
1

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Uncertainty and Predictability:
can they be reconciled?

A Vision and a Concrete Model
Paulo Veríssimo

Univ. of Lisboa Faculty of Sciences
Lisboa – Portugal

pjv@di.fc.ul.pt
http://www.navigators.di.fc.ul.pt

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

2

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

The Vision

2

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

3

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Problem Motivation
• Design and deployment of distributed applications is faced

with the confluence of antagonistic aims:
between what is required by applications, and what is given by the
supporting infrastructure/ environment

• Current and future large, massive-scale pervasive and/or
ubiquitous computing systems will amplify this:

very high numbers of players, very large distances, geographical scope,
topology and interconnections no longer a given, ill-defined COTS
component properties

• Key lies with a changing notion of service guarantees:
about what have always been the fundamental issues, e.g., consistency,
synchronism, reliability, availability, predictability, security, ...

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

4

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Problem Motivation
• Take the time dimension
• Many services, beyond mere performance, have to secure

timeliness properties, that is, they have to meet timing
constraints (every x ms, within T, until T, etc.)

Dependability constraints: control applications; User-dictated QoS:
Multimedia apps, synchronized groupware

• So we should use synchronous system models...:
But with unpredictable or unreliable infrastructures the system may fail
Dedicated infrastructures may be impractical or expensive

• Why not use asynchronous system models then?
They do not allow timeliness specifications

3

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

5

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Grand challenges put by this scenario?
• Looks like a grand challenge would be withstanding

uncertainty whilst achieving predictability

• Uncertainty:
is a common denominator of current systems
uncertain synchrony, fault model, and even topology

• Predictability:
systems are required to fulfil more and more demanding goals
which imply predictability or determinism, e.g, timeliness, security

• Reconciling them means:
strong attributes (e.g. on ordering, agreement, timely termination of
algorithms) can be secured in settings where usually very little is
assumed and very little is expected from

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

6

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Meeting the challenge

• Are there scientific advances we can look forward to?

a conflict must be solved between the weakness of the
environment and the relative strength of requirements

• We propose to address this conflict with a "first-
things-first“ approach:

define adequate system model and architecture
before thinking about algorithms/protocols/mechanisms

4

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

7

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Partial Solutions (in the time dimension)

• Models of intermediate synchrony have been around:
Partially synchronous (Dolev, Dwork)
Asynchronous with Failure Detectors (Chandra/Toueg)
Timed Asynchronous Model (Cristian/Fetzer)
Quasi-Synchronous Model (Veríssimo/Almeida)

• Did they solve the problem? Only partially ☺

• But how to control this process to our benefit?

A common feature we observed in these works:
synchronism (or asynchronism) are not homogeneous
properties of systems--- they vary with time and with
space, i.e. the part of the system being considered

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

8

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Guidelines

• Assume that uncertainty is not ubiquitous (and is not
everlasting)--- the system has parts more predictable
than others (and tends assume stable periods)

• Be proactive in achieving predictability--- make it
happen at the right time, right place

• Tolerate uncertainty further to tolerating faults--- not
all failures can be prevented, and some only on a
probabilistic basis

5

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

9

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Wormholes
• New design philosophy

for distributed systems:
• constructs with privileged

properties which endow
systems with the capability of
evading the uncertainty of
the environment (``taking a
shortcut'') for certain crucial
steps of their operation, in
order to achieve the required
“hard properties”
(predictability)

Host A

Payload
System

Host C

Host B

Payload Network
(e.g. Internet/

Intranet)

WG - Wormhole GatewayHost D

Wormhole
subsystem

WG

WG

WG

WG

distrib. wormholes

Host A

Payload
System

Host C

Host B

Payload Network
(e.g. Internet/

Intranet)

WG - Wormhole GatewayHost D

Local
Wormhole
subsystems

WG

WG

WG

WG

local wormholes

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

11

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Characterisation of a Wormhole
• The little part that offers ‘hard’ properties, e.g.:

synchronous: bounds on processing delays, drift rate of local clocks
and delivery delay of control messages
secure: trusted to be tamperproof, secure processing and comms.

