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☞ User / customer
• Confidence in the product

• Acceptable failure rate

Why Software Dependability Assessment?

☞ Developer / Supplier
•  During production

☞ Reduce # faults (zero defect)

☞ Optimize development

☞ Increase operational dependability

• During operation
☞ Maintenance planning

• Long term
☞Improve software dependability

of next generations
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Approaches to Software Dependability Assessment

☞ Assessment based on software characteristics
• Language, complexity metrics, application domain, …

☞ Assessment based on measurements
• Assessment of the product

• Assessment of the production process

☞ Assessment based on controlled experiments
• Ad hoc vs standardised → benchmarking
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Outline of the Presentation

☞ Assessment based on software characteristics
• Language, complexity metrics, application domain, …

☞ Assessment based on measurements
• Assessment of the product

• Assessment of the production process

☞ Assessment based on controlled experiments
• Ad hoc vs standardized → benchmarking
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Dependability Measures? 

Static measuresStatic measures
Dynamic measures:Dynamic measures:
characterizingcharacterizing
occurrence of failuresoccurrence of failures
and correctionsand corrections

Failure intensity
Failure rate
MTTF
Restart time
Recovery time
Availability
…

Complexity metrics
Number of faults
Fault density
… Usage profile

& 
Environment
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• Data validation

• Descriptive statistics

• Trend analysis

• Modelling/prediction 

Data Collection
Data Processing

Times to failures /
# failures

Failure impact
Failure origin
Corrections

• Non-stationary
  processes
• Stochastic models

• Model validation

Measures

Assessment Based on Measurements

Objectives
of the analysis

Capitalize experience

Data related to 
similar projects

Feedback to software 
development process

Software Process Improvement (SPI)
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Benefits from SPI Programmes
☞ AT&T(quality program): 

Customer reported problems divided by 10
Maintenance program divided by 10

      System test interval divided by 2
New product introduction interval divided by 3

☞ IBM (defect prevention approach):
Fault density divided by 2 with an increase of 0.5 % of the product resources

☞ Motorola (Arlington Heights), mix of methods:
Fault density reduction = 50% within 3.5 years

☞ Raytheon (Electronic Systems), CMM:
Rework cost divided by 2 after two years of experience
Productivity increase = 190%
Product quality: multiplied by 4
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Assessment Based on Measurements

• Data validation

• Descriptive statistics

• Trend analysis

• Modelling/prediction 

Data Collection Data Processing

• Non-stationary
  processes
• Stochastic models

• Model validation

Times to failures /
# failures

Failure impact
Failure origin
Corrections

• Trend evolution

• Failure modes

    MTTF
    Failure rate
    Failure Intensity
    Availability

• Measures
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Why Trend Analysis?

Corrections

. . .

Vi,1

Failure intensity

time

Vi,2

Vi,k

Corrections

 Changes (usage profile, 
environment,specifications,...)

Vi+1,1

Vi+1,2

Vi+1,3

Vi+1,4
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Cumulative number of failures
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→ Hyperexponential model application
⇒ maintenance planning

Predictive assessmentRetrodictive assessment

Observed # failures [20-32] = 33 Predicted # failures [21-32] = 37

Electronic Switching System (Cont.)
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Failure intensity and failure rate in operation
(for an average system)

Residual failure rate
6
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Telephony 1.2 10 /h
Defense 1.4 10 /h
Interface 2.9 10 /h

Management 8.5 10 /h
Sum 5.3 10 /h
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Electronic Switching System (Cont.)
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Other Example: Operating System

100000
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Trend evolution
= stable dependability

Observed Time to Failure during operation



15

Validity of Results

Early Validation

☞ Trend analysis
     → development
          follow-up

       Assessment

End of Validation

☞  Trend analysis
                +
☞  Assessment
     • operational profile
     • enough data

☞  Limits:  10-3/h -10-4/h

Operation

☞  Trend analysis
                +
☞  Assessment
     High relevance

Examples:
E10-B (Alcatel ESS):
1400 systems, 3 years
λ = 5 10-6/h
λc = 10-7/h

Nuclear I&C systems:
8000 systems, 4 years 
λ:  3 10-7/h → 10-7/h
λc = 4 10-8/h
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Research Gaps

☞ Applicability to safety critical systems

• During development

☞ Applicability to new classes of systems

• Service oriented systems

• Adaptive and dynamic software systems ⇒ on-line assessment

☞ Industry implication

• Confidentiality ⇒ real-life data

• Cost (perceptible overhead, invisible immediate benefits)

☞ Accumulation of experience ⇒ software process improvement

⇒ assessment of the software process

☞ Case of Off-The-Shelf software?
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Dependability Benchmarking
Off-The-Shelf software

☞ No information available from software development

☞ Evaluation based on controlled experimentation

   Ad hoc                          Standard  

Evaluation of dependability measures / features
in a non-ambiguous way → comparison

 
                      ⇓
                   Properties

Reproducibility, repeatability, portability, representativeness, acceptable cost

Dependability benchmarkingInternal purpose

Results: available

& reusable
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 Benchmarks of Operating Systems

Which OS for my
computer
system?

Operating System

MacLinux

Windows

Computer System

☞ Limited knowledge: functional description

☞ Limited accessibility and observability

     ⇒ Black-box approach ⇒ robustness benchmark
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OS Outcomes 

Operating system

Hardware

Device
drivers

Application

API
Faults

Faults = corrupted system calls

Robustness Benchmarks
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OS Response Time to Faults in the Application

µs µs

In the presence of corrupted system calls

Without corruption

Windows Linux
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Mean Restart Time

Windows Linux
seconds seconds

In the presence of corrupted system calls

Without corruption
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# exp

Detailed Restart Time

# exp

check diskseconds
seconds

Windows XP Linux 2.2.26



23

Impact of application state after failure

Restart time
(seconds)

More on Windows family

        # exp XP

 NT4

2000
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Benchmark Characteristics

☞ A benchmark should not replace software test and validation

☞ Non-intrusiveness ⇒ robustness benchmarks

(faults injected outside the benchmark target)

☞ Make use of available inputs and outputs → impact on measures

☞ Balance between cost and degree of confidence

☞ # dependability benchmark measures >

# performance benchmark measures

⇒ Lack of maturity
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Maturity

“Competition” benchmarks

☞ Performance benchmarks

• Mature domain

• Cooperative work

• Integrated to system development

• Accepted by all actors for

  competitive system comparison

“Ad hoc” benchmarks

☞ Dependability benchmarks

• Infancy

• Isolated work

• Not explicitly addressed

• Acceptability?

• •
??

Maturity
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Ultim
ate objective:

more reliable software, fa
ster, a

nd cheaper!
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