
Action Concertée Incitative Sécurité et Informatique 2004

MoSAIC: Mobile System Availability
Integrity and Confidentiality

June 2006

18 months Progress Report

M.-O. Killijian, M. Banâtre, C. Bryce, L. Blain, P. Couderc,
L. Courtès, Y. Deswarte, D. Martin-Guillerez, R. Molva,

N. Oualha, D. Powell, Y. Roudier, I. Sylvain

MoSAIC: Mobile System Availability
Integrity and Confidentiality

18 months Progress Report

M.-O. Killijianα, M. Banâtreβ, C. Bryceβ, L. Blainα, P. Coudercβ,

L. Courtèsα, Y. Deswarteα, D. Martin-Guillerezβ, R. Molvaχ,
N. Oualhaχ, D. Powellα, Y. Roudierχ, I. Sylvainα

The objective of this report is to give an overview of the MoSAIC project after 18 months,
halfway through the lifetime of the project. In addition to the progress overview per se, the
report includes a set of surveys we produced for the project and the other project-related
papers we have published. This report is thus composed of four main parts:

1. Factual Data
2. Progress Overview
3. Surveys:

o Communication Paradigms for Wireless Mobile Appliances
o Cooperative Backup Mechanisms
o Cooperation Incentives

4. Published Papers:
o Collaborative Backup for Dependable Mobile Applications
o Sauvegarde Coopérative entre Pairs pour Dispositifs Mobiles
o Storage Tradeoffs in a Collaborative Backup Service for Mobile Devices
o Sauvegarde Coopérative pour Dispositifs Mobiles
o Increasing Data Resilience of Mobile Devices with a Collaborative Backup

Service

α LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse cedex 4
β IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex
χ Eurécom, 2229 Route des Cretes, Sohia Antipolis, 06560 Valbonne

1-Factual Data

Teams
The MoSAIC (Mobile Systems Availability Integrity and Confidentiality) project is
composed of three teams:

• Tolérance aux Fautes et Sûreté de Fonctionnement informatique (TSF) from LAAS-
CNRS, Toulouse

• Ambiant Computing and Embedded Systems (ACES) from IRISA, Rennes
• Network Security team (NS) from Institut Eurécom, Sophia-Antipolis

Participants
As of May 1st 2006, the participants are:

• Marc-Olivier Killijian (LAAS), Chargé de Recherche CNRS, as leader of the project
• Michel Banâtre (IRISA), Directeur de Recherche INRIA
• Ciaràn Bryce (IRISA), Directeur de Recherche INRIA
• Laurent Blain (LAAS), Ingénieur de Recherche CNRS
• Paul Couderc (IRISA), Chargé de Recherche INRIA
• Ludovic Courtès (LAAS), PhD student funded by ACI S&I grant
• Yves Deswarte (LAAS), Directeur de Recherche CNRS
• Damien Martin-Guillerez (IRISA), PhD student funded by IRISA, since October 2005
• R. Molva (Eurécom), Professor,
• Nouha Oualha (Eurécom), PhD student funded by Eurécom, since November 2005
• David Powell (LAAS), Directeur de Recherche CNRS
• Matthieu Roy (LAAS), Chargé de Recherche CNRS
• Yves Roudier (Eurécom), Maître de Conférence,
• Isabelle Sylvain (LAAS), Ingénieur de Recherche CNRS,

Publications
During the first 18 months of the MoSAIC project, we published the following papers
(included as part 4 of this report).

[A] M.-O. Killijian, D. Powell, M. Banâtre, P. Couderc and Y. Roudier, “Collaborative
Backup for Dependable Mobile Applications [Extended Abstract] ”, in 2nd Workshop on
Middleware for Pervasive and Ad-Hoc Computing, (Toronto, Canada), Middleware 2004
Companion, pp.146-49, ACM, 2004.

[B] L. Courtès, M.-O. Killijian, D. Powell and M. Roy, “Sauvegarde coopérative entre pairs
pour dispositifs mobiles”, in Deuxièmes Journées Francophones: Mobilité et Ubiquité 2005
(UbiMob'05), (Grenoble, France), ACM, 2005.

[C] L. Courtès, M.-O. Killijian, D. Powell, “Storage Tradeoffs in a Collaborative Backup
Service for Mobile Devices”, LAAS Report 05673, LAAS-CNRS, December 2005, pp 12,
accepted for publication in 6th European Dependable Computing Conference, (Coimbra,
Portugal), October 2006.

[D] L. Courtès, "Sauvegarde coopérative pour dispositifs mobiles", in Actes du 7ème Congrès
des Doctorants de l'Ecole Doctorale Systèmes (EDSYS), LAAS Report 06227, May 2006,
Tarbes, France.

[E] Damien Martin-Guillerez, “Increasing Data Resilience of Mobile Devices with a
Collaborative Backup Service”, in Supplement to Proc. of the International Conference on
Dependable Systems and Networks (DSN-2006), Sheraton Society Hill, Philadelphia, PA,
USA, June 2006.

MoSAIC Progress Report 7/112

MoSAIC Progress Report 8/112

2- Progress Report

MoSAIC Progress Report 9/112

MoSAIC Progress Report 10/112

Context
The MoSAIC (Mobile System Availability, Integrity and Confidentiality) project investigates
novel dependability and security mechanisms for mobile wireless devices, especially personal
mobile devices, in ambient intelligence applications. The mobile devices of interest include,
for instance: personal digital assistants (PDAs), laptop computers, mobile telephones, digital
cameras, etc., and extend to systems embedded within vehicles. The focus is on sparse
ephemeral self-organizing networks, using predominately single-hop wireless communication,
i.e., networks of a small number of a potentially large population of mobile devices that come
into existence spontaneously by virtue of physical proximity and mutual discovery, and that
cease to exist as soon as communication is no longer possible.
Most of the data carried on a PDA is a copy of data that is mainly produced and also stored
elsewhere. For example, a PDA contact database is regularly synchronized with a desktop
computer application. This reduces the impact of failure of such devices to the data that is
produced directly on the device between synchronizations. However, in the case of capture
devices (devices capable of acquiring data such as pictures, sound or video), large quantities
of data are generated directly on the mobile device, leading to a much larger quantity of data
that remains sensitive to device failure until a backup copy can be created. This highlights
the need for new ways of ensuring data availability. Because the density of these devices is
increasing (as mobile devices are becoming more and more popular), there is an opportunity
for cooperatively backing up data by using neighborhood devices.
The main objective of our work is therefore to define an automatic data back-up and recovery
service based on mutual cooperation between mobile devices with no prior trust relationships.
Such a service aims to ensure availability of critical data managed by mobile devices that are
particularly prone to energy depletion, physical damage, loss or theft. The basic idea is to
allow a mobile device to exploit accessible peer devices to manage backups of its critical data.

Challenges
The implementation of such a service by cooperation between mobile nodes with no prior
trust relationship is far from trivial since new threats are introduced:

(a) selfish devices may refuse to cooperate;
(b) backup repository devices may themselves fail or attack the confidentiality or integrity

of the backup data;
(c) rogue devices may seek to deny service to peer devices by flooding them with fake

backup requests; etc.
Furthermore, in this context, the “classical” threats to dependability and security are
particularly severe: device lifetime and communication are severely limited by scarcity
of electrical energy; use of wireless links means susceptibility to link attacks ranging from
passive eavesdropping to active impersonation, message replay, and message distortion; poor
physical protection of mobile devices (especially in a hostile environment) makes
them susceptible to physical damage, and vulnerable to theft or subversion.
The project is thus addressing two related issues:

• Fault- and intrusion-tolerant collaborative data backup (with possible extension to
checkpointing).

• Self-carried reputation and rewards for collaboration between sporadically
interconnected and mutually suspicious peer devices without reliance on a fixed
infrastructure and access to trusted third parties.

Common to both is the emphasis on spontaneous interaction between peer mobile devices
with no prior trust relationships.

MoSAIC Progress Report 11/112

Our approach is very similar to that of the widely used peer-to-peer file sharing [1] and
backup systems [5] on the Internet. However, the mobile environment raises novel issues and
specific assumptions. First, resources on mobile devices (energy, storage space, CPU power)
are scarce. Thus, the envisioned storage mechanisms need to be efficient.
In particular, in order to limit the impact on energy consumption of running the backup
service, care must be taken to use wireless communication means as little as possible given
that they are a heavy drain on mobile device’s energy [18]. Consequently, the amount of data
to transfer to perform backups needs to be kept as low as possible. Logically, this goal is
compatible with that of reducing the amount of data that needs to be stored.
Second, encounters with other participating devices are unpredictable and potentially short-
lived. Thus, users cannot expect to be able to transfer large amounts of data. At the storage
layer, this leads to the obligation to fragment data. Inevitably, data fragments will be
disseminated among several contributors. However, the global data store consisting of all the
contributors’ local stores must be kept consistent, in the sense of the ACID properties of a
transactional database.
Again, we assume that participants in the backup service have no a priori trust relationships.
Therefore, the possibility of malicious participating devices, trying to harm individual users or
the service as a whole, must be taken into account.
Obviously, a malicious contributor storing data on behalf of some user could try to break the
data confidentiality. Contributors could as well try to modify the data stored. Storage
mechanisms used in the backup service must address this, as will be discussed next.
A number of denial of service (DoS) attacks can be envisioned. A straightforward DoS attack
is data retention: a contributor either refuses to send data back to their owner when requested
or simply claims to store them without actually doing so. DoS attacks targeting the system as
a whole include flooding (i.e., purposefully exhausting storage resources) and selfishness (i.e.,
using the service while refusing to contribute). These are well-known attacks in Internet-based
peer-to-peer systems [1,5,7] that are only partly addressed in the framework of ad hoc routing
in mobile networks [4]. One interesting difference in defending against DoS attacks in packet
routing compared to cooperative backup is that, in the former case, observation of whether the
service is delivered is almost instantaneous (routing is perturbed) while, in the latter,
observation needs to be performed in the longer-run (backed up data is not available when
requested). More details about these challenges can be found in publication [A].