• Small, simple and uses few resources
Easier to construct and verify, with high coverage
Supplies simple services, like failure detection, timely execution,
trusted channels, or signatures

• Acts as a coverage amplifier for the whole system

A small part of the system executes a small but
critical part of its operation (a number of critical

tasks) with high confidence (coverage)

6

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

13

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Concrete examples
• We have played recently with two types of wormhole

subsystems, to prove the concept:
Timely Computing Base for timeliness
Trusted Timely Computing Base for timeliness and security

Wormhole Control Channel

Payload Network

Host 1
Processes

Host 2
Processes

Host n
Processes

OS
Local
Worm.

OS OS
Local
Worm.

Local
Worm.

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

14

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Example of deployment of systems with
wormholes

7

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

15

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Example of deployment of systems with
wormholes

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

16

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Example of deployment of systems with
wormholes

Host C

Payload Network

Local
TTCB

(e.g. Wireless)
Local
TTCB

Local
TTCB

TTCB Control channel/Network

Host A

Host B

Host C

Payload Network

Local
TTCB

(e.g. Wireless)
Local
TTCB

Local
TTCB

TTCB Control channel/Network

Host A

Host B

Host C

Payload Network

Local
TTCB

(e.g. Wireless)
Local
TTCB

Local
TTCB

TTCB Control channel/Network

Host A

Host B

Host C

Payload Network

Local
TTCB

(e.g. Wireless)
Local
TTCB

Local
TTCB

TTCB Control channel/Network

Host A

Host B

8

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

17

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Strategy for timeliness
awareness and/or assurance

- Fully synchronous, timely
- Partially synchronous, potentially untimely

Ci

Host A
Cj

Host B
Ck

Host C
Cl

Host D

Worm.

Partially Synchronous Protocols

Worm.Worm. Worm.

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

18

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Strategy for security
awareness and/or assurance

- Fully secure (tamperproof), timely
- Malicious, potentially untimely

9

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

19

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Rationale of the operation of
Wormhole-aware protocols

P1

P3

P2

P4

Wormhole.
Wormhole Services

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

20

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

A Concrete Model
(the timeliness wormhole example)

Timely Computing Base

10

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

21

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

TCB Model

TCB Services and Interface

Implementation of a TCB

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

22

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Quest for a Generic Solution

• How to encompass the entire spectrum of synchrony,
from fully sync to fully async?

• How to enforce certain time-related properties rather
than waiting for them to happen?

• We devised a model that encompasses the entire
spectrum of partial synchrony

Timely Computing Base (TCB) Model

• We devised an architecture that enforces timeliness
Timely Computing Base (TCB) Architecture

11

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

23

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

The Timely Computing Base
• Payload part:

Where applications reside
Can have any degree of
synchronism

• Dual system architecture:
Generic payload system
Control part: the TCB

• Control part (TCB):
Simple and small part of the system
Has known bounds on processing
and message delivery delays

P Site A

Payload
Network Site B

P

P

P

P

P

P

Site C

P Site A

TCB

Payload
Network Site B

P

P

P

P

P

P

TCB

TCB

TCB

Site C

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

26

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

• None of the partial synchrony models is generic
enough

each model treats synchrony asymmetries in it own way, relying
on the evolution of synchrony with time, or with space, or both
neither can handle the whole synchrony spectrum
they tie application styles & semantics in one way or another

Why a new model

12

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

27

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

• Timely Computing Base wormhole model :
postulates space-domain heterogeneity (vis-a-vis synchronism)

– ∃ components with “better” properties
monitors time-domain heterogeneity (synchrony variations)

– payload can have any synchronism

• Timely Computing Base architecture :
enforces architectural hybridization

– construction of the “better” components
enforces sync/async interface

– payload enjoying “better” components services

Why a new model (cont.)

