
1

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Experimental Research in
Dependable Computing at
Carnegie Mellon University

Daniel P. Siewiorek
Roy A. Maxion

Priya Narasimhan

2

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Authors

Priya Narasimhan
Joined CMU: 2001

Daniel P. Siewiorek
Joined CMU: 1972

Roy A. Maxion
Joined CMU: 1984

3

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

My Background

 Prior research on dependable enterprise systems

 Developed systems that provide “out-of-the-box” reliability to middleware
 No need to change application or ORB code

 Eternal: Fault-tolerant CORBA/Java support
 Immune: Secure CORBA/Java support

 Helped to establish the Fault-Tolerant CORBA standard

 Served as CTO & VP (Eng.) of startup company to commercialize research

 Current research/teaching focus at CMU

 Continuing research on dependable embedded middleware
 MEAD: Real-time fault-tolerant middleware support
 Starfish: Secure scalable middleware support

 Teaching courses on
 Developing real-time fault-tolerant high-performance middleware
 Embedded systems: Device drivers, interrupts, protocols, real-time, etc.

4

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

In the Beginning, There Was ……

 The Carnegie Plan for higher education (1945)
 Emphasis on “learning by doing”
 One example is the experimental dependability research at CMU

 Westinghouse Research Corporation in Pittsburgh (1960s)
 Research in the use of active redundancy to enhance reliability
 CMU researchers involved in this effort, leading to a book by Mann (1962)

 During the next three decades, and continuing into this decade
 Several experimental hardware and software systems were designed, implemented

and made operational at CMU
 Each was an opportunity to understand, and advance research in, reliability
 Each involved significant data-collection and experimentation

 What have we focused on?
 Understanding the natural occurrence of faults
 Mathematical models for fault-prediction (backed by empirical evidence)
 Raising the level of abstraction of fault models to design dependability better

5

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Monitoring

1970’s 1980’s 1990’s 2000’s

Fault
Injection

Fault
Model

Abstractions

Modeling

Crash Dumps
(1975)

Error Logs
(1980)

Natural Workloads
(1990)

Distributed,
Asynchronous

Gate Level Register Transfer
Design, User Errors,

Reactive
Attacks,

Proactive (2004)

Stuck-At
Memory Level

(1985)
API-Level

(1995)
Security (2000),

Resource Exhaustion

Stuck-At

Gate RT,
Message Fault

feature vector,
Memory Crash (1995)

Error Logs
Clustering

Space/DFT (1986)
Multi-Dimensional

Event,
Mathematical

Distribution/Parameters
(1975)

Fault and
Workload Interaction

(1985)

Event Clustering,
Trend Analysis,
Prediction (1995)

Machine Learning

Chronology & Diversity of CMU Research

6

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Overview of Talk

 Multiprocessor architectures
 C.mmp, Cm*., C.vmp, redundant ECC-based disk-arrays

 Hard and transient fault distributions
 Experimental data collection

 Trend analysis
 Understanding event-logs; monitoring, diagnosis & prediction techniques

 Robustness testing
 Black-box testing using injection of anomalous inputs at interfaces

 The next decade
 Distributed fault-prediction, proactive fault-tolerance, machine learning

and adaptation, tunability

7

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Multiprocessor Architectures

 Gordon Bell headed up a project for C.ai (1969)
 Architectures designed for artificial intelligence applications
 One part consisted of a multiprocessor that evolved into C.mmp

 DARPA-funded C.mmp project
 Started 1971, became operational mid-1975, decommissioned 1980
 Sixteen PDP-11 processors communicating with 16 memories through a

crossbar switch
 H-shaped configuration – cross-bar switch and memory in the middle,

flanked by banks of four processors
 Natural redundancy in its replicated processors and memory provided

opportunities for substantial software error-detection and reconfiguration
techniques

 CMU research on analytical models of reliability and performance
in the context of C.mmp

8

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

C.mmp (Computer multi-mini-processor)

9

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Then Came Cm*.