Work Carried Out

At LAAS, Ludovic Courtès began a PhD funded by the ACI S&I at the very beginning of the
MoSAIC project (October 2004). His concerns, and more generally the LAAS ones, have
been mostly focused on the design of the storage layer of the collaborative backup service.
At IRISA, Damien Martin-Guillerez, funded internally by IRISA, began in October 2005 a
PhD focused on evaluation, simulation and resource consumption.
At Institut Eurécom, Nouha Oualha, funded internally by Eurécom, began her PhD in
November 2005. Her concerns are mainly cooperation incentives and trust management.
In part 3 of this report, we provide surveys of the related state-of-the-art in the areas being
addressed by the project :

• Communication Paradigms for Wireless Mobile Appliances
• Cooperative Backup Mechanisms
• Cooperation Incentives

The storage-related concerns we described above lie at the crossroads of different research
domains, namely: distributed peer-to-peer backup [5,12], peer-to-peer file sharing [9],
archival [16], and revision control [13,17]. Of course, each of these domains has its own

MoSAIC Progress Report 12/112

primary criteria but all of them tend to share similar techniques. File sharing, for instance,
uses data fragmentation to ease data dissemination and replication across the network. The
other domains insist on data compression, notably inter-version compression, in order to
optimize storage usage.
Study of the literature in these domains has allowed us to identify algorithms and techniques
valuable in our context. These include fragmentation algorithms, data compression
techniques, naming of fragments, and maintenance of suitable meta-data describing how an
input stream may be recovered from fragments.
We implemented some of these algorithms and evaluated them in different configurations.
Our main criteria were storage efficiency and computational cost. We performed this
evaluation using various classes of data types that we considered representative of what may
be stored on typical mobile devices. Those studies and the results are available in publications
[B] and [C].
As mentioned earlier, backup replication must be done as efficiently as possible. Commonly,
erasure codes [20] have been used as a means to optimize storage efficiency for a desired
level of data redundancy. Roughly, erasure codes produce n distinct symbols from a k-symbol
input, with n > k; any k + ε symbols out of the n output symbols suffice to recover the
original data. Therefore, n − (k + ε) erasures can be tolerated, while the effective storage

usage is

!

k + "

n
. A family of erasure codes, namely rateless codes, can potentially produce an

infinity of output symbols while guaranteeing (probabilistically) that still only k + ε output
symbols suffice to retrieve the data [14].
However, an issue with erasure codes is that whether or not they improve overall data
availability is highly dependent on the availability of each component storing an output
symbol. In a RAID environment where the availability of individual drives is relatively high,
erasure codes are beneficial. However, in a loosely connected scenario, such as a peer-to-peer
file sharing system, where peers are only available sporadically at best, erasure codes can
instead hinder data availability [2,10,19]. Therefore, as described in publication [D], we need
to assess the suitability of erasure codes for our application.
Furthermore, data dissemination algorithms need to be evaluated. Indeed, several data
fragment dissemination policies can be imagined. In order to cope with the uncertainty of
contributor encounters, users may decide to transfer as much data as possible to each
contributor encountered. On the other hand, users who give higher priority to confidentiality
than to availability could decide to never give all the constituent fragments of a file to a single
contributor.
We are currently in the process of analyzing these tradeoffs in dissemination and erasure
coding using stochastic models. This should allow us to better understand their impact on data
availability.
We are also studying trust management mechanisms to support cooperative services between
mutually suspicious devices. Of particular interest are mechanisms based on reputation (for
prior confidence-rating and posterior accountability) and rewards (for cooperation
stimulation). In the sparse ephemeral networks considered, these mechanisms can rely neither
on accessibility to trusted third parties nor on connectivity of a majority of the considered
population of devices. Self-carried reputation and rewards are therefore of prime interest. In
particular, we experimented the use of smart cards as personal purses for remuneration-based
cooperation incitation. This approach assumes a reconciliation phase that may take place with
an offline trust third parties. We developed an optimistic fair exchange protocol adapted to
mobile backup. This approach contrasts to most existing approaches to mobile system
security, which have mainly focused on key management and distribution (see, e.g., [8,11,22])
and on secure ad-hoc network routing (see, e.g., [3,6,15,21]). Achieving dependability and

MoSAIC Progress Report 13/112

security despite accidental and malicious faults in networks of mobile devices is particularly
challenging due to their intrinsic asynchrony (unreliable communication,
partitioning, mobility, etc.) and the consequent absence of continuous consistency to global
resources such as certification and authorization servers, system wide stable storage, a global
time reference, etc.

Future Work
In this part of the report, we presented the recent advances in the project. Those advances
mainly concerned the backup and storage aspects. In the future, our objectives are to make
progress towards cooperation incentive schemes, evaluation of the replication techniques
using stochastic models and development of a prototype. More details can be found in the
surveys and papers included in the following parts of this report.
Concerning mobility management, we are investigating how to reuse our results in similar
applications areas such as mobile sensor networks. We meet similar problems such as
memory management, energy saving and data coherency among cooperating sensors.
With respect to evaluation of the replication techniques, we plan to build stochastic models
(using Generalized Stochastic Petri Nets and Markov chains) to assess the probability of
losing critical data produced on a mobile device when different (k,n) erasure codes are used.
The basic stochastic processes of these models are assumed to be Poissonian with rates:

• λ: Device failure rate
• α: Rate of encountering contributor devices
• β: Rate of encountering usable Internet access points

The main measure of interest is the improvement in probability loss defined as the ratio of the
probabilities of losing critical data respectively without and with MoSAIC.
Regarding trust management and cooperation stimulation, we plan to investigate the use of
micropayment models as remuneration incentives to reduce the requirements for tamper-
resistant hardware. In addition to evaluating the effectiveness of cooperation incentives, we
plan to address trust modeling (probably stochastically) with respect to: cooperation
expectations, data loss model, and data criticality.

Bibliography
[1] K. Bennet, C. Grothoff, T. Horozov, I. Patrascu, “Efficient Sharing of Encrypted Data”,
Proc. of the 7th Australasian Conference on Information Security and Privacy (ACISP 2002),
(2384) pages 107–120, 2002.

[2] R. Bhagwan, K. Tati, Y-C. Cheng, S. Savage, G. M. Voelker, “Total Recall: System
Support for Automated Availability Management”, Proc. of the ACM/USENIX Symp. on
Networked Systems Design and Implementation, 2004.

[3] Sonja Buchegger, Jean-Yves Le Boudec. "The Selfish Node: Increasing Routing Security
in Mobile Ad Hoc Networks". IBM Research Report RR 3354, May 2001

[4] L. Buttyan, J-P. Hubaux, “Stimulating Cooperation in Self-Organizing Mobile Ad Hoc
Networks”, ACM/Kluwer Mobile Networks and Applications, 8(5), October 2003.

[5] L. P. Cox, B. D. Noble, “Pastiche: Making backup cheap and easy”, Fifth USENIX OSDI,
pages 285–298, 2002.

[6] B. Dahill, B.N. Levine, E. Royer, C. Shields. "A Secure Routing Protocol for Ad Hoc
Networks". In 10th Conference on Network Protocols (ICNP), November 2002.

[7] S. Elnikety, M. Lillibridge, M. Burrows, ”Peer-to-peer Cooperative Backup System”, The
USENIX FAST, 2002.

MoSAIC Progress Report 14/112

[8] A. Khalili, J. Katz and W. A. Arbaugh, “Toward Secure Key Distribution in Truly Ad-Hoc
Networks”, in Proc. of Symp. on Applications and the Internet Workshops (SAINT'03
Workshops, pp. 342-46, 2003.

 [9] D. Kügler, “An Analysis of GNUnet and the Implications for Anonymous, Censorship-
Resistant Networks”, Proc. of the Conference on Privacy Enhancing Technologies, pages
161–176, 2003.

[10] W. K. Lin, D. M. Chiu, Y. B. Lee, ”Erasure Code Replication Revisited”, Proc. of the
Fourth P2P, pages 90–97, 2004.

[11] D. Liu, P. Ning, K. Sun. "Efficient Self-Healing Group Key Distribution with Revocation
Capability", In 10th ACM Conf. on Computer and Communications Security (CCS'03),
(Washington D.C., USA), pp.231-40, 2003.

[12] B. T. Loo, A. Lamarca, G. Borriello, “Peer-To-Peer Backup for Personal Area
Networks”, IRS-TR-02-015, UC Berkeley; Intel Seattle Research (USA), May 2003.

[13] T.Lord, “The GNU Arch Distributed Revision Control System”, 2005,
http://www.gnu.org/software/gnu-arch/.

[14] M. Mitzenmacher, “Digital Fountains: A Survey and Look Forward”, Proc. of the IEEE
Information Theory Workshop, pages 271–276, 2004.

[15] P. Papadimitratos, Z. J. Haas. "Secure Routing for Mobile Ad hoc Networks", In SCS
Communication Networks and Distributed Systems Modeling and Simulation Conference
(CNDS 2002), (San Antonio, TX, USA), 2002.

[16] S. Quinlan, S. Dorward, “Venti: A new approach to archival storage”, Proc. of the First
USENIX FAST, pages 89–101, 2002.

[17] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.Veitch, R. W.Carton, J.Ofir,
“Deciding when to forget in the Elephant file system”, Proc. Of the 17th ACM SOSP, pages
110–123, 1999.

[18] M. Stemm, P. Gauthier, D. Harada, R. H. Katz, “Reducing Power Consumption of
Network Interfaces in Hand-Held Devices”, IEEE Transactions on Communications, E80-
B(8), August 1997, pages 1125–1131.

[19] A.Vernois, G.Utard, “Data Durability in Peer to Peer Storage Systems”, Proc. of the 4th
Workshop on Global and Peer to Peer Computing, pages 90–97, 2004.

