-of-service (DOS)
An attacker can use the attack to deny legitimate service
to the target or a resource running on the target.

Surveillance/probe (PRO)
An attacker can use the attack to gather reconnaissance
information about the target, its users and resources.

Copyright, Roy Maxion 2003 © 18

Hypothesis: There is a 1-1 mapping.

Do the attacks on the left map directly to the classes on the right?

10

Copyright, Roy Maxion 2003 © 19

Methodology

Choose attack-centric taxonomy
Develop attacker-defender testbed
Develop attacks
Gather normal traces
Gather attack traces
Extract attack manifestations
Classify attacks according to manifestations
and according to taxonomy under test
Evaluate the mapping
Acquire convergent evidence from IDS

Copyright, Roy Maxion 2003 © 20

Attacker/defender test bed

Three (Intel-architecture-compatible)
machines simulate the attacker’s and
defender’s environments:

Attacker’s machine
Victim’s machine
Auxiliary machine (for support purposes, e.g.,
backup server for dump/restore U2R attack)

RedHat Linux operating system
Victim instrumentation: IMMSEC system call
logger

Kernel patch
Logs all system calls

11

Copyright, Roy Maxion 2003 © 21

Example system-call data (truncated)

socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 4
bind(4, {sin_family=AF_INET, sin_port=htons(1023), sin_addr=inet_addr("0.0.0.0")}}, 16) = 0

connect(4, {sin_family=AF_INET, sin_port=htons(515), sin_addr=inet_addr("128.2.205.3")}}, 16) = 0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 5), ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40034000

ioctl(1, TCGETS, {B9600 opost isig icanon echo ...}) = 0
write(1, "yellow.srv.cs.cmu.edu... ", 26) = 26
write(4, "\3slate\n", 7) = 7
read(4, "slate accepting requests since S"..., 8192) = 60
write(1, "slate accepting requests since S"..., 60) = 60
read(4, "slate-16951 root "..., 8192) = 71
write(1, "slate-16951 root "..., 71) = 71
read(4, "Rank Owner Job "..., 8192) = 141
write(1, "Rank Owner Job "..., 141) = 141
read(4, "", 8192) = 0
close(4) = 0
chdir("/usr/spool/lpd/slate") = 0

Copyright, Roy Maxion 2003 © 22

System programs used

These programs were
run normally to get
normal/training data.
dip
diskcheck
dump
imwheel
kon2
ntop
passwd
restore
slocate

slocate
su
sudo
tmpwatch
traceroute
vim
xfs
xlock
xman
xterm

12

Copyright, Roy Maxion 2003 © 23

Developing the attacks

Used vulnerability descriptions from public
repositories (e.g., bugtraq)
Attack criteria

Must involve exploitation of privileged system
programs
Attack must actually work

Attacks were modified from downloaded
exploits, were developed from vulnerability
descriptions, or were downloaded directly.
Some attacks were designed to be difficult
to detect, using hiding strategies (cloaking)

Copyright, Roy Maxion 2003 © 24

The attacks

crontabrace
dipbuff
diskcheckrace
diskcheckrace[2]
dumpbx
imwheelbuff
imwheelbuff[2]
kernelexecptrace
kernelexecptrace[2]
kernelexecptrace[3]
killxfs
kon2buff
ntopspy

restorecool
restorecool[2]
slocateheap
sudomem
sulocalefmt
tmpwatchexec
traceroutefree
traceroutefree[2]
traceroutefree[3]
xlockfmtstring
xmanprivs
xtermdos

13

Copyright, Roy Maxion 2003 © 25

Gathering normal traces

Normal usage scenarios were collected for
each privileged system program vulnerable
to one or more attacks in our collection.
Normal usage scenarios were designed
manually, based on user experience and
usage examples from the documentation
(e.g., “man pages”) accompanying each
program.
Traces of system calls were made while
enacting each normal usage scenario; these
were the normal data traces.

Copyright, Roy Maxion 2003 © 26

Gathering attack traces

Traces of behaviors under attack were gathered.
The attacks in our collection are diverse. Some can
be launched by attackers without an account on the
target machine. Others must be launched from an
account local to the target machine.
Attacks that work remotely were launched directly
at the target from the attacker's machine.
The exploit scripts that had to be run locally were
downloaded from the attacker's machine to the
target machine; then launched locally.
The success of each attack was confirmed.
The victim machine was restored to its
uncompromised state prior to the attack.

14

Copyright, Roy Maxion 2003 © 27

Attack manifestations

Within the scope of this experiment, an attack
manifestation is defined to be the sequence of
system calls issued by the exploited system
program, due to the presence and activity of an
attack.
The manifestation of each of the 25 attacks was
identified manually, with assistance from
automated tools.
Each observed system call in the trace was checked
to verify that it came from the executed system-
program source code.
Sequences of system calls due to the presence and
activity of the attacks were extracted.

Copyright, Roy Maxion 2003 © 28

Classifying the manifestations

Foreign symbols
Foreign sequences
Minimal foreign sequences
Dormant
Not anomalous
No manifestation

If an IDS can detect these things, then it can
detect attacks that manifest as these things.
Manifestation types were based on earlier work.

15

Copyright, Roy Maxion 2003 © 29

Sequence types - I

Foreign symbol - never appeared in normal data
Foreign sequence - sequence of symbols that
does not occur in trace(s) that were used to define
normal behavior (does not necessarily contain
foreign symbols)
A sequence can be foreign by virtue of containing

one or more foreign symbols
a foreign order of symbols
combinations of both

A minimal foreign sequence is a foreign sequence of the
second type (foreign order), having the property that all of its
proper subsequences already exist in the normal trace(s) …
i.e., a minimal foreign sequence is a foreign sequence that
contains within it no smaller foreign sequences.

Copyright, Roy Maxion 2003 © 30

Sequence types - II

Dormant - proper subsequence of a normal trace,
hence not really normal; can occur through
cloaking.
Not anomalous - indistinguishable from normal;
need either a different sensor to detect, or enriched
system call data
No manifestation - nothing appears in the system
call data; due to phenomena like masquerading, for
example; included here for taxonomic
completeness.

16

Copyright, Roy Maxion 2003 © 31

Defense-centric taxonomy

Attacks were grouped into manifestation classes:
Foreign symbol: The attack manifests as one or more
foreign symbols in the attack trace.
Minimal foreign sequence: The manifestation contains
no foreign symbols but contains one or more minimal
foreign sequences.
Dormant sequence: The manifestation contains no
foreign symbols or sequences but it does not exactly
match any normal trace.
Not anomalous: The manifestation exactly matches one
or more normal traces.
No manifestation: The attack does not manifest in the
sequence of system calls generated by a privileged system
program.

Copyright, Roy Maxion 2003 © 32

Attack classification - testing the mapping

Determine the classes in both taxonomies to
which each attack belongs.
Classify the attack manifestations using the
attack-centric Lincoln Lab taxonomy (U2R,
Probe, etc.).
Classify the attack manifestations using the
defense-centric taxonomy (foreign symbol,
minimal foreign sequence, etc.).
Determine mapping between attack-centric
and defense-centric classes for each attack.

17

Copyright, Roy Maxion 2003 © 33

Results

One LL taxon maps to multiple D-C taxons.
• We don’t want this situation, because the LL taxonomy is

unable to predict how an attack manifests.

Multiple LL taxons map to a single D-C
taxon.

We don’t want this situation, because knowing how an attack
manifests tells us nothing about the attack-centric class to which
it belongs.

Copyright, Roy Maxion 2003 © 34

One LL taxon maps to multiple D-C taxons

We don’t want this situation, because the LL taxonomy
is unable to predict how an attack manifests.

18

Copyright, Roy Maxion 2003 © 35

Multiple LL taxons map to a single D-C taxon

We don’t want this situation, because knowing how an attack manifests
tells us nothing about the attack-centric class to which it belongs.

Copyright, Roy Maxion 2003 © 36

What we want

The attacks on the left map directly to the classes on the right.

19

Copyright, Roy Maxion 2003 © 37

What we got … as empirical correspondences

Copyright, Roy Maxion 2003 © 38

Full defense-centric taxonomy

20

Copyright, Roy Maxion 2003 © 39

Acquiring convergent evidence

Ran Stide intrusion-detection system on each
attack’s normal (training) & attack (testing) traces.
Stide was run with window sizes from 1-15.
If any anomalies were reported, stide was judged
to have detected the attack.
If an anomaly was reported at every Stide window
size, the attack was judged always detectable (3).
If an anomaly was reported at some Stide window
sizes, but not all, then the attack was judged to be
somewhat detectable (2).
If an anomaly was never reported at any window
size, the attack was judged never detectable (1).

Copyright, Roy Maxion 2003 © 40

Data

Defense-centric Attack-centric
classclassDetectableAttack Name

DOSMFS2xtermdos
N/AMFS2xmanprivs
U2RMFS2xlockfmtstring
U2RMNA1traceroutefree[3]
U2RMFS2traceroutefree[2]
U2RFS3traceroutefree
U2RMNA1tmpwatchexec
U2RMFS2sulocalefmt
U2RFS3sudomem
N/AFS3slocateheap
U2RMNA1restorecool[2]
U2RMFS2restorecool
R2LMFS2ntopspy
U2RMFS2kon2buf
DOSMFS2killxfs
U2RDS1kernelexecptrace[3]
U2RMFS2kernelexecptrace[2]
U2RFS3kernelexecptrace
U2RDS1imwheelbuff[2]
U2RFS3imwheelbuff
U2RMFS2dumpbx
DOSMNA1diskcheckrace[2]
N/AMNA1diskcheckrace
U2RFS3dipbuff
N/AMFS2crontabrace

21

Copyright, Roy Maxion 2003 © 41

Full defense-centric taxonomy

Copyright, Roy Maxion 2003 © 42

Results

Attacks that manifest in the same way come
from many different attack-centric classes.
The new defense-centric is not equivalent to
the LL attack-centric taxonomy.
If a detector detects a given manifestation,
it will detect all attacks that so manifest.
The defense-centric taxonomy is better
coupled to attack manifestations & defender
than to intent, motive & attacker.
Taxonomy complete, self consistent, valid.
Taxonomy helps to identify detectors that
cover the anomaly manifestation space.

22

Copyright, Roy Maxion 2003 © 43

Advantages

Coverage metric for …
Anomaly-based intrusion-detection systems
Profiling (masquerade detection) systems
Red teams

Detector-selection mechanism.
Can reveal coverage gaps in terms of
detectors being used.
Identified new “dormant” sequence that
needs a new detector (statistically-based
detector might be successful here).

Copyright, Roy Maxion 2003 © 44

Conclusion

Compared defense-centric & attack-centric attack
taxonomies.
Defense-centric taxonomy “predicts” coverage.
Assists in red-team & detector coverage.
Detector can more easily be chosen to cover
defense-centric categories than attack-centric
categories.
Note: the D-C taxonomy will not identify the attack;
& it won’t tell you if an attack caused the anomaly.
But, manifestations tend to cluster in a real attack.
When significant anomalies are observed,
diagnostic reasoning will elucidate the cause.

23

Copyright, Roy Maxion 2003 © 45

- END - END - END - END - END - END -