 Conceived, architecturally
specified and built at CMU

 Extensively studied with
performance and reliability
models during design

 Reliability intrinsically
designed in

 Grew into a 50-processor
system (1977) starting from a
10-processor system (1975)

 Even had two independent
operating systems

10

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

C.vmp (Computer voted multi-processor)

 Employed off-the-shelf components with little or no modification in order to
survive transient and hard faults (1976)

 Independent mode and a voting mode; bus-level voter would allow
 Unreplicated devices (e.g., console terminal) to broadcast results to all three

processors
 System to divide itself into three independent computers communicating through

interfaces

 Trading off performance for reliability
 System could switch dynamically between independent and voting modes

 Lessons learned from this research
 Six times more reliable for transient faults than Cm*.
 Voter reduced system performance by about 15%
 Could be used as a “transient-fault meter” by adding statistics board to compare

the three buses for (and to record) disagreements

11

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Redundancy in Storage Systems

 Continuously running systems demand both availability and
performance from their storage sub-systems

 Redundant disk-arrays: Grouping together a number of smaller
disks (rather than using one large disk-drive)
 Better performance, but high component-count implies higher failure rates

 Redundancy approaches explored: Replication and encoding
 Error-correcting codes are good for data reliability, but perform poorly in

the presence of a disk failure

 CMU research on ECC-based redundant disk-arrays
 Better performance in the presence of disk failures
 Without significantly affecting performance, cost or reliability

12

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Hard and Transient Faults

 Data collection from Cm*. to answer questions about hard failures
 For each module type, data collected on number of different types of that

module, chip count, total hours of utilization and total number of failures
 Data found to follow exponential distribution, with (MIL Handbook 217)

failure-rate taking into account the time rate of change of technology

 Transient faults
 Much harder – by the time fault manifested, traces of nature/location gone
 Data collection and extensive event-logging of transient faults

 Four time-sharing systems, an experimental multiprocessor, and an
experimental fault-tolerant system

 Ranged from microprocessors to mainframes

 Lessons learned
 Transient faults were ~20 times more prevalent than hard failures
 Transient-fault manifestations differed from those of permanent faults

13

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Understanding Error-Logs

 Born out of a diagnosis and maintenance plan for VAX clusters
 Increased number of user-mode diagnostics
 Online analysis of system error-logs to discover trends and advise the

system prior to catastrophic failure

 CMU research on understanding system event error-logs
 Inter-arrival times of errors – probability of crashes decreased with time

 Weibull function with decreasing failure-rate
 Modeling relationship between system load and system error-rate

 Led to trend analysis research
 Based on the observation that a hardware module exhibits a period of

(potentially) increasing unreliability before final failure

14

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Trend Analysis

 Developed a model of normal system behavior, and watched for a
shift that signifies abnormal behavior

 Based on the observation that data from normal system workloads
are better suited for pointing out failure mechanisms than
specification-based diagnostics are
 Normal system workloads tend to stress systems in ways different from

specification-based diagnostic programs

 By discovering normal behavior and trends, it was possible to
predict certain hard failures (and even discern hardware/software
design-errors) prior to the occurrence of catastrophic failure

 Tupling (data-grouping or clustering)
 Clusters/groups of event-log entries exhibiting temporal or spatial patterns
 Single-error events can propagate to cause multiple entries in an event-log

15

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Automated Monitoring and Diagnosis

 Requires three basic roles/components in a system

 Sensors for gathering data
 Sensors must be provided to detect, store, and forward performance and error

information (e.g., event-log data) to a diagnostic server whose task it is to interpret
the information

 Analyzers for interpreting data
 Exercised once the system performance and error data have been accumulated
 Interpretation done by expert problem-solving modules in the diagnostic server
 Diagnostic server should have access to profiles of normal system behavior as well

as hypotheses about behavior exceptions

 Effectors for confirming interpretation
 Post-analysis, a hypothesis must be confirmed/denied before issuing warnings
 Effectors stimulated the hypothesized condition in the system.
 Often exercisers that are downloaded to the suspected portion of the system, and

run under special conditions to confirm the fault hypothesis or to narrow its range

16

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

 Observed periods of increasingly unreliable behavior prior to catastrophic failure