[20] L. Xu, “Hydra: A Platform for Survivable and Secure Data Storage Systems”, Proc. of
the ACM Workshop on Storage Security and Survivability, pages 108–114, 2005.

[21] M.G. Zapata, N. Asokan. "Securing Ad Hoc Routing Protocols". In ACM Workshop on
Wireless Security (WiSe 2002), September 2002.

[22] L. Zhou and Z.J. Haas, “Securing Ad Hoc Networks”, IEEE Network Magazine vol
13(6), pp. 24-30, 1999, IEEE.

MoSAIC Progress Report 15/112

MoSAIC Progress Report 16/112

3- Surveys

MoSAIC Progress Report 17/112

MoSAIC Progress Report 18/112

A survey on communication paradigms for wireless mobile

appliances

Damien Martin-Guillerez ∗and Michel Banâtre †and Paul Couderc‡

July 3, 2006

∗ENS-Cachan/Bretagne - dmartin@irisa.fr
†INRIA - banatre@irisa.fr
‡INRIA - pcouderc@irisa.fr

1

MoSAIC Progress Report 19/112

Contents

1 Introduction 21

2 Wireless network technologies 21

2.1 IEEE 802.11 21
2.2 BlueTooth 21
2.3 Other technologies 21

3 Adaptive approaches 22

3.1 Handover handling in infrastructured networks 22
3.2 Ad hoc routing 22
3.3 Predicting handover and change of cell 23

4 Ubiquitous approach 23

4.1 Spontaneous communications 23
4.2 Communication atomicity 24
4.3 Improving resource discovery 25

5 Retained solutions for the MoSAIC project 26

6 Conclusion 27

MoSAIC Progress Report 20/112

1 Introduction

Wireless interfaces usually support only short-range communications. Thus, wireless appliances
can only communicate with close neighbors and messages require to be retransmitted to attain
the whole network. Moreover, mobility of appliances leads to regular changes of neighbors and of
network capabilities.

Several proposals have been made to address these issues. Adaptive approaches concentrate
on simulating classical networks by palliating disconnection, bandwidth decrease and limited com-
munication range using quality of service and routing mechanisms. On the contrary, ubiquitous
approaches address only neighbor devices and use wireless limitations and mobility as information
for the services.

In this survey, section 2 presents mainstream wireless technologies and their limitations. Sec-
tion 3 presents the adaptive approaches and section 4 the ubiquitous ones. Finally, after under-
lining the retained solutions for the MoSAIC project [14] in section 5, we conclude in section 6.

2 Wireless network technologies

IEEE 802.11 and BlueTooth are the main communication technologies that exist today. In this
section, we will present these technologies and some new ones that are starting to appear.

2.1 IEEE 802.11

IEEE 802.11 [24, 8], often nicknamed WiFi, is a standard for wireless local area networks (WLAN).
It was designed to remove cables in short-range local area networks. Its communication range is
about 50 meters in an open office environment for a bandwidth from 10 to 54 Mbps per channel.
It has two main communication modes: infrastructure and ad hoc.

In the infrastructure mode, IEEE 802.11 uses access points to act as routers between peers (and
the possible wired network). In this mode, access to other terminals is similar to Ethernet. Each
wireless interface has a unique identifier (its MAC address) which is used when addressing another
interface. All messages pass through the access point which redirects them to the corresponding
interface (if it has registered to the access point).

In the ad hoc mode, every interface uses the same network parameters can communicate
directly with the others.

2.2 BlueTooth

BlueTooth [12] is the name for the IEEE 802.15.1 [4] standard for wireless personal area networks.
It has been designed for energy efficient communications in very short range (less than 10 meters).
It has a 1 Mbps bandwidth. Contrary to the IEEE 802.11 ad hoc mode, BlueTooth relies on a
master-slave communication paradigm where each message between two peers passes through a
node called the piconet master1.

To enter a network, BlueTooth uses a discovery mode (Inquiry Scan) during which it can
detect new nodes but the scan requires 1,28 seconds per node minimum. Moreover, during the
discovery mode, the interface cannot be reached for other activities. The very slow discovery time
and the invisibility during the discovery are real problems to when it comes to handling mobility.
Therefore, BlueTooth is generally used for communication between fairly static sets of BlueTooth
capable appliances (like a PC and a BlueTooth mouse).

2.3 Other technologies

Several other technologies have started to appear. ZigBee (IEEE 802.15.4) is a more energy and
memory efficient technology than BlueTooth for close range networks. Unfortunately, it suffers

1A piconet is defined as a small BlueTooth network including a master and several slaves.

MoSAIC Progress Report 21/112

from a lower bandwidth (250 kbps) and discovery time. ZigBee is aimed mainly at networks of
non-mobile sensor nodes.

WiMax or IEEE 802.16 [23] is a standard for wide area wireless networks and provides a
network similar to the the infrastructure mode of IEEE 802.11. It can provide a bandwidth from
4.5 Mbps to 21 Mbps per channel in a range of 1 to 15 kilometers. Thus, it is mainly designed for
a large-scale cellular service.

3 Adaptive approaches

The usual approaches to handle mobility in wireless networks are the adaptive ones. These ap-
proaches rely on implicit mechanisms to emulate a continuous connectivity in a mobile environ-
ment.

3.1 Handover handling in infrastructured networks

WIRED NETWORK

IS3 IS4 IS5 IS6IS2IS1

mobile

IS: Info-Station mobile

Figure 1: Infrastructured network.
Multiple linked cells (IS1 to IS6) cover the area and the mobile terminal can move between them.

In an infrastructured wireless network, each cell is covered by a wireless antenna (e.g., a
HotSpot or an InfoStation [10]) like in figure 1. Mobile terminals move between those cells and
thus suffer from bandwidth variations (loss of network and decrease of bandwidth). To address
this issue, QoS (Quality of Service) and caching mechanisms are generally used.

QoS mechanisms decrease or increase the bit-rate of the data sent to the terminal depending
on the network capabilities. For a video stream for instance, the encoding bit-rate of the video
can be modified to match the network bandwidth. Caching mechanisms send data that will be of
use later when the bandwidth of the network is high. In disconnected or poor bandwidth zones,
the mobile terminal can work on pre-loaded data.

3.2 Ad hoc routing

In mobile ad hoc networks (MANETs) [13], each terminal can act as a router (see figure 2) like
in peer to peer networks [5]. Protocols like LAR [15] or DREAM [2] use flooding like methods to
construct routes. LAR sends a request to a certain area (the expected zone) when a route needs to
be constructed to send a message: it is a reactive protocol. On the other hand, DREAM is proac-
tive: it regularly reconstructs its routes by sending discovery messages in a precise zone (similar
to the expected zone of LAR). The expected zones of LAR and DREAM are both computed using
cinematic information although the computations are different. These expected zones successfully
reduce the bandwidth and generally scale correctly with the mobility.

MoSAIC Progress Report 22/112

Figure 2: A Mobile Ad Hoc Network.
Each nodes can only communicate with some others (6 can only talk to 4 and 5). To talk to other
nodes, messages must be re-transmitted by intermediary nodes (a message from 6 to 2 must be
routed by nodes 4 and 3). The links between nodes change during the evolution of the network
(nodes are mobile).

3.3 Predicting handover and change of cell

The knowledge of the way a terminal moves is a key point for handling mobility in wireless
networks. If the system is able to know where and when a terminal will switch cells or will be
disconnected then it can anticipate mobility by sending data to the next cell, authenticating the
terminal in the next cell, etc...

Abowd et al. [1] and Narendran et al. [16] have proposed mechanisms to predict the minimum
time before a terminal leaves the coverage zone. It can be done using regular measurement of the
received signal power. This power is proportional to the inverse of the square of the distance (1

d2)
in short range and to 1

d4 in long range. Thus, using regular acquisitions of the received signal
power, one can compute the variation of the distance and the probable time when the terminal
will leave the cell. In practice, we only estimate if the signal power will be high enough during
the transmission time using its measured variation. Furthermore, the IEEE 802.11F [24] standard
proposes with the Inter Access Point Protocol to learn paths between different cells to predict
where to send the data after the disconnection from the first cell. When a terminal moves from a
cell to another, a new path is created between those two cells and data for terminals will be sent
to the second cell when they start to leave the first one.

4 Ubiquitous approach

Contrary to adaptive approaches, the ubiquitous approach based on the Mark Weiser’s vision [22]
considers that each wireless terminal is an information system that has to be available only in
close range (figure 3). For example, electronic tags provide informations on each painting of a
museum and a visitor’s handled computer can read those tags and so act as a virtual guide.

4.1 Spontaneous communications

The underlying concept in ubiquitous computing is spontaneous communications. As ubiquitous
computing’s main principle is that of invisible embedded computers that enable users to seamlessly

MoSAIC Progress Report 23/112

Figure 3: A ubiquitous service.
Each node provides information in its range of communication. Node 4 can currently access to
the information of node 2 and will be able to access to the information of node 1 and 3 during its
trip. The accessible information is related to its position.

interact with a dynamic environment. For example, CoolTown [20] associates everyday objects
with wireless appliances that contain information in the HTML format. They beacon identifiers
to mobile terminals. The terminal can then display the related HTML information automatically
when passing near the object. In this system, locality is a way to address information.

SPREAD [6] is a middleware for ubiquitous applications. It interprets the physical space
as an addressing space. Each terminal can provide information in a tuple form and accesses
information by selecting tuples of a certain form (like in Linda [11]). Those tuples are accessible
only to terminals in communication range. Thus, a mobile terminal can access only neighbor
information. An example of an application built using SPREAD is UbiBus, which is aimed at
helping visually-impaired persons. A bus equipped with a wireless appliance using UbiBus spreads
a tuple indicating the line number. User appliances that are close to the bus can acquire this
information. The user is then alerted when the bus arrives.