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

28

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

The conceptual “SYNC” toolbox

• TE – timely execution (simple or generic)
• DM – duration measurement (local or distr)
• CFD – crash failure detection (local or distr)
• TFD – timing failure detection (local or distr)

13

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

29

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Alternative models
• Interesting applications for unrestrained failure modes require a perfect

failure detector [Guerraoui02]
• A fully synchronous subsystem is required to implement a pFD

[Chandra96]
• Weakest of known timed system is TA, but no pFD possible on strict TA

• Consider TA+SYNC, with simplest set of services: simpleTE, local DM
• Consider applications where slow nodes do harakiri:

Tout => Crash Failure (CF)
Tout => Local DM
enforce(Crash) => simpleTE
This version of TA+SYNC(simpleTE,locDM) can be implemented with a watchdog (WD)
pFD is achieved, through the transformation Tout => enforce(Crash), and some
algorithmics to ensure that any P crashes before being suspected [Fetzer01]

• Consider applications that survive timing faults in one process and/or
fail-safe requires orderly shutdown routines, and not just WD ‘click’

• Then: WD is not generic TE, and Tout => enforce(Crash) is not acceptable

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

30

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Alternative models
• Consider TA+SYNC(genTE, distrDM)

That is, we implement distr DM inside SYNC, gaining in precision and
separation of concerns; we implemente generic timely execution
At this point, we can build pCFD inside the SYNC box

• Now we have TA+SYNC(genTE,distrDM, pCFD):
we can run all interesting non-timed applications
but can we build timely applications, even soft? No.

• Consider RT+SYNC(genTE, distr DM, distr pCFD):
Can we build timely appl’s? Not generically, we need timing failure detection
[Veríssimo99]

• Consider AnySyn+SYNC(genTE, distr DM, distr pTFD):
We can build any applic. from time-free to RT payload with the same model
A world of timed/timely applications opens

• Fully-fledged SYNC toolbox = TCB : gen TE, distr DM, distr TFD

14

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

31

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Architecture and coverage
• How to build a SYNC toolbox, aka Timely Computing Base?
• Suppose environment with ‘t’ parameters, and protocol ‘P’ which

uses ‘t’ directly, deriving property-level Tp [TTP, Cristian]
• If ‘t’ is violated, P fails, sometimes not only timeliness properties,

but also safety properties
• Suppose now environment with ‘t’ parameters, and protocol ‘P’

which is implicitly indexed to ‘t’
• That is, P is time-free by construction, and there is a time

complexity equation indexed to ‘t’
• P is immersed in the environment, and from there, actual values

are derived for Tp [LeLann,AMp]

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

32

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Achieving Synchronism by immersion
• How to achieve synchronism with a timer-driven (“async”) protocol,

given that classical approaches to synchronous protocols are clock-
driven (“sync”) [Cristian]?:

achieve and determine upper bounds on frame delivery delays by the abstract network,
in the presence of load and faults (T_td);
impose a performance specification on the NAC hardware/software (CPU, kernel, etc.)
in order that processing times of the protocol actions are bounded, and known for the
worst case traffic pattern specified;
structure the protocol in phases, so that an execution predictably has a bounded
number of phases; clearly delimit phases, in what concerns error detection/recovery
(omission and timing), and permanent failure detection (exceeding assumed bounds);
structure each phase as a series of timed-out transmissions-with-response, so that it
can be decomposed in time, in a sequence of frame deliveries and protocol actions as
specified above, having thus with a known duration bound.

• With these measures, AMp execution time would be bounded to a
known value [VeríssimoSRDS90]

SYNCHRONISM OF
ENVIRONMENT

TIME-FREE
PROTOCOL STRUCTURE

IMMERSION

15

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

33

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Architecture and coverage

• Immersion is a good conceptual move, but ...

• Observe what happens when ‘t’ varies:
Protocols which have no timeliness properties will move
faster or slower, depending on ‘t’; they will always be safe.
Protocols with timeliness (real-time) properties indexed by
immersion to a given magnitude of ‘t’, will give timing failures
when ‘t’ increases, violating timeliness.
Protocols whose safety properties depend on the
environment being synchronous (‘t’ being respected) will fail
on ‘t’ changing.

