
1

© H. Kopetz 23/08/04

TU Wien

The Fault Hypothesis for
the Time-Triggered Architecture

Hermann Kopetz
TU Wien

August 2004

2

© H. Kopetz 23/08/04

Outline

♦ Introduction--the 10-9 Challenge
♦ The Time-Triggered Architecture
♦ Contents of the Fault Hypothesis
♦ Fault Hypothesis of the TTA
♦ Transient Failures
♦ Design Faults
♦ Conclusion

3

© H. Kopetz 23/08/04

Examples of Safety Critical Systems--No Backup

Fly-by-wire Airplane: There is no mechanical or hydraulic
connection between the pilot controls and the control surfaces.

Drive-by-wire Car: There is no mechanical or hydraulic
connection between the steering wheel and the wheels.

4

© H. Kopetz 23/08/04

The 10-9 Challenge
♦ Critical system services must be more reliable than any one of

the components: e.g., System Dependability 1 FIT--Component
dependability 1000 FIT (1 FIT: 1 failure in 109 hours)

♦ Architecture must be distributed and support fault-tolerance to
mask component failures.

♦ System as a whole is not testable to the required level of
dependability.

♦ The safety argument is based on a combination of experimental
evidence about the expected failure modes and failures rates of
fault-containment regions (FCR) and a formal dependability
model that depicts the system structure from the point of view of
dependability.

♦ Independence of the FCRs is a critical issue.

5

© H. Kopetz 23/08/04

The Time-Triggered Architecture (TTA)
provides an execution environment for real-time applications. It is
♦ a distributed architecture, where a node can be a single chip

computer (SoC).
♦ an integrated architecture, where different application subsystems

(DAS) up to the highest criticality class can be integrated into a
single framework.

♦ a platform architecture that provides technology invariant interfaces
to the application software.

♦ a generic architecture, which can be deployed in different
application domains (e.g., automotive, aerospace, train signaling,
process control, mutimedia) where real-time performance is an issue.

♦ It provides a fault-tolerant global time-base of high precision at
every node.

Kopetz, H, Bauer, G. , The Time-Triggered Architecture, Proc. of the IEEE, Jan 2003, Vol 91
p. 112-126

6

© H. Kopetz 23/08/04

From a Federated to an Integrated Architecture

Integrated Architecture:
Backbone Network with
integrated fault-tolerance
Intelligent Sensors and Actuators
connected by field-buses

Federated Architecture:
“Every functions has its own
ECU”

Fault Tolerant Communication Network

7

© H. Kopetz 23/08/04

Federated vs. Integrated System

The ideal future avionics systems would
combine the complexity management
advantages of the federated approach,
but would also realize the functional
integration and hardware efficiency
benefits of an integrated system.

Hammett Robert. Flight Critical Electronics System Design, IEEE AESS Systems
Magazine, June 2003, p.32

8

© H. Kopetz 23/08/04

The TTA is a Platform Architecture

Platform Interface
Layer (PIL)

Different
Implementation

Choices
e.g., TTP, TT Ethernet

Core
Services
(Done)

Platform Interface Layer:
•Encapsulation Services
•Event-Triggered Communication
•Virtual Channels
•Hidden Gateways
•Provision of Legacy Interfaces
•Application Diagnosis Support

•Timely and Deterministic
Transmisson
•Fault-Tolerant Clock Synchronization
•Fault Isolation
•Determinism to support TMR
•FCR-Diagnosis (Membership)

DAS B DAS C

Distributed
Application
Systems (DAS)

DAS A DAS D

Core Services (done for TTP)

WP 1.4

Technology invariant interface

9

© H. Kopetz 23/08/04

Fault Tolerant Sparse Time Base in the TTA

If the occurrence of events is restricted to some active intervals
with duration π with an interval of silence of duration Δ between
any two active intervals, then we call the timebase π/Δ-sparse, or
sparse for short.

In a sparse time base, instants can be represented by integers.

0 1 2 3 4 5 6 7 8 9

Time

Events are only allowed to occur at subintervals of the timeline

! "! ""

10

© H. Kopetz 23/08/04

Fault Hypothesis and Assumption Coverage

♦ The Fault-Hypothesis states the assumptions about the
types and number of faults that a fault-tolerant system
must tolerate.

♦ The assumption coverage states to what extent are these
assumptions met by reality. The assumption coverage
limits the dependability of a perfect fault-tolerant system.