Persend [21] is another system that uses physical space as a parameter for the addressing
mechanism. It proposes to establish continuous database requests that are linked to locality.
Consider the example of a terminal B that publishes a list of music albums he wants to sell and
a terminal A that wants to know the list of music albums for less than ten euros. A’s list evolves
during the time: if A goes near B then he gets the list of B’s albums that are for sale for less than
ten euros, if B changes the price of an album, the request is modified accordingly and if A leaves
B neighborhood, then B’s albums are removed from A’s list.

4.2 Communication atomicity

For some applications like taxi reservation, there is a need for transactions (e.g., atomicity of
communications). Unfortunately, in presence of data loss and disconnection, the atomicity of a
transaction cannot be guaranteed. However, Pauty et al. [17] have proposed a protocol to approach
atomicity in the context of spontaneous communications.

They propose to add a take operation in SPREAD which removes a tuple from available ones.
This operation is based on a four-way handshake to acknowledge the transaction as shown in
figure 4. This handshake can only be started in a restricted area that can be determined either
by using GPS or the strength of the radio signal used to communicate. This restricted area is
calculated so that the communication time will be enough for the take operation to be completed
as shown in figure 5.

MoSAIC Progress Report 24/112

Figure 4: The take operation handshake.

Figure 5: A geometric constraint guarantees a minimum communication time for the take opera-
tion.

Such a mechanism reduces the number of failures during atomic operations in spontaneous
communications almost to null if the restricted area is small enough. The size of the ideal restricted
area can be easily computed using the effective bandwidth, and the speed of change of signal (which
depends on the speed of the user).

4.3 Improving resource discovery

Discovery of hosts and resources can be quite long as seen in section 2.2. In the context of high
mobility, this discovery time can be a heavy burden for spontaneous communication applications.
Le Bourdon et al. [3] have proposed to create spontaneous HotSpots that will register nearby
terminals and their resources and propagate the information.

Figure 6 shows how a terminal B can transmit informations about its neighbor to a terminal A.
The terminal A can then detect C without using the discovery mode of the BlueTooth interface.
Of course, resources proposed by terminal C can also be given to terminal A so the latter does
not have to discover them by asking C when they meet but may use them directly

MoSAIC Progress Report 25/112

Figure 6: Propagation of resources in spontaneous HotSpots.

Others solutions exist to improve the discovery mode of the BlueTooth protocol but they rely
on other hardware like IrDA, visual tags or dedicated devices.

5 Retained solutions for the MoSAIC project

Figure 7: Interactions of the network layer in the MoSAIC project.
A terminal A tries to backup its data and a terminal B accept to save A’s data.

The MoSAIC project is aiming at creating a collaborative backup for mobile appliances. There-
fore, it needs a network layer providing spontaneous communications. The IEEE 802.11 standard
was chosen for wireless communications because of its availability, bandwidth and communication

MoSAIC Progress Report 26/112

range. The general design of MoSAIC given by Courtes et al. [7] asks for two mechanisms: a
discovery and a transmission mechanisms. The figure 7 shows the required interactions for the
network layer.

First, a discovery mechanism is required. It should regularly broadcast a beacon message to
neighbor terminals. A neighbor terminal receiving this beacon can then acknowledge his availabil-
ity for backup. The discovery mechanism receiving an acknowledgement to the beacon will signal
to the other layers of MoSAIC that there is a terminal ready to save our data. The rate of sending
the beacon will change depending on the amount of data to backup. Of course, the sending of
the beacons will stop when all data have been backed-up. Moreover, the wireless interface can
stop listening when there is no more space available for backups to avoid waste of energy. This
discovery is similar to SPREAD discovery and can be done using MAC address with IPv6 [9] and
UDP [18] broadcast messages.

Second, a transmission mechanism is required. The other layers of MoSAIC ask the network
layer to put its data on a recently seen terminal. The network layer initiate a transmission that
need to be the more atomic we can. This transmission can be done using a handshake and restricted
zone like proposed by Pauty et al. However, MoSAIC only need to know if the data was correctly
transmitted. Thus, TCP [19] communications can handle the required acknowledgements. The
restricted zone can be determined by the power signal. Unfortunately, most IEEE 802.11 cards do
not support per link statistics but give you an evaluation of the link quality of recent transmissions.
So, the restricted zone will be a lower bound for the received signal power; under that bound,
transmissions will be refused to avoid unnecessary energy consumption.

6 Conclusion

In this survey, we have presented the two main wireless technologies used today and their charac-
teristics in section 2. We have seen that IEEE 802.11 is a good middle-range wireless protocol but
suffers from excessive power consumption compared to BlueTooth. On the other hand, BlueTooth
has a very slow discovery protocol which is a big disadvantage for spontaneous communications.

Communication paradigms for wireless mobile appliances can be divided between the adaptive
and the ubiquitous approaches. Adaptive approaches try to reduce the disadvatanges of mobility
by several mechanisms like caching and QoS for infrastructured networks and restricting discov-
ery to expected zones in MANETs. Adaptive approaches also use prediction techniques using
power consumption and path learning to improve data distribution or discovery. On the con-
trary, ubiquistic approaches use locality as a means to address data. CoolTown, SPREAD and
Persend use the communication range as a way to know if the information will be useful to the
user. We have also seen ways to improve spontaneous communications with atomic transactions
in section 4.2 and discovery with spontaneous hotspots in section 4.3. Finally, we have seen several
mechanisms applied to the specific case of the MoSAIC collaborative backup in section 5.

References

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cyberguide:
a Mobile Context-Aware Tour Guide. ACM Wireless Networks, 3(5):421–433, Oct. 1997.

[2] S. Basagni, I. Chlamtac, R. V. Syrotiuk, and B. A. Woodward. A Distance Routing Effect
Algorithm for Mobility. In the ACM/IEEE International Conference on Mobile Computing
and Networking (MOBICOM), pages 49–64, Oct. 1998.

[3] X. L. Bourdon, P. Couderc, and M. Banâtre. Spontaneous Hotspots: Sharing Context-
Dependant Resources Using Bluetooth. In Self-adaptability and self-management of context-
aware systems (SELF’06), July 2006.

[4] 802.15 Specifications for wireless personnal area networks. IEEE Standards. 802.15.1 is known
as BlueTooth, 802.15.4 is known as ZigBee.

MoSAIC Progress Report 27/112

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In The Workshop on Design Issues in Anonymity
and Unobservability, pages 46–66, July 2000.

[6] P. Couderc and M. Banâtre. Ambient computing applications: an experience with the
SPREAD approach. In the 36th Annual Hawaii International Conference on System Sci-
ences (HICSS’03), pages 291–299, Jan. 2003.

[7] L. Courtès, M.-O. Killijian, and D. Powell. Storage Tradeoffs in a Collaborative Backup
Service for Mobile Devices. Technical Report 05673, LAAS-CNRS, Apr. 2006.

[8] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai. IEEE 802.11 Wireless Local Area Network.
IEEE Communications Magazine, 35(9):116–126, Sept. 1997.

[9] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) - Specification. RFC 2460,
The Internet Society, Dec. 1998.

[10] R. H. Frenkiel, B. R. Badrinath, J. Borràs, and R. D. Yates. The Infostations Challenge:
Balancing Cost and Ubiquity in Delivering Wireless Data. IEEE Personal Communications,
7(2):66–71, Apr. 2000.

[11] D. Gelernter. Generating Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, Jan. 1985.

[12] J. Haartsen, M. Naghshineh, J. Inouye, O. Joeressen, and W. Allen. Bluetooth: Vision, goals,
and architecture. Mobile Computing and Communications Review, 2(4):38–45, Oct. 1998.

[13] D. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. In The IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), Dec. 1994.

[14] M.-O. Kilijian, D. Powell, M. Banâtre, P. Couderc, and Y. Roudier. Collaborative Backup
for Dependable Mobile Applications. In The 2nd International Workshop on Middleware for
Pervasive and Ad-Hoc Computing (Middleware). ACM, Oct. 2004.

[15] Y.-B. Ko and N. H. Vaidya. Location-Aided Routing (LAR) in Mobile Ad Hoc Networks.
Wireless Networks, 6(4):307–321, July 2000.

[16] B. Narendran, P. Agrawal, and D. Anvekar. Minimizing cellular handover failures without
channel utilization loss. In the Global Telecommunications Conference (GLOBECOM’94),
volume 3, pages 1679–1685, Dec. 1994.

[17] J. Pauty, P. Couderc, and M. Banâtre. Atomic token passing in the context of spontaneous
communications. Technical Report 5445, IRISA/INRIA Rennes, Jan. 2005.

[18] J. Postel. User Datagram Protocol. RFC 768, The Internet Society, Aug. 1980.

[19] J. Postel. Transmission Control Protocol. RFC 793, The Internet Society, Sept. 1981.

[20] S. Pradhan, C. Brignone, J.-H. Cui, A. McReynolds, and M. T. Smith. Websigns: Hyper-
linking Physical Locations to the Web. IEEE Computer Magazine, 34(8):42–48, Aug. 2001.

[21] D. Touzet, F. Weis, and M. Banâtre. PERSEND: Enabling Continuous Queries in Proximate
Environments. In the Workshop on Mobile and Ubiquitous Information Access, Sept. 2003.

[22] M. Weiser. The Computer for the Twenty-First Century. Scientific American, pages 94–10,
Sept. 1991.

[23] 802.11 Specifications for broadband wireless access. IEEE Standards. Known as WiMax.

[24] 802.11 Specifications for wireless local area networks. IEEE Standards. Known as WiFi.

MoSAIC Progress Report 28/112

A Survey of Cooperative Backup Mechanisms ∗

Marc-Olivier Killijian Ludovic Courtès

David Powell

Laboratoire d’Analyse et d’Architecture des Systèmes

LAAS-CNRS

July 3, 2006

∗This work is partially supported by the French Ministry of Research and Technology ACI Sécurité et
Informatique MoSAIC project (http://www.laas.fr/mosaic/), the European Network of Excellence ReSIST
(http://www.laas.fr/RESIST/), and the European project HIDENETS (http://www.hidenets.aau.dk/).

