
1

Software Dependability:
How Far are We?

Karama Kanoun

Dependability of Computing Systems: Memories and Future
15-16 April 2010 - Toulouse - France

2

☞ User / customer
• Confidence in the product

• Acceptable failure rate

Why Software Dependability Assessment?

☞ Developer / Supplier
• During production

☞ Reduce # faults (zero defect)

☞ Optimize development

☞ Increase operational dependability

• During operation
☞ Maintenance planning

• Long term
☞Improve software dependability

of next generations

3

Approaches to Software Dependability Assessment

☞ Assessment based on software characteristics
• Language, complexity metrics, application domain, …

☞ Assessment based on measurements
• Assessment of the product

• Assessment of the production process

☞ Assessment based on controlled experiments
• Ad hoc vs standardised → benchmarking

4

Outline of the Presentation

☞ Assessment based on software characteristics
• Language, complexity metrics, application domain, …

☞ Assessment based on measurements
• Assessment of the product

• Assessment of the production process

☞ Assessment based on controlled experiments
• Ad hoc vs standardized → benchmarking

5

Dependability Measures?

Static measuresStatic measures
Dynamic measures:Dynamic measures:
characterizingcharacterizing
occurrence of failuresoccurrence of failures
and correctionsand corrections

Failure intensity
Failure rate
MTTF
Restart time
Recovery time
Availability
…

Complexity metrics
Number of faults
Fault density
… Usage profile

&
Environment

6

• Data validation

• Descriptive statistics

• Trend analysis

• Modelling/prediction

Data Collection
Data Processing

Times to failures /
failures

Failure impact
Failure origin
Corrections

• Non-stationary
 processes
• Stochastic models

• Model validation

Measures

Assessment Based on Measurements

Objectives
of the analysis

Capitalize experience

Data related to
similar projects

Feedback to software
development process

Software Process Improvement (SPI)

7

Benefits from SPI Programmes
☞ AT&T(quality program):

Customer reported problems divided by 10
Maintenance program divided by 10

 System test interval divided by 2
New product introduction interval divided by 3

☞ IBM (defect prevention approach):
Fault density divided by 2 with an increase of 0.5 % of the product resources

☞ Motorola (Arlington Heights), mix of methods:
Fault density reduction = 50% within 3.5 years

☞ Raytheon (Electronic Systems), CMM:
Rework cost divided by 2 after two years of experience
Productivity increase = 190%
Product quality: multiplied by 4

8

Assessment Based on Measurements

• Data validation

• Descriptive statistics

• Trend analysis

• Modelling/prediction

Data Collection Data Processing

• Non-stationary
 processes
• Stochastic models

• Model validation

Times to failures /
failures

Failure impact
Failure origin
Corrections

• Trend evolution

• Failure modes

 MTTF
 Failure rate
 Failure Intensity
 Availability

• Measures

9

Why Trend Analysis?

Corrections

. . .

Vi,1

Failure intensity

time

Vi,2

Vi,k

Corrections

 Changes (usage profile,
environment,specifications,...)

Vi+1,1

Vi+1,2

Vi+1,3

Vi+1,4

10

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 months

Failure intensity

OperationValidation

10

20

30

40

11 15 19 23 29 31

systems

Example: Electronic Switching System

11

0

20

40

60

80

100

120

140

160

180

200

220

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 months

Observed

OperationValidation

Cumulative number of failures

Electronic Switching System (Cont.)

12

Cumulative number of failures

0

20

40

60

80

100

120

140

160

180

200

220

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 months

Observed

→ Hyperexponential model application
⇒ maintenance planning

Predictive assessmentRetrodictive assessment

Observed # failures [20-32] = 33 Predicted # failures [21-32] = 37

Electronic Switching System (Cont.)