♦ The fault hypothesis partitions the fault space into
covered faults and uncovered faults.

♦ The fault hypothesis is the most important document in
the design of a fault-tolerant system.

11

© H. Kopetz 23/08/04

Why is the Fault Hypothesis Needed?

i. Design of the Fault-Tolerance Algorithms: Without a precise
fault-hypothesis it is not known which fault-classes must be
addressed during the system design.

ii. Estimation of the Assumption Coverage: Probability that the
assumptions that are contained in the fault hypothesis are not
met by reality.

iii. Validation and Certification: For the validation it must be
known which faults are supposed to be tolerated by the given
system.

iv. Design of the Never-Give-Up (NGU) Strategy: In case the
fault hypothesis is violated the NGU process must be started.

12

© H. Kopetz 23/08/04

Fault Hypothesis II

Fault-Hypothesis I

System States of a FT System

Correct
States

 FT
Mechanisms

 NGU
Strategy

 Normal
 Failures

Rare Events

13

© H. Kopetz 23/08/04

Approach to Safety: The Swiss-Cheese Model

Subsystem
Failure

Catastrophic
System EventMultiple

 Layers of
 Defenses Independence of Layers of

Error Detection are important

From Reason, J
Managing the Risk of
Organizational Accidents
1997

Normal State

Fault Tolerance

Never Give
Up Strategy

14

© H. Kopetz 23/08/04

Fault Hypothesis I vs. Fault Hypothesis II

Fault Hypothesis I:
Specification of the faults that must be tolerated without any
impact on essential system services.
Example: Arbitrary failure of an SoC

Fault Hypothesis II:
Specification of faults that can be handled in the rare-event
scenario, e.g., for the never-give-up (NGU) strategy
Example: massive transients that causes the failure of all
communication and more than one node during a limited
interval of time

15

© H. Kopetz 23/08/04

Contents of the Fault Hypothesis

i. Unit of Failure: What is the Fault-Containment Region
(FCR)?

ii. Failure Modes: What are the failure modes of the FCR?
iii. Frequency of Failures: What is the assumed MTTF

between failures for the different failure modes eg.
transient failures vs permanent failures?

iv. Detection: How are failures detected? How long is the
detection latency?

v. State Recovery: How long does it take to repair
corrupted state (in case of a transient fault)?

16

© H. Kopetz 23/08/04

Unit of Failure: Fault Containment Region (FCR)

 A fault-containment region (FCR) is a set of subsystems that
shares one or more common resources that can be affected by a
single fault and is assumed to fail independently from other FCRs.
♦ Tolerance w.r.t. spatial proximity faults requires spatial

separation of FCRs: distributed architectures required.
♦ The fault hypothesis must specify the failure modes of the

FCRs and their associated frequencies.
♦ Beware of shared resources that compromise the independence

assumption: common hardware, power supply, oscillator,
earthing, single timing source.

17

© H. Kopetz 23/08/04

Failure Modes of an FCR--Are there Restrictions?

assumption
fail-silent

k+1

assumption
synchronized

2k + 1

no assumption
(arbitrary)

3k + 1

A B C

What is the assumption coverage in cases A and B?

18

© H. Kopetz 23/08/04

Example: Slightly-out-of-Specification (SOS) Failure

Parameter (e.g., Time, Voltage)

Receive window of Parameter according to Specification

Node L-F R-B R-F L-B

(all correct, since they all contain the specified receive window!)

SOS Incorrect

Output Signal

 from a node

Actual receive
window of
individual nodes

Receive Window

The following is an example for the type of asymmetric non-fail-silent
failures that have been observed during experiments:

19

© H. Kopetz 23/08/04

Example Brake by Wire Application

Consider the scenario where the right two brakes do not accept
an SOS-faulty brake-command message, while the left two
brakes do accept this message and brake.

RF RB

LF LB

If the two left wheels brake, while the two
right wheels do not brake, the car will turn.

20

© H. Kopetz 23/08/04

Independence of FCRs

There are two basic mechanisms that compromise the
independence of FCRs
♦ Missing fault isolation among the FCRs
♦ Error propagation--the consequences of a fault, the

ensuing error, propagates to a healthy FCR by an
erroneous message.

The independence of failures of different FCRs is the
most critical issue in the design of an

ultra-dependable system.

21

© H. Kopetz 23/08/04

Fault Containment vs. Error Containment

No Error
Detection

Error
Detection

We do not need an error detector
if we assume fail-silence.