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

34

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Architecture and coverage

• In the past discussion, there were two crucial
protocols whose safety requires a fully sync
environment (‘t’ not failing): pCFD and pTFD

• Any appl. running these protocols on the
same environment used by normal (payload)
protocols, has a coverage problem for a start:

The whole system is complex, so coverage comes down
How do we enforce ‘t’ for complex systems?

16

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

35

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Architecture and coverage

• Suppose the system is hybrid with regard to fault and
synchrony

Payload: any synchrony, indulgent w.r.t. ‘tp’ of the environment
Control: fully synchronous, strict w.r.t. ‘tc’ of the environment
It is built through architectural hybridization:

– the part of the environment supplying ‘tc’ is specially built: we do get ‘tc’!
– the rest (payload) is normal stuff: ‘tp’ is not so assured

• Build control algorithms (ex., pCFD, pTFD) on control part
• Immerse payload algorithms (e.g. time-free) into the ‘tp’

environment.
• ‘tp’ hypothesis may fail, but can be detected by control

(ex., pCFD, pTFD) with high assurance (of ‘tc’)

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

36

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Dependability framework for adaptivity

17

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

37

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Dependability framework for adaptivity

• Restate ‘correctness’ definition:
Consider normal and critical properties
Normal properties can be violated within rules
Critical properties cannot

• Define behaviour classes:
• Adaptive

Recurrent violation of a normal property is accepted, with a bounded
probability

• Safe
Occasional violation of a normal property is accepted, its up to the system to
react (e.g. using conventional fault tolerance)

• Fail-safe
Any violation of a property is not acceptable, the system must stop

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

39

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

What is the philosophy?
(time domain example)

• Timing failures more complex than they look
Unexpected delay - "normal" effect
Contamination (of safety props) - error propagation effect
Decreased coverage - continued (statistical) effect

• Can we achieve correct operation despite
these?

Contamination should be avoided at all cost
Coverage should remain stable

18

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

40

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Why is the framework generic
• Generic properties dictate correctness of applications,

regardless of functional semantics
Coverage Stability - coverage of timing assumptions remains
stable
No-Contamination - safety properties not violated

• Under uncertain timeliness, different classes of appl’s
secure these properties in different ways

• It is necessary to detect timing failures, and react to that

TIMING FAILURE DETECTOR (TFD) considered fundamental

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

41

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Dependable and Adaptive
Computing with a TCB wormhole

• Introduce classes of applications that deal with
these problems when assisted by a TCB:

Fail-safe: exhibits correct behaviour or stops in fail-safe state
Time-elastic: exhibits coverage stability
Time-safe: exhibits no-contamination

• Apply known fault tolerance techniques to the
application classes (or combinations thereof):

detection and/or recovery; masking

• The TCB Model and Architecture [ieeeTOCS2002]

19

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

42

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Example application frameworks
• Fail-safe operation [DSN2000] :

– by switching to a fail-safe state after the first failure
– requires the TFD service and appl´s to be of the fail-safe

class

• Reconfiguration and adaptation [SRDS2001] :
– by enforcing coverage stability
– requires appl´s to be of the time-elastic and time-safe class

• Timing error masking [DSN2002]:
– by using replication to mask transient timing errors
– requires the TFD service and appl´s to be time-safe class

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

43

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Timing Failure Detection

• Timing Failure:
Given the execution of a timed action X specified to terminate
until real time instant te, there is a timing failure at p, iff the
termination event takes place at an instant t’e, te < t’e ≤ ∞

• Timing Failure Detection:
Timed Strong Completeness: There exists TTFDmax such
that given a timing failure at p in any timed action, the TCB
detects it within TTFDmax from te
Timed Strong Accuracy: There exists TTFDmin such that
any timely timed action that does not terminate within -
TTFDmin from te is considered timely by the TCB