Dispersion Frame Technique (DFT)

disk

time

errors
Disk

repair
Mem Board

repair

memFi
lte

r b
y

ev
en

t t
yp

e

CPU
repair

Error entry example: DISK:9/180445/563692570/829000:errmsg:xylg:syc:cmd6:reset failed (drive
 not ready) blk 0type time

 Based on this observation, the DFT Heuristic was derived, to catch the non-
monotonical decrease in error interarrival time (1970’s)
 Simple set of rules that capture various sorts of failure-precursor patterns

17

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

 This module generates device failure warning information (1990’s)
• Sys-log Monitor: Monitors new entries by checking the system event log periodically

• DFT Engine: Applies DFT heuristic and issues corresponding device-failure warning

if the rule(s) is satisfied.

DMOD: DFT Engine Implementation

DFT

Error Log
Sys-log
Monitor

Dispersion Frame Technique
Engine

 Future Prediction

U
ser

 A
pplication Prog

O
perating System

Files of
device
failure

warning

 Successfully used in
•Cluster of Andrew File Servers at CMU
•Network-fault prediction to detect anomalous behavior

18

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Network Anomaly-Detection

 Networks have “soft failures”, i.e., temporary loss of bandwidth
 Often perceived by users as degraded or anomalous performance

 Active, online monitoring of the CMU campus Andrew network
 Eight network routers, as well as the Computer Science Department's

entire Ethernet network, for traffic and diagnostic information
 Traffic parameters: Transmitted and received packets, network load, and

network collisions
 Diagnostic parameters:CRC errors, packet-alignment errors, router-

resource errors due to buffer limitations, router-overrun errors due to
throughput limitations

 Fault feature vector to describe fault-specific anomalous conditions
 Effective in detecting network failures over the two-year study
 Effective in abstracting large amounts of network data (32M points) to

only a few events (~200 event-matches) that warranted attention

19

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Fault Prediction Using Network Behavior

 Detect network anomalies through metrics, e.g., packets/minute
 Template of normal network behavior over specific time-period (e.g., day)
 New patterns of behavior “folded in” carefully to adapt the template

 Observation: Some impending application-level faults can be
signaled through pre-fault patterns of anomalous network behavior

 Anomaly-detection + DFT rules = Prediction of some faults (2004)

20

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Reliability Analysis and Evaluation

 Two fault-tolerant multiprocessors, FTMP and SIFT, were developed and
delivered to the Air-Lab facility at the NASA Langley Research Center

 Starting in 1981, CMU performed a series of experiments to validate the fault-
free and faulty performance of FTMP and SIFT
 Methodology derived from CMU’s earlier work on Cm*.
 Synthetic workload generator (SWG) allowed experimental parameters to vary at

run-time
 SWG drastically reduced the turnaround time for experimentation by eliminating

the edit/compile/downlink-load portion of the experimental cycle
 Avionic workload was developed, and the results of the baseline experiments were

reproduced through appropriate settings of the SWG’s runtime parameters
 SWG was modified to include the injection of software faults

 Methodology has been used to assist the Federal Aviation Administration in the
design of the next-generation air traffic control system

21

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Raising Fault-Model Abstraction

 CMU research started with exploring effects of gate-level faults on system
operation as a basis for fault-models at the program level (1970’s)
 Simulation models with capabilities for fault injection
 Workload dependencies modeled and variety of workloads executed
 Prediction model for fault manifestation based on instruction execution
 Impact: Reduction of fault space required during fault-injection studies (SWIFI)

 Next higher-level abstraction: RTL (register-transfer-logic) (ASPHALT) (1980’s)

 Pipelined functional test program modeling

 Device-level modeling (x-diagnosis)

 Human/user error modeling (1990’s)

 Results and lessons learned
 Model-based diagnosis, which had been successfully used for gate-level circuits -

could be scaled up to system-level circuits
 Automation of test program execution - a methodology to test circuits in which

diagnosis was then done manually - was feasible

22

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Robustness Testing

 Robustness testing of COTS applications (which are usually
employed for cost savings) must be cost-effective

 Source code might not always be available

 Ballista: Simple, repeatable way to directly measure software
robustness without requiring source code or behavioral
specifications

 Each of fifteen different operating systems’ respective robustness
was measured by automatically testing up to 233 POSIX functions
and system calls with exceptional parameter values

 Allowed benchmarking of robustness

23

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Ballista:
OS Robustness
Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

http://www.ballista.org

24

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

And What About the Next Decade?