Error detecting FCR must be
independent of the FCR that
has failed--at least two FCRs
are required if a restricted
failure mode is assumed.

22

© H. Kopetz 23/08/04

Error Containment Region (ECR)
In a distributed computer system the consequences of a fault, the
ensuing error, can propagate outside the originating FCR (Fault
Containment Region) by an erroneous message of the faulty node to
the environment.
♦ A propagated error invalidates the independence assumption.
♦ The error detector must be in a different FCR than the faulty unit.
♦ Distinguish between architecture-based and application-based error

detection
♦ Distinguish between error detection in the time-domain and error

detection in the value domain.

23

© H. Kopetz 23/08/04

Consequences for an Architecture
In a safety-critical application an SoC (System on Chip) must be
considered to form a a single FCR (ie. a single unit of failure) that can
fail in an arbitrary failure mode because of:
♦ Same Physical Space (Physical Proximity Failures)
♦ Same Wafer Production Process and Mask (Mask Alignment Issues)
♦ Same Bulk Material
♦ Same Power Supply and Same Earthing
♦ Same Timing Source
♦

Although some of these dependencies can be eliminated, others cannot.
We cannot assume an independent error detector on the same die.

24

© H. Kopetz 23/08/04

Fault Hypothesis in the TTA w.r.t. Physical Faults

i. A Node Computer forms a single FCR that can fail in an
arbitrary failure mode.

ii. A communication channel including the central guardian
forms a single FCR that can fail to distribute messages but
cannot generate messages on its own.

iii. A central guardian in the communication system
transforms (SOS) failures to fail-silent failures in the temporal
domain.

iv. Error detection is performed by a membership and clique
avoidance algorithms.

v. The system can recover from a single failure within two
TDMA rounds.

25

© H. Kopetz 23/08/04

TMR Structure for Safety-Critical Tasks

Switch
Guardian I

Switch
Guardian II

V
O
T
E
R

State

State

State

State

State

State

State
In order to flush out quasi-permanent state errors
caused by a transient fault, the state must be
periodically subject to voting.

26

© H. Kopetz 23/08/04

Assumption about the Frequency of Faults of SoCs:

Assumed Behavioral Hardware Failure Rates (Orders of Magnitude):

Automotive Field
Data

<100 Fit
(MTTF> 10 000 000)

Permanent Hardware
Failures

Fault Injection
Experiments

<10 000 Fit
(MTTF> 100 000)

Transient Node
Failure (non-fail
silent)

Neutron
bombardment
Aerospace

<1 000 000 Fit
(MTTF > 1000 hours)

Transient Node
Failures (fail silent)

SourceFailure Rate in FitType of Failure

Tendency: Increase of Transient Failures

27

© H. Kopetz 23/08/04

Evidence by Fault Injection

Millions of fault injection experiments have been carried out
in the PDCS, TTA and FIT project over a period of more than
ten years to find out which are realistic assumptions:
♦ Software based (TU Vienna, Austria)
♦ Alpha Particle (Chalmers University, Sweden)
♦ VLSI-model based (Univ. of Valencia, Spain, Carinthia Tech, Austria)
♦ Pin Level (LAAS, Toulouse,France, Univ. of Valencia, Spain)

Conclusions:
♦ Guardians are needed to avoid error propagation in the

temporal domain
♦ Guardians must be fully independent: star coupler

Results are documented in the open literature

28

© H. Kopetz 23/08/04

What are the Experimental Results?

Fault Injection in
FIT/NEXT TTA

no non-fail silent
failure observed so far

Autonomous Central
Guardian

Fault Injection
 FIT Project

1000: 1Local Guardian

FI Measurements
in
PDCS Project

50:1No Error Detector

Experimental
Evidence

Ratio of fail-silent to
non-fail-silent failures

Error Detection in
the temporal domain

We observed the following orders of magnitude of fail-silent versus
non-fail-silent failures of components:

29

© H. Kopetz 23/08/04

Transient Faults may cause Permanent State Errors

Hardware Fault
Computation Error

quasi-permanent state Error

The interaction of a transient hardware fault with the state an cause
a quasi-permanent state error: state erosion