1

MoSAIC Progress Report 29/112

Contents

1 Introduction and Motivations 31

2 Characterization of Cooperative Backup Systems 32

2.1 Functionalities of Backup Systems 33
2.1.1 Full vs. Incremental Backups 33
2.1.2 Resource Usage 33
2.1.3 Performance 33
2.1.4 On-line Backups 33
2.2 Dependability Issues of Cooperative Backup 34
2.2.1 Integrity and Consistency 34
2.2.2 Confidentiality and Privacy 34
2.2.3 Availability 34
2.2.4 Synergy 34
2.2.5 Trust Management 35

3 Existing Cooperative Backup Systems 35

3.1 Peer-to-peer Backup Systems for WANs/LANs 35
3.2 Cooperative File Systems 36
3.3 Mobile Systems 36

4 Storage Management 37

4.1 Storage Allocation 37
4.2 Storage Optimization 38

5 Dependability Techniques 38

5.1 Integrity and Consistency 39
5.2 Confidentiality and Privacy 39
5.3 Data Availability 40
5.3.1 Data Replication 40
5.3.2 Garbage Collection 40
5.4 Service Availability 40
5.4.1 Selfishness 41
5.4.2 Retention of Backup Data 42

6 Conclusion 42

MoSAIC Progress Report 30/112

File type Writer multiplicity Reader multiplicity
File sharing systems Static Single Multiple
File backup systems Static Single Single
General file systems Dynamic Multiple Multiple

Figure 1: Typical characteristics distinguishing various distributed storage

1 Introduction and Motivations

Storage capacity, like computing power, follows its Moore’s law and grows dramatically, for in-
stance disk density grows at an impressive annual rate of 100% [15]. At the same time, this new
storage capacity is consumed by the production of new data. Consequently, the need for backup
capacity increases but so does the space available for backup.

In Section 2 of this survey, we discuss the features that characterize cooperative backup systems.
Several existing systems are then described and compared briefly in Section 3. In Section 4, a
more in-depth analysis is given with respect to storage management issues. Then Section 5 focuses
on the dependability techniques used in these systems. Finally, Section 6 concludes the survey by
a summary and sketches some directions for future work.

Our concern here is on cooperative backup services, in which resources belonging to multiple
users are pooled as a distributed storage system for backing-up each others’ data. Such a coop-
erative backup service must be distinguished from other forms of distributed storage such as file
sharing systems or general file systems.

A file system can be defined as a support for the storage of data on non-volatile medium,
typically a hard disk. Data is stored on files that encompass both the data and its associated
metadata (name and other attributes such as date of modification, etc.). Usually a file system
also provides a directory service on top of a flat file service. The flat file service maps the data
with unique file identifiers and stores the data on the storage device. The organization of the data
can have several forms, either unstructured or structured as a sequence or hierarchy of records.
The directory service maps the metadata to the files’ unique identifiers. Typically this mapping
is stored on the storage device using the flat-file service itself.

File sharing1 emerged relatively recently as an Internet application and greatly participated to
the definition of a new type of distributed system: peer-to-peer systems. The goal of a file sharing
system is to enable multiple users to access files. Classical and well-known file-sharing systems are
Napster, eDonkey, Gnutella, Kazaa, MojoNation, BitTorrent, etc.

The role of a backup system is to tolerate faults affecting some storage device, be it local or
distant, centralized or shared. The type of faults considered here can be permanent failures of the
storage devices (e.g., crashed disks), or even localized catastrophes like a fire incident in an office
when the backup media are taken off-site.

Given these definitions, one can see that there are quite some differences in the specification of
these services even if there are also some strong similarities (primary goal is storage, the concept
of file, etc.). If one wants more specific differences, one can consider the following properties:
multiplicity of the data readers/writers and mutability of the content. The following table presents
these characteristics.

Among the afore-mentioned file-sharing systems, we can identify some features that are cen-
tralized, distributed or cooperative. Similarly to file systems, file-sharing systems have two main
functions: first they have to manage the actual distribution of the shared files, and second they
have to organize the lookup, i.e. manage a global directory for users to search for given files. The
lookup service of Napster [31] is centralized, the one of eDonkey [17] is distributed among a set
of servers and finally, the one of Kademlia [28] is cooperatively realized between the participating
nodes.

1We differentiate here between peer-to-peer file sharing systems and distributed file systems that can also be
seen as a way to share files.

MoSAIC Progress Report 31/112

It is clear that file-sharing systems are different from backup systems. These systems do not
guarantee long-term survivability of files, especially those files that few users are interested in
storing or accessing. Thus, they could hardly be used for the purpose of backup. One could argue
that regular file systems could easily be used for such a purpose since long-term survivability and
fault-tolerance are very important concerns for this type of service. For instance, a simple solution
to back-up on top of file systems would be to use Unix-like facilities, e.g., tar, CVS, etc. However,
the specification and the semantics of file systems being so much broader than those of backup
systems (multi-writers vs. single-writers; read-write vs. write-once/read-many), it would be unfair
to compare these two types of system.

In this paper we will survey only backup services that use a cooperative approach. We will
be concerned both with cooperation between resources pooled directly over a fixed infrastructure
such as Internet and with mobile resources that are pooled opportunistically according to locality.
This latter class of cooperative backup service is motivated by the observation that users of
mobile devices (laptops, personal digital assistants, mobile phones, etc.) often perform a backup
of their data only when they have access to their main desktop machine, by synchronizing the two
machines. Typically, the first generation of personal digital assistants (PDAs) had only a short
distance communication means, generally a serial or infrared device. This meant that the user
had to be physically close to the machine on which she performed the synchronization. Nowadays,
portable devices usually have several communication interfaces (for instance WiFi, Bluetooth,
etc.). When a network infrastructure is available in their vicinity, for instance WiFi access points,
those devices could connect to their main desktop machine in order to back-up their data. However,
in practice, this is rarely the case, for several reasons :

• the desktop machine must be running, connected to the Internet and available;

• access to a network infrastructure using wireless communications is still rare and expensive,
and it can take a while before a device is able to connect to the Internet;

• finally, to our knowledge, the software able to perform such a backup on a remote desktop
are still rare.

Another solution to mobile device backup is the use of a trusted third party that guarantees
its backup servers’ availability. Several commercial offerings enable their customers to back-up
their data on a limited storage capacity for a yearly fee.

However, the growth rate of this kind of wireless communicating devices is such that a cooper-
ative approach to back-up is becoming feasible, based on peer-to-peer interactions. These wireless
interactions are frequent but ephemeral. Nevertheless, they could be leveraged: whenever two
devices meet, a backup service can automatically initiate a request for a partial data backup. As
a counterpart, it has to offer the same service to the community, i.e. to form a cooperative backup
system.

2 Characterization of Cooperative Backup Systems

In [5], Chervenak et al. described a number of features for the characterization of backup systems:
full vs. incremental, file-based vs. device-based, on-line or not, snapshots and copy-on-write,
concurrent backups, compression, file restoration, tape management, and finally disaster recovery.
On the one hand, most of these features remain of interest in our context. However, on the other
hand, some characteristics concerning dependability and the cooperative nature of the considered
systems were not addressed: privacy, denial-of-service resilience, trustworthiness management, etc.
In their survey, Chervenak et al. characterized backup systems using a set of properties. It must
be noted that their focus was on centralized or server-based, system-wide, backup systems, i.e., the
target was large multi-user client systems. The type of backup services we are interested in targets
personal computers and thus, some of the properties defined by Chervenak et al. are not relevant.
We thus propose another characterization of backup systems based on a set of functionalities and
of dependability issues, as described in the following sections.

MoSAIC Progress Report 32/112

2.1 Functionalities of Backup Systems

2.1.1 Full vs. Incremental Backups

The simplest solution to back-up a file-system is to copy its entire content to a backup device. The
resulting archive is called a full backup or a snapshot of the source data. Both a full file-system
and a single lost file can be easily restored from such a full backup. However, this solution has
usually two major drawbacks: since it concerns the entire content of the file-system, it is slow and
requires a large amount of backup storage space. We will come back onto this issue of resource
usage in the next subsection.

As a solution to this, incremental backup schemes can be used. They copy only the data that
have been created (added) or modified since a previous backup. To restore the latest revision of
a given file, the first full backup along with all the subsequent incremental backups must be read,
which can be extremely slow. For this reason, typical incremental schemes perform occasional
full backups supplemented with frequent incremental backups. Several variations of incremental
backup techniques exist: incremental-only, full+incremental or even continuous incremental where
newly created or modified data is backed-up within a few minutes, as it is created or modified,
instead of once a day, typically, with traditional incremental backups.

2.1.2 Resource Usage

To reduce both storage requirements and network bandwidth usage, backup systems can use
classic compression techniques. This can be done at the client-side or at the server-side. Recently,
other techniques emerged to reduce the storage space required to back-up several file systems. An
example is single-instance storage [33] which aims to store once every block of data even if it is
present on the file systems of several users, or if there are multiple instances in a single file-system.

2.1.3 Performance

Backup system performance is measured in terms of the backup time as well as the restoration
time. The performance of the backup process is impacted by factors such as incremental backups,
compression, etc. Several parameters and features have a dramatic effect on the actual efficiency
of the restoration operations. For instance, restoration will be slower in an incremental backup
system, which must begin with the last full backup and apply changes from subsequent incremental
backups. An additional concern when restoring an entire file system is that files deleted since the
previous backup will reappear in the restored file system. More generally, the unbacked-up changes
on the metadata, the structure and the hierarchy of the file system cannot be restored.

2.1.4 On-line Backups

While many backup systems require that the file system (or the files) remain quiescent during a
backup operation, on-line or active backup systems allow users to continue accessing files during
backup. On-line backup systems offer higher availability at the price of introducing consistency
problems.