 Increased focus on distributed systems, rather than single-
processor computer systems

 Increased focus on proactive fault-tolerance, rather than the
classical reactive fault-tolerance

 Increased focus on machine learning with adaptation and
reconfiguration techniques for fault-tolerance, rather than static
configurations

 Increased focus on achieving other properties along with
fault-tolerance

 Expanding the fault model to cover
 Resource-exhaustion, propagating, interacting, system-wide faults

25

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

MEAD: Real-time Fault-tolerant Middleware

26

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Operating System

DmodResource
Monitor

Process
Control

Robot
Application

Operating System

DmodResource
Monitor

Process
Control

Robot
Application

Fault-Prediction in
Distributed Systems

Adaptation &
Resource Manager

Online system health
monitor & predictor

Offline validation
of system model

Operating System

DmodResource
monitor

Process
control

Watches and
controls events

and signals
of interest

Request for
snapshot

Robot
Application &
Application FT

Predicts failures
by obtaining

fault data

Periodically
obtains resource
usage snapshots

Mechanical
errors

Disk, processor,
network errors

Advice on
adaptation

NETWORK

Fault Injector

27

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Interaction Faults

 Onset of a fault somewhere in the distributed system, followed by
 Propagation of the fault through interactions and dependencies, until the

entire system (or significant parts of the system) collapses
 Live upgrades, network partitions, unchecked exception-handling, virus attacks

 Developing models to detect & handle interaction-faults
 Need to discover, analyze, predict and check fault-spread

28

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Summary

 CMU research in dependability has spanned three decades,
multiple researchers, and is continuing on to this decade

 Marked by emphasis on experimentation, empirical evidence and
data-collection to substantiate results

 Range of research
 Microprocessors, robustness testing, distributed systems, elevating fault-

model abstractions, trend analysis, anomaly detection

 Ongoing work
 Distributed fault-tolerance
 Proactive (rather than reactive) fault-tolerance
 Fault model including interaction and propagating faults

29

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

For More Information

Priya Narasimhan
Assistant Professor of ECE and CS

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Tel: +1-412-268-8801
priya@cs.cmu.edu

Carnegie Mellon

Extra Slides

31

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

32

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

33

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Stages in the development of a system

STAGE ERROR SOURCES ERROR DETECTION

Specification Algorithm Design Simulation

& design Formal Specification Consistency checks

Prototype Algorithm design Stimulus/response

Wiring & assembly Testing

Timing

Component Failure

Manufacture Wiring & assembly System testing

Component failure Diagnostics

Installation Assembly System Testing

Component failure Diagnostics

Field Operation Component failure Diagnostics

Operator errors

Environmental factors

Carnegie Mellon

Sources of Errors

35

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

36

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

CMU Andrew File Server Study

 13 SUN II workstations
68010 processor
4 Fujitsu Eagles

37

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

Some Interesting Numbers

 Permanent outages / total crashes = 0.1

 Intermittent faults / permanent failures = 0.1
 Thus first symptom appears over 1200 hours prior to repair

 (Crashes – permanent) / Total faults = 0.255

 14/29 failures had three or fewer error log entries
 8/29 had no error log entries

38

Carnegie Mellon

Priya Narasimhan Experimental Dependability Research at CMU

One Set of Experimental Observations

 21 workstation years’ worth of data from CMU Andrew file servers

 Category and number of failures
 Permanent failures: 29
 Intermittent faults: 610
 Transient faults: 446
 System crashes: 298

 Mean time to specific category of fault
 Permanent: 6552 hours
 Intermittent: 58 hours
 Transient: 354 hours
 Crash: 689 hours