Real Time

Transient failures MTTF: 1000 hours
Permanent failures MTTF: > 1 000 000 hours

30

© H. Kopetz 23/08/04

The Cause of a Transient Fault

We have identified the following possible causes of a
transient fault
♦ External Disturbances, e.g., high energy

radiation (hardware)
♦ Internal Degradation of the chip hardware: e.g.,

corrosion of a PN junction (hardware)
♦ Heisenbugs, e.g., design error in the

synchronization of processes (software)

31

© H. Kopetz 23/08/04SAA: South American Anomaly

32

© H. Kopetz 23/08/04

Intermittent Failures of a Chip causes Transients

Failure Rate
Fits

10

100

1000

10 000

100 000

Real Time

Start of intermittent
failures due to physical
defects

Permanent
Failure

In the TTA we can
monitor every single
SOC to detect a
degradation before
a permanent failure
occurs.

More than half of the transients may be caused by intermittents.

33

© H. Kopetz 23/08/04

The Distinction between Bohrbugs and Heisenbugs*

♦ Bohrbugs are design errors in the software that cause
reproducible failures. E.g., a logic error in a program.

♦ Heisenbugs are design errors in the software that seem to
generate quasi-random failures. E.g., a synchronization error
that will cause the occasional violation of an integrity
condition.

♦ From a phenomenological point of view, a failure that is
caused by a Heisenbug cannot be distinguished from a
failure caused by transient hardware malfunction.

♦ Experience shows that it is much more difficult to find and
eliminate the Heisenbugs than it is to eliminate the
Bohrbugs from a large software system.

*J. Gray, "Why do Computers Stop and What can be done about it?," Proc. 5th Symp. on
Reliability in Distributed Software and Database Systems, Los Angeles, CA, USA, 1986

34

© H. Kopetz 23/08/04

The Replacement Strategy

♦ From the observation of a transient failure of a node, it
impossible to identify in a single function node the
cause of the transient.

♦ It is possible to reason about the cause of the transient if
a population of nodes is observed over time.

♦ It is also possible to reason about the cause of the
transient if the malfunctions of a single multifunction
node are observed over time.

35

© H. Kopetz 23/08/04

Mixed-Criticality TTA Node

Basic Connector Unit

Complex
Connector Unit

S
a
f
e
t
y

1

S
a
f
e
t
y

2

O
t
h
e
r
3

O
t
h
e
r
4

O
t
h
e
r
5

Hardware

DAS 1

DAS 2

DAS 3

DAS 4

Process Input Output

Safety Critical
Mixed-Criticality Node
with 6 Partitions,
controlled by connector
units.

The two safety-critical
partitions depend on the
correctness of the
Basic Connector Unit only.

Safety Critical

Safety
Critical

CU

malign failures

benign failures

36

© H. Kopetz 23/08/04

Critical Parts of a Mixed-Criticality TTA Node

Basic Connector Unit

S
a
f
e
t
y

1

S
a
f
e
t
y

2

Hardware

DAS 1

DAS 2

DAS 3

DAS 4

Process Input Output

Safety Critical
Mixed-Criticality Node
with 6 Partitions,
controlled by connector
units.

The two safety-critical
partitions depend on the
correctness of the
Basic Connector Unit only.

Safety Critical

Safety
Critical

CU

malign failures

benign failures

37

© H. Kopetz 23/08/04

Formal Analysis of the Core Services

Minimize the complexity in the hardware and the software of
the core servics of the TTA in order that they can be formally
analyzed
♦ Partition the system such that modular certification is

supported.
♦ Time-triggered (TT) communication with elementary

interfaces--no backpressure
♦ Basic Connector Unit supports static mechanisms only
♦ Temporal encapsulation by design (hardware)
♦ Avoid algorithms which are not amenable to formal

certification (e.g., feedback in the clock-synchronization)

38

© H. Kopetz 23/08/04

Modular Certification of a TTA Node

Basic Connector Unit

S
a
f
e
t
y

1

S
a
f
e
t
y

2

Communication Controller

Safety
Critical

Connector
Unit

Each unit
can be certified
in isolation
form each other
unit.

Unintended
interactions are
avoided by
design.

39

© H. Kopetz 23/08/04

Conclusion

♦ The Design of Safety-Critical Computing Systems
requires a fault-tolerant architecture and a rigorous design
methodology

♦ The precise specification of the fault hypothesis is the key
document in the design of a fault-tolerant systems.

♦ The architecture of for a safety critical application must
tolerate the arbitrary failure of any single VLSI Chip
since we cannot assume that a chip contains two
independent fault containment regions.