The most serious problems occur when directories are moved during a backup operation, chang-
ing the file system hierarchy. Other problems include file transformations, deletions and modifi-
cations during backup. In essence, any type of write operation on the files or on the file-system
hierarchy during a backup is a potential source of problems. There are several possible strategies
to overcome these problems:

1. Locking limits the availability of the system by forbidding write accesses while backing-up.

2. Modification detection is used to reschedule a backup of the modified structures/files.

3. Snapshots, i.e., frozen, read-only copies of the current state of the file-system offer another
alternative for online backup. The contents of a snapshot may be backed-up without danger

MoSAIC Progress Report 33/112

of the file system being modified from subsequent accesses. The system can maintain a
number of snapshots, providing access to earlier versions of files and directories.

4. A copy-on-write scheme is often used along with snapshots. Once a snapshot has been
created, any subsequent modifications to files or directories are applied to newly created
copies of the original data. Blocks or file segments are copied only if they are modified,
which conserves disk space.

2.2 Dependability Issues of Cooperative Backup Systems

In the previous section we presented several functional aspects of backup systems. We now look
at the dependability issued raised by a cooperative approach to backup: integrity and consistency,
confidentiality and privacy, availability, synergy and trust.

2.2.1 Integrity and Consistency

A backup service has to guarantee the integrity and consistency of restored data.
Any corruption of the backed up data, be it intentional or not (for instance due to a software

or hardware fault on the system actually providing the storage), must be detected by its owner
during restoration. Network protocols as well as storage devices commonly use error-detecting or
correcting codes to tolerate software and hardware faults. However, to be resilient to intentional
corruption, the data owner must be assured that the data restored is the same that which was
backed up.

Consistency is an issue when multiple items of data must ensure some common semantics. In
such cases, special care must be taken to manage dependencies.

2.2.2 Confidentiality and Privacy

The entities participating in a cooperative backup service store some of their data on the resources
of other participants with whom they have no a priori trust relationship. The data backed up
may be private and thus should not be readable by any participating entity other than its owner,
i.e., the service has to ensure the confidentiality of the data. Furthermore, a cooperative backup
service must protect the privacy of its users. For instance it should not deliver any information
concerning the past or present location of its users.

2.2.3 Availability

In a backup system, availability has several dimensions. First, the primary goal of a backup
system is to guarantee the long-term availability of the data being backed up. In some sense it
is the functional objective of the system. Second, to be useful, the backup system itself must
be available, i.e., it must be resilient to failures (hardware, software, interaction, etc.). In the
context of a cooperative approach to backup, additional concerns arise, especially with respect to
malicious or selfish denial-of-service attacks.

2.2.4 Synergy

Synergy is the desired positive effect of cooperation, i.e., that the accrued benefits are greater than
the sum of the benefits that could be achieved without cooperation. However synergy can only be
achieved if nodes do indeed cooperate rather than pursuing some individual short-term strategy,
i.e. being rationale.

Hardin introduced the tragedy of the commons concept in 1968 [16] to formalize the fact
that a shared resource (a common) is prone to exhaustion if the resource consumers use short-
term strategy to maximize their benefit out of the resource. Consider the simple example of a
grass field shared by 25 farmers. The field can normally accommodate 50 cattle. However, each
rational farmer is tempted to maximize his outcome by having more than 2 cattle feeding from

MoSAIC Progress Report 34/112

the shared field. This short-sighted strategy eventually leads the field to exhaustion through over-
consumption. A generalized form of the problem is when a resource market has externalities, i.e.,
when the cost of using a resource is shared among its consumers.

The tragedy of the commons has recently been extended to the digital world, or “Infosphere”,
leading to the tragedy of the digital commons [13]. It is relatively intuitive, for instance, to regard
the Internet as a shared resource. Each user uses his connection without paying much attention
to the presence of other users and to the fact that they share a common bandwidth. Each user
thus uses his available bandwidth up to its maximum, only being reminded that other users also
consume this resource when there is a network congestion.

One way to ensure synergy in a cooperative backup system is to enforce the “fair exchange”
property: if one contributes up to 5 MiB to the system, one wants to get serviced up to 5 MiB
too. Reciprocally, it is desirable that a device getting serviced for such an amount of resources
offers an equivalent amount to the cooperative service.

2.2.5 Trust Management

An important aspect of many cooperative systems is that each node has to interact with unknown
nodes with which it does not have a pre-existing trust relationships. The implementation of a
cooperative backup service between nodes with no prior trust relationship is far from trivial since
new threats must be considered:

1. selfish devices may refuse to cooperate;

2. backup repository devices may themselves fail or attack the confidentiality or integrity of
the backup data;

3. rogue devices may seek to deny service to peer devices by flooding them with fake backup
requests; etc.

There is thus a need for trust management mechanisms to support cooperative services between
mutually suspicious devices.

3 Existing Cooperative Backup Systems

In this section, we first give a preliminary description and analysis of various systems devoted to
cooperative backup. Cooperative backup are inspired by both cooperative file systems and file
sharing systems. Most are concerned with the problem of cooperative backup for fixed nodes with
a permanent Internet connection. To our knowledge, there are only two projects looking at backup
for portable devices with only intermittent access to the Internet: FlashBack [25] and MoSAIC
[21].

3.1 Peer-to-peer Backup Systems for WANs/LANs

The earliest work describing a backup system between peers is the one of Elnikety et al. [11], which
we will henceforth refer to as CBS. Regarding the functions of a backup system (resource localiza-
tion, data redundancy, data restoration), this system is quite simple. First, a centralized server is
used to find partners. Second, incremental backup, resource preservation, performance optimiza-
tion were not addressed. However, various types of attacks against the system are described. We
will come back to this later.

The Pastiche [8] system and its follow-up Samsara [9], are more complete. The resource
discovery, storage, data localization mechanisms that are proposed are totally decentralized. Each
newcomer chooses a set of partners based on various criteria, such as communication latency, and
then deals directly with them. There are mechanisms to minimize the amount of data exchange
during subsequent backups. Samsara also tries to deal with the fair exchange problem and to be
resilient to denial-of-service attacks.

MoSAIC Progress Report 35/112

Other projects try to solve some limitations of the Pastiche/Samsara systems, or to propose
some simpler alternatives. This is the case for Venti-DHash [38] for instance, based on the Venti
archival system [33] of the Plan 9 operating system. Whereas Pastiche selects at startup a limited
set of partners, Venti-DHash uses a completely distributed storage among all the participants, as
in a peer-to-peer file sharing system.

PeerStore [24] uses a hybrid approach to data localization and storage where each participant
deals in priority with a selection of partners (like Pastiche). Additionally, it is able to perform
incremental backup for only new or recently modified data. Finally, pStore [1] and ABS [6], which
are inspired by versioning systems, propose a better resource usage.

Based on the observations that worms, viruses and the like can only attack machines running
a given set of programs, the Phoenix system [20] focuses on techniques favoring diversity among
software installations when backing up a machine (e.g., trying to not backup a machine that runs
a given vulnerable web server on a machine that runs the same web server). The main added
value is here in the partnership selection.

In [7], the authors focus on the specific issue of resource allocation in a cooperative backup
system through an auction mechanism called bid trading. A local site wishing to make a backup
announces how much remote space is needed, and accepts bids for how much of its own space the
local site must “pay” to acquire that remote space.

In [18], the authors implement a distributed backup system, called DIBS, for local area networks
where nodes are assumed to be trusted: the system ensures only privacy of the backed up data
but does not consider malicious attacks against the service. Since DIBS targets LANs, all the
participating nodes are known a priori, partnerships do not evolve, and no trust management is
needed.

3.2 Cooperative File Systems

As mentioned earlier, a backup system (static data files, single writer) can be implemented on top
of any file system (mutable data files, multi-writer). There exist a number of peer-to-peer general
file systems such as Ivy [30], OceanStore [22], InterMemory [12], Us [34], etc. We briefly present
here two of them for the sake of the comparison although they are outside the scope of this survey.

Us [34] provides a virtual hard drive: using a peer-to-peer architecture, it offers a read-only
data block storage interface. On top of Us, UsFs builds a virtual file system interface able to
provide a cooperative backup service. However, as a full-blown filesystem, UsFs provides more
facilities than a simple backup service. In particular, it must manage concurrent write access,
which is much more difficult to implement in an efficient way.

OceanStore [22] is a large project where data is stored on a set of untrusted cooperative servers
which are supposed to have a long survival time and high speed connection. In this sense we con-
sider it as a distributed file system using a super-peers approach rather than a purely cooperative
system. The notion of super-peers relates to the fact that peers are specifically configured as file
servers (with large amount of storage) that can cooperate to provide a resilient service to non-peer
clients.

3.3 Mobile Systems

The FlashBack [25] cooperative backup system targets the backup of mobile devices in a Personal
Area Network (PAN). The nature of a PAN simplifies several issues. First, the partnerships can
be defined statically as the membership in the network changes rarely: the devices taking part in
the network are those that the users wear or carry. Second, all the devices participating in the
cooperative backup know each other. They can be initialized altogether at configuration time so
there is no problem of handling dynamic trust between them. For instance, they may share a
cryptographic key.

MoSAIC [21] is a cooperative backup system for communicating mobile devices. Mobility
introduces a number of challenges to the cooperative backup problem. In the context of mobile
devices interacting spontaneously, connections are by definition short-lived, unpredictable, and

MoSAIC Progress Report 36/112

very variable in bandwidth and reliability. Worse than that, a pair of peers may spontaneously
encounter and start exchanging data at one point in time and then never meet again. Unlike
FlashBack, the service has to be functional even in the presence of mutually suspicious device
users.

4 Storage Management

In this section, we present two aspects that are specific to peer-to-peer data storage systems:
mechanisms for storage allocation, and techniques for efficient usage of resources.