20

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

44

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Timing Failure Detection

Action A

Never Detected Failed

Latest Correct
Termination

p

t
TFD

te

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

45

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Timing Failure Detection

Action A TFDmin

Never Detected Failed

Latest Correct
Termination

p

t
TFD

te

21

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

46

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Timing Failure Detection

Action A TFDmin

Never Detected Failed

Latest Correct
Termination

p

t
TFD

Maybe
Detected

te

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

47

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Timing Failure Detection

Action A TFDmin

Never Detected Failed Always
Detected

Latest Correct
Termination

p

t
TFD Maybe

Detected

TFDmax

failed(A)
te t'

e

22

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

48

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Timing Failure Detection

t'
e

Action A TFDmin

Never Detected Failed Always
Detected

Latest Correct
Termination

p

t
TFD

Maybe
Detected

TFDmax

failed(A)

Lateness Degree

te

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

49

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

TCB Model

TCB Services and Interface

Implementation of a TCB

23

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

50

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Services and API of the TCB

• The TCB provides minimal services:
TE - Timely execution
DM - Duration measurement
TFD - Timing failure detection

• And a payload-to-TCB interface
Allows potentially asynchronous applications to dialogue with
a synchronous component

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

51

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Synch/Asynch Interface

• Important issues to retain:
The TCB does not make applications timelier
Service invocation latency not bounded
Service responses or timing failure notifications not bounded
Nothing obliges applications to become aware of failures

• The TCB as an oracle:
Applications take advantage of the TCB by construction
They observe correctness of past steps before proceeding
Timeliness always observed in terms of durations
Time-critical responses to failures handled by the TCB

24

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

52

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

tag startMeasurement (A)

A getTimestamp ()

B; (B-A) stopMeasurement (tag)

Execution of
timed computation

Verification

tA B

If (B-A > Tspec)
reject results

and abort

Start

TCB

Execution delay
uncertainty

Duration Measurement

tag startMeasurement (A)

A getTimestamp ()

Execution of
timed computation

tA

Start

TCB

Execution delay
uncertainty

Duration Measurement

tag startMeasurement (A)

A getTimestamp ()

tA

Start

TCB

Duration Measurement

A getTimestamp ()

tA

Start

TCB

Duration Measurement

API

• Duration Measurement
Allows the measurement of upper bounds of payload actions

tag startMeasurement (A)

A getTimestamp ()

B; (B-A) stopMeasurement (tag)

Execution of
timed computation

Verification

tA B

If (B-A > Tspec)
reject results

and abort

Start

TCB

startMeasurement (B)

Execution delay
uncertainty

Duration Measurement

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

53

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

API

• Timely Execution
Allows the timely execution of small time-critical functions

A getTimestamp ()

tA

Start

TCB

Timely Execution

A2 startExec (A,Delay,Tspec,func)

A getTimestamp ()

tA

Start

TCB Execution of
timed computation

func

A2A1

Delay

Timely Execution

A2 startExec (A,Delay,Tspec,func)

A getTimestamp ()

tA B

Start

TCB Execution of
timed computation

func

Guaranteed timely
execution: (A2-A < Tspec)
Verification not needed

A2A1

Delay

Timely Execution

A2 startExec (A,Delay,Tspec,func)

A getTimestamp ()

tA B

Start

TCB

startMeasurement (A2)

Execution of
timed computation

func

Guaranteed timely
execution: (A2-A < Tspec)
Verification not needed

A2A1

Delay

Timely Execution

25

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

54

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

API
• Timing Failure Detection

Allows detection of timing failures (of local and distributed actions)
Allows timely execution of safety procedures upon the detection of a
timing failure

Controller

Sensor

Actuator

Controller

Sensor

Actuator

Temperature

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor
Actuator

TCBController

t1 t

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor
Actuator

D1

TCBController

id1 startLocal (t1,D1,handler)

t1 t

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor
Actuator

D1
D2

TCBController

id1 startLocal (t1,D1,handler)
id2 startLocal (t1,D2,handler)

t1 t

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor
Actuator

D1
D2

TCBController

id1 startLocal (t1,D1,handler)
id2 startLocal (t1,D2,handler)

endLocal (id0)

t1 t

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor
Actuator

D1
D2

TCBController

id1 startLocal (t1,D1,handler)
id2 startLocal (t1,D2,handler)

endLocal (id0)

t1 t

endLocal (id1)

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor
Actuator

D1
D2

TCBController

id1 startLocal (t1,D1,handler)
id2 startLocal (t1,D2,handler)

endLocal (id0)

t1 t

endLocal (id1)