13

Failure intensity and failure rate in operation
(for an average system)

Residual failure rate
6

5

5

6

-

-

-

-

-5

Telephony 1.2 10 /h
Defense 1.4 10 /h
Interface 2.9 10 /h

Management 8.5 10 /h
Sum 5.3 10 /h

75
103
115
42

335

Component

0

0.5

1

1.5

2

2.5

17 19 21 23 25 27 29 31

Estimated by Hyperexponential model

Observed

Residual
failure rate:
5.7 10-5 /h

Electronic Switching System (Cont.)

14

Other Example: Operating System

100000

150000

200000

250000

300000

1 21 41 61 81 101 121 141 161 181
failures

Mean
Time to Failure

u(i)

-2
-1,5

-1
-0,5

0
0,5

1
1,5

2

1 21 41 61 81 101 121 141 161 181 # failures

Trend evolution
= stable dependability

Observed Time to Failure during operation

15

Validity of Results

Early Validation

☞ Trend analysis
 → development
 follow-up

 Assessment

End of Validation

☞ Trend analysis
 +
☞ Assessment
 • operational profile
 • enough data

☞ Limits: 10-3/h -10-4/h

Operation

☞ Trend analysis
 +
☞ Assessment
 High relevance

Examples:
E10-B (Alcatel ESS):
1400 systems, 3 years
λ = 5 10-6/h
λc = 10-7/h

Nuclear I&C systems:
8000 systems, 4 years
λ: 3 10-7/h → 10-7/h
λc = 4 10-8/h

16

Research Gaps

☞ Applicability to safety critical systems

• During development

☞ Applicability to new classes of systems

• Service oriented systems

• Adaptive and dynamic software systems ⇒ on-line assessment

☞ Industry implication

• Confidentiality ⇒ real-life data

• Cost (perceptible overhead, invisible immediate benefits)

☞ Accumulation of experience ⇒ software process improvement

⇒ assessment of the software process

☞ Case of Off-The-Shelf software?

17

Dependability Benchmarking
Off-The-Shelf software

☞ No information available from software development

☞ Evaluation based on controlled experimentation

 Ad hoc Standard

Evaluation of dependability measures / features
in a non-ambiguous way → comparison

 ⇓
 Properties

Reproducibility, repeatability, portability, representativeness, acceptable cost

Dependability benchmarkingInternal purpose

Results: available

& reusable

18

 Benchmarks of Operating Systems

Which OS for my
computer
system?

Operating System

MacLinux

Windows

Computer System

☞ Limited knowledge: functional description

☞ Limited accessibility and observability

 ⇒ Black-box approach ⇒ robustness benchmark

19

OS Outcomes

Operating system

Hardware

Device
drivers

Application

API
Faults

Faults = corrupted system calls

Robustness Benchmarks

20

OS Response Time to Faults in the Application

µs µs

In the presence of corrupted system calls

Without corruption

Windows Linux

21

Mean Restart Time

Windows Linux
seconds seconds

In the presence of corrupted system calls

Without corruption

22

exp

Detailed Restart Time

exp

check diskseconds
seconds

Windows XP Linux 2.2.26

23

Impact of application state after failure

Restart time
(seconds)

More on Windows family

 # exp XP

 NT4

2000

24

Benchmark Characteristics

☞ A benchmark should not replace software test and validation

☞ Non-intrusiveness ⇒ robustness benchmarks

(faults injected outside the benchmark target)

☞ Make use of available inputs and outputs → impact on measures

☞ Balance between cost and degree of confidence

☞ # dependability benchmark measures >

performance benchmark measures

⇒ Lack of maturity

25

Maturity

“Competition” benchmarks

☞ Performance benchmarks

• Mature domain

• Cooperative work

• Integrated to system development

• Accepted by all actors for

 competitive system comparison

“Ad hoc” benchmarks

☞ Dependability benchmarks

• Infancy

• Isolated work

• Not explicitly addressed

• Acceptability?

• •
??

Maturity

26

Ultim
ate objective:

more reliable software, fa
ster, a

nd cheaper!

27

Software Dependability:
How Far are We?

Karama Kanoun

Dependability of Computing Systems: Memories and Future
15-16 April 2010 - Toulouse - France