4.1 Storage Allocation

Among the systems studied, one can identify three distinct approaches to the dissemination of the
data blocks to be stored:

• the storage can be allocated to specific sets of participants or partners;

• the storage can be allocated across all participants using a distributed hash table (DHT),
which has the property of ensuring an homogeneous block distribution;

• the storage can be allocated opportunistically among neighbors met when storage of a block
is needed.

In the first case, the relationships between the partners are relatively simple: each participant
chooses a set of partners at start-up. Then, for each backup, it directly sends the blocks to be
saved to its partners. In Pastiche and in CBS, each participant chooses a set of partners that
will remain almost static. Finally, the FlashBack devices, in a PAN, choose their set of partners
according to the amount of time spent in each other’s vicinity.

The second approach is based on a technique that is fundamental to peer-to-peer file sharing
systems, virtual networks or overlay networks [27], which use the notion of distributed hash tables
(DHT) for allocating data blocks. Each node of the network is responsible for the storage of the
blocks whose identifier is close (numerically) to its own identifier. The advantage of using a DHT is
that the blocks are homogeneously distributed over the network if their identifiers are numerically
homogeneously distributed. Both Venti-DHash and pStore use DHTs to store backup data blocks.
However, there are two disadvantages to this approach:

• The cost of migration of the data blocks when a node enters or leaves the system can be
high (bandwidth-wise) [24]. Because of the mathematical mapping between data blocks and
node identifiers, no exception is acceptable: when a node enters the virtual network, it must
obtain and store all the blocks for which it is mathematically responsible; respectively, when
a node leaves the network, the various blocks it was responsible for must be re-distributed
using the DHT mechanism.

• A DHT automatically distributes the data blocks homogeneously among the participants,
independently of how much storage space each node consumes. Consequently, using a DHT
makes it impossible for a system to ensure fair exchange.

For these reasons, PeerStore proposes a hybrid approach where the data blocks are directly
exchanged between partners and where the blocks’ meta-information (the mapping between a block
ID and the node that stores it) are stored using a DHT. For optimization, the set of partners is
sometimes extended at runtime to nodes that were not originally in the partnership: when a node
needs to store a block, it looks into the DHT to see if the block is already stored (single-instance
storage). When that is the case, the block is not stored twice. Instead, the node that already
stores it becomes a new partner for the node owning it.

MoSAIC Progress Report 37/112

The third approach is very different. The MoSAIC system targets mobile devices, so part-
nerships cannot be established a priori2, but have to be defined during the backup itself, oppor-
tunistically. MoSAIC is an active backup system - whenever some critical data is modified, the
modified blocks need to be backed-up. This is done towards the devices that the user will meet
along its way. In this case, the partnership is determined at runtime and is a function of the
mobility patterns of the participating nodes.

4.2 Storage Optimization

The amount of storage necessary to store backed-up data can be optimized by applying compres-
sion techniques. Compression is worthwhile even if data is ultimately backed-up in redundant
copies (to ensure backup availability). Indeed, the redundancy that is eliminated using com-
pression techniques can be seen as “accidental”, e.g., due to overly prolix data formats. Thus,
compression can be thought of as a way to normalize data entropy before adding new redun-
dancy. In other words, going through the compression step before adding redundancy is a means
to achieve controlled redundancy. In particular, controlled redundancy means that the backup
software is able to control the distribution of redundant data.

Backup systems often rely on “traditional” stream compression techniques, such as gzip and
similar tools. Additionally, most backup systems have focused on techniques allowing for storage
and bandwidth savings when only part of the data of interest has been modified, i.e., incremental
backup techniques. Of course, similar techniques are used by revision control systems [26] or
network file systems [29].

Incremental backup has the inherent property of reducing storage (and bandwidth) usage
because only changes need to be sent to cooperating peers and stored. However, snapshot-based
systems can be implemented such that they provide storage and bandwidth efficiency comparable
to that of incremental backup systems, while still allowing for constant-time restoration. Namely,
single-instance storage is a technique that has been used to provide these benefits to a number
of backup [8, 24, 36], archival [33, 40] and revision control systems [26], as well as distributed file
systems [29, 2].

Single-instance storage consists in storing only once any given data unit. Thus, it can be
thought of as a form of compression among several data units. In a file system, where the “data
unit” is the file, this means that any given content, even when available under several file names,
will be stored only once. The single-instance property may also be provided at a finer-grain level,
thus allowing for improved compression.

The authors of Pastiche and PeerStore argue that single-instance storage can even be beneficial
at the scale of the aggregated store made of each contributor store. In essence, they assume that
a lot of data is common to several participants, and thus argue that enforcing single-instance of
this data at a global scale can significantly improve storage efficiency.

While common data may easily be found among participants in the context of Pastiche and
PeerStore, where each participant is expected to back up their whole disk (i.e., including applica-
tion binaries and data), this is certainly not the general case. For example, the mobile users of
MoSAIC are expected to explicitly pay attention to their personal, critical data which are unlikely
to be shared among several participants. Consequently, single-instance storage may be beneficial
to mobile users only when used at a local scale, i.e., on each data owner’s local store.

5 Dependability Techniques

We study, in this section, the various techniques found in the literature to address the dependability
issues presented in section 2.2.

2There may be exceptions to this in some application scenarios where mobility patterns are known in advance.
For instance, when two mobile device users take the same train every single morning while commuting.

MoSAIC Progress Report 38/112

5.1 Integrity and Consistency

Integrity and consistency are two properties that are usually obtained using some kind of data
encoding. Apart from CBS, every system studied here systematically fragments the backup files.
This is necessary for load-balancing: with small sized fragments, it is easier to adapt the placement
to fairly balance the load imposed on the participants.

pStore uses simple data structures to encode the backup files. The files are fragmented in
varying size blocks. Along with the blocks themselves, each node also stores a list of blocks that
contains, for each version of the considered file, the list of the identifiers of its constituent blocks.
Each block list is indexed with a structure containing a cryptographic hash of the file path and the
key of its owner. There is thus one namespace per user. In practice, for the restoration of a given
file, one needs to know the file path and the key of the owner. Without this metainformation,
one cannot access the file’s block list and consequently its blocks. The same technique is used in
PeerStore, and a similar technique in Pastiche.

In ABS, each fragment is stored along with a block of meta-information about the file from
which the block originates, as well as the position of the fragment within the file. These data
(fragment and metainformation) are indexed using a cryptographic hash of the fragment to im-
plement single instance storage of each fragment. The metainformation is encrypted using the
owner’s public key and the set (fragment and metainformation) with the owner’s private key.
These signatures are used to certify ownership and for ensuring integrity of the blocks.

In a similar manner, Venti-DHash encoding is based on Venti. As with a classical file system,
the files are represented as trees whose leaves are the file fragments. Here, all the blocks are
indexed using their digest. They are fixed-sized and the underlying storage middleware is not
aware of their semantics (leaf nodes, intermediary nodes, data, metadata, etc.). To be able to
restore a file, only the knowledge of the identifier of the root node is necessary.

All these techniques provide some guarantee of data block integrity since block addressing is
realized using an identifier that depends on the content of the block (using a digest). When a
block is restored, one can then check whether or not it is the requested block and if it is correct.
If the metainformation concerning a file is stored using the same technique, integrity is thus also
guaranteed file-wise. However, from the user point of view, several files can have common semantics
and thus should form a consistency unit. Only Pastiche guarantees inter-file consistency. Since it
is implemented as a file system, Pastiche can create shadow copies of the blocks being backed-up,
so that they can be modified during the backup process without compromising their consistency.

5.2 Confidentiality and Privacy

Most of the systems studied here, like many file sharing systems, use convergent encryption to
provide some confidentiality despite untrustworthy partner nodes. The objective is to have a
ciphering mechanism that does not depend on the node performing the encryption, i.e., that is
compatible with single-instance-storage. Convergent encryption is a symmetric encryption tech-
nique whose key is a digest of the block to be ciphered. The ciphered block can then be stored on
the untrustworthy partner nodes. A digest of the ciphered block is commonly used as an identifier
of that block. The tuple of digests (ciphered/unciphered block digests) is called digest-key or CHK
for “content hash key”. The data owner needs the CHK to be able to locate and uncipher a block.
The CHKs are themselves backed up and ultimately the data owner only has to “remember” one
CHK. Generally this ultimate CHK is stored using a secret that the data owner cannot forget, like
his ID for instance. It is important to note that this technique can lead to some loss in privacy
for the data owner. Indeed, when several nodes own the same block, since the ciphering scheme
depends on the content and not on the nodes, they produce the same ciphered blocks, and the
same CHKs. Thus they are each able to know that they share a file.

It is important to note that when single-instance-storage is not considered, it is much simpler
to use classic encryption techniques, e.g., based on asymmetric ciphering.

MoSAIC Progress Report 39/112

5.3 Data Availability

In this section, we explore the techniques described in the literature for improving data availability
despite failures while optimizing the use of the system resources: data replication and garbage
collection.

5.3.1 Data Replication

For the systems that distribute the data among a specific set of participants (Pastiche, PeerStore,
CBS, Flashback), the replication mechanism is quite simple. In Pastiche, each participant entering
the system looks for 5 other participants having a lot of data in common with itself. These
5 participants then become its backup partners. It can thus tolerate 4 node failures. With
PeerStore, the choice of partners is done in a different manner. However, the authors say that
there are ideally as many partners as there are data replicas, which is similar to Pastiche. For the
systems based on DHTs, thanks to (or because of) the properties of DHTs, the global set of data
stored is homogeneously distributed among the nodes. Consequently, to tolerate the departure or
the failure of a participating node, the data has to be replicated. In practice, the data blocks are
generally replicated by the node that is responsible for it (with the closest ID) on a small number
of its neighbors in the identifier space. Additionally, the block can also be kept in cache on the
nodes that are on the path between the owner and the node responsible for it. ABS, among the
systems based on DHTs, proposes an alternative. The data owner can choose the key under which
a block will be stored. When a new block is inserted in the DHT, an attempt is made to insert it
with a digest of the data as the key. A digest of the key itself (this is called rehashing) can also
be used to store the block on some other participant in order to move the data or to tolerate a
departure or crash.