Controller

Sensor

Actuator

Log Values &
Compute decisionTemperature

Command Acknowledgment

D1
D2

Controller

Sensor
Actuator

D1
D2

TCBController

id1 startLocal (t1,D1,handler)
id2 startLocal (t1,D2,handler)

endLocal (id0)

t1 t

endLocal (id1)
handler

Fail-safe
procedures

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

55

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

TCB Model

TCB Services and Interface

Implementation of a TCB

26

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

56

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Implementation Issues
• Duration measurement

Local durations: local clock
Distributed durations: round-trip duration measurement technique

• Timely execution
Small functions residing in the TCB address space
Use known techniques of real-time systems

– Admission control, schedulability analysis, WCET calculation

• Timing failure detection
Distributed protocol to ensure (Timed) Completeness and Accuracy
Set up timeouts using timers (based on local clock)

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

57

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

A concrete example

APP/PROC

Runtime
Environment

OS Local
TCB

Host 1

APP/PROC

Runtime
Environment

OS Local
TCB

Host 2

APP/PROC

Runtime
Environment

OS Local
TCB

Host n

Control Channel

Payload Network

27

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

58

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

A System with a TCB

The TCB is built with given
<bound,coverage> pairs

Hardware and inter-TCB
communication channel
may assume different
forms, for different
<bound,coverage> pairs

Software kernel on a plain
desktop (PC or workstation)
may be used

Payload
Application

Payload
Application

APITCB Specific Regular

TFD

System HW Resources
(Clock, Processor, Memory, etc.)

Fail-Silence Switch

Networking Infrastructure

Regular
OS

DUR
EXEC

Fail-awareness

TCB

Mechanisms

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

60

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Conclusions

• Some achievements...
• (T)TCB wormhole prototypes

– Software Available at
http://www.navigators.di.fc.ul.pt/software/tcb

• Timing fault tolerance for event-based systems
• Byzantine-resilient reliable multicast
• In preparation: Byzantine-resilient consensus,

atomic multicast and membership
• See more at: www.navigators.di.fc.ul.pt -- “Documents”

28

January, 2003 @ Sal, Cabo Verde
pjv@di.fc.ul.pt

61

IFIP WG10.4 Works. on Middleware for Adaptivity and Dependability FC/ULNavigators

Some Recent Publications
• See more at: www.navigators.di.fc.ul.pt -- “Documents”
• Traveling through wormholes: Meeting the grand challenge of distributed systems. Paulo

Veríssimo. In Proceedings of the International Workshop on Future Directions in Distributed
Computing, pages 144–151, June 2002

• The Timely Computing Base Model and Architecture. P. Veríssimo, A. Casimiro. Transactions on
Computers - Special Issue on Asynchronous Real-Time Systems, vol. 51, n. 8, Aug 2002

• The Design of a COTS Real-Time Distributed Security Kernel. Miguel Correia, Paulo Veríssimo,
Nuno Ferreira Neves. 4th EDCC, Toulouse, France, October 2002

• Efficient Byzantine-Resilient Reliable Multicast on a Hybrid Failure Model. Miguel Correia, Lau
Cheuk Lung, Nuno Ferreira Neves, Paulo Veríssimo. 21st Symposium on Reliable Distributed
Systems, Suita, Japan, October 2002

• Generic Timing Fault Tolerance using a Timely Computing Base. António Casimiro, Paulo
Veríssimo. Proceedings of the International Conference on Dependable Systems and Networks,
Washington D.C., USA, June 2002

• Using the Timely Computing Base for Dependable QoS Adaptation. António Casimiro, Paulo
Veríssimo. Proceedings of the 20th IEEE Symposium on Reliable Distributed Systems, New
Orleans, USA, October 2001

• CORTEX: Towards Supporting Autonomous and Cooperating Sentient Entities. Paulo Veríssimo,
V. Cahill, António Casimiro, K. Cheverst, A. Friday, J. Kaiser. Proceedings of European Wireless
2002, Florence, Italy, February 2002