Coding techniques are also used to finely control the level of data redundancy. Many different
error-correcting coding techniques can be used: erasure codes [39] like Tornado [3], Fountain codes
(also called rateless erasure codes) [4] like Raptor [37], etc. The idea of erasure codes is basically
that each data block is fragmented into k fragments. From these k fragments, r other redundancy
fragments are computed. From these k + r fragments, any k fragments are sufficient to rebuild
the original data block.

Blocks are thus used to produce fragments with a controlled level of redundancy. Venti-DHash
uses this technique and stores the fragments on the successors of the node responsible for the
original data block. MoSAIC also uses erasure codes for the production of redundant fragments
but distributes them opportunistically to the nodes encountered.

5.3.2 Garbage Collection

Pastiche, pStore and ABS offer the possibility to delete the backed up data. Only the data owner
can request this operation - requests must be signed with the owner’s private key. Additionally,
when single instance storage is used, as a block can be stored for several owners, an owner list
is associated to each data block to permit its deletion only when every owner has requested it.
In PeerStore, however, such an owner list does not exist (or is incomplete), i.e., other nodes can
rely on a block for their own backup without having notified the node actually storing this block.
This is due to the way PeerStore implements inter-node single-instance-storage. For this reason
PeerStore does not allow delete operations. FlashBack uses the notion of a “lease” whereby a
data block is stored for a given duration. This duration is determined a priori and exceeds the
expected duration of unavailability of the data owner. Leases can be renegotiated when they are
half-expired.

5.4 Service Availability

Failures of a cooperative backup system can lead to the loss of some of the stored data, as discussed
in the previous section, but can also lead to the unavailability of the entire backup system, which
we address in this section. Resilience to malicious denial-of-service attacks is a wide and active

MoSAIC Progress Report 40/112

research field. The approaches used to mitigate the lack of trust between the participating nodes
and to tolerate these DoS attacks can be based either on the notion of reputation (a level of
the trust of the partners that can be acquired either locally or transitively) or on the use of
micro-economy (exchange of checks, tokens, etc.) [14, 23, 32].

We concentrate here on the attacks that are specific to cooperative backup in general and
more specifically the ones we found in the cooperative backup system we studied: selfishness and
retention of backup data.

5.4.1 Selfishness

Selfishness is a problem for every resource sharing system, as we saw in section 2.2.4. Some
mechanism is required to enforce fairness amongst peers - that they contribute in proportion to
what they consume. Many different solutions have been proposed, most of them being based on
the notion of micro-economy. We look here only at the solutions adapted to storage systems.

It is worth noting that it is not possible for a system based on DHTs to guarantee that the
participants fairly contribute to the system with respect to the amount of resources they consume
(see section 4.1). Consequently, Venti-DHash and pStore are not resilient to this type of attack.
The ABS rehashing technique (see section 5.3.1) can be used to balance the loads on the DHT
but it does not take the effective usage of each node into account.

PeerStore proposes a simple solution based on pair-wise symmetrical exchanges, i.e., each
one of the two partners offers (approximately) the same storage capacity that it uses. To find
partners, newcomers broadcast an offer for a given storage capacity and listen to other participant
replies that offer some capacity in exchange that may be different. It is then up to newcomers to
decide whether or not to accept an offer. CBS also imposes symmetrical exchange relationships,
restricting data placement.

Pastiche does not deal with this problem but Samsara does: it extends the notion of symmet-
rical exchanges with the use of claims. The data owner issues a claim for the node that accepts
to store its data, this exchange constitutes a contract. The value of the claim represents the
storage capacity of the stored data. These claims can be forwarded to another contributor when
the contributor needs to store some of its own data. Finally, each node periodically checks its
co-contractors to ensure that they are adhering to the contract, i.e., to verify that its claims are
satisfied, by challenging its contributors. If a node breaches a contract, its partner is free to drop
its data. The use of challenges can be seen as a way to compute locally a level of reputation for a
contributor.

Another simple solution is proposed in CFS [10]: each contributor limits any individual peer to
a fixed fraction of its space. These quotas are independent of the peer’s space contribution. CFS
uses IP addresses to identify peers, and requires peers to respond to a nonce message to confirm a
request for storage, preventing simple forgery. This does not defend against malicious parties who
have the authority to assign multiple IP addresses within a block, and may fail in the presence of
network renumbering.

Several of these solutions were proposed to be extended with trusted third parties, either
centralized or distributed among trusted hardware devices. For instance, PAST [35] provides
quota enforcement that relies on a smartcard at each peer. The smartcard is issued by a trusted
third party, and contains a certified copy of the node’s public key along with a storage quota. The
quota could be determined based on the amount of storage the peer contributes, as verified by the
certification authority. The smartcard is involved in each storage and reclamation event, and so
can track the peer’s usage over time. Fileteller [19] proposes the use of micro-payments to account
for storage contributed and consumed. Such micro-payments can provide the proper incentives for
good behavior, but must be provisioned and cleared by a third party and require secure identities.

It is worth noting that, as a side effect, solutions based on symmetrical exchanges have the
advantage of being resilient to flooding attacks, whereby a node tries to obtain many storage
resources by flooding the network with requests. On the contrary, DHT based systems are not
resilient to this type of attack due to the very nature of DHTs.

MoSAIC Progress Report 41/112

5.4.2 Retention of Backup Data

Data retention is the situation in which a contributor does not release backed up data when an
owner issues a restoration request. This can be non intentional, e.g., the contributor has crashed,
or is disconnected, or intentional/malicious, e.g., the contributor did not actually store the data or
tries to blackmail the data owner. Generally speaking, unintentional retention should be tolerated
whereas malicious retention should be prevented, or even punished.

In CBS, there is a two-fold solution to these problems: first there are periodic challenges to
verify that the partners really do store the data for which they are responsible for, and second, there
are rules to tolerate temporary node failures. The periodic challenges are actually read requests
for randomly chosen data blocks sent to the contributors by data owners. Tolerance of temporary
faults is based on a grace period during which a participant can be legitimately unavailable. After
expiration of the grace period, the data stored for the disconnected node can be erased (the data
owner locally decides to associate a bad reputation to the contributor). However, the grace period
can be used to gain resources dishonestly without contributing to the system. A countermeasure
is to define a trial period, that is longer than the grace period, during which backup and challenges
are permitted but restoration is not.

This challenge technique is also used by the other studied systems, in an optimized form: a
challenge concerns several blocks at a time and the response is a signature of the set of blocks [9]
[24].

Samsara and PeerStore also have a slightly different way of punishing unavailable nodes: their
blocks are progressively deleted. The probability of deletion of a block is chosen such that, given
the number of block replicas, the probability of all the replicas being deleted becomes significant
only after a large number of unsatisfied challenges.

6 Conclusion

Peer-to-peer/cooperative systems constitute a new emerging approach for the design of heavily
distributed systems. They have very good properties regarding scalability and are thus particularly
well-adapted to ubiquitous computing scenarios. The application of peer-to-peer coopearation to
backup has been rendered feasible by recent dramatic increases in storage capacity and network
bandwidth. In this paper, we have surveyed the technical solutions to this problem.

We first observed that the field of cooperative backup for wide-area networks or local-area
networks is very active. This research field has been recently boosted by the peer-to-peer trend and
reused many of the P2P techniques: distributed hash tables, single-instance-storage, convergent
encryption, etc. However, very little work has targeted mobile devices, even if cooperative backup
seems to be quite appropriate for them (new data is frequently produced on many types of devices,
even disconnected from the fixed infrastructure: digital cameras, phones, PDAs, laptops. However,
mobile devices have their specificities (ephemeral connections, reduced energy, etc.), so many of
the techniques developed for WANs and LANs cannot be applied. Much effort is still needed to
alleviate the specific problems raised by frequent disconnections, ephemeral connections, limited
battery power, inability to access trusted third parties, etc.

From this situation, trails that can be followed to make some progress in this field include:
adequate disconnected cooperation incitatives, proper erasure codes with varying parameters, re-
alistic mobility models, and stochastic models of the dependability of mobile devices implementing
cooperative services.

References

[1] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore: a secure peer-to-peer backup system.
Technical Report MIT-LCS-TM-632, MIT Laboratory for Computer Science, December 2001.

MoSAIC Progress Report 42/112

[2] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop pcs. In Proceedings of the International
Conference on Measurement and Modeling of Computer Systems, pages 34–43, 2000.

[3] J. W. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel:
Using Tornado codes to speed up downloads. In INFOCOM (1), pages 275–283, 1999.

[4] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable
distribution of bulk data. In SIGCOMM, pages 56–67, 1998.

[5] A. Chervenak, V. Vellanki, and Z. Kurmas. Protecting file systems: A survey of backup
techniques. In Proceedings Joint NASA and IEEE Mass Storage Conference, March 1998.

[6] J. Cooley, C. Taylor, and A. Peacock. ABS: the apportioned backup system. Technical report,
MIT Laboratory for Computer Science, 2004.

[7] B. F. Cooper and H. Garcia-Molina. Bidding for storage space in a peer-to-peer data preser-
vation system. In ICDCS, pages 372–, 2002.

[8] L. P. Cox and B. D. Noble. Pastiche: making backup cheap and easy. In Fifth USENIX
Symposium on Operating Systems Design and Implementation, pages 285–298, Boston, MA,
USA, December 2002.

[9] L. P. Cox and B. D. Noble. Samsara: honor among thieves in peer-to-peer storage. In
Proceedings 19th ACM Symposium on Operating Systems Principles, pages 120–132, Bolton
Landing, NY, USA, October 2003.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with CFS. In Proceedings 18th ACM Symposium on Operating Systems Principles,
pages 202–215, October 2001.

[11] S. Elnikety, M. Lillibridge, and M. Burrows. Peer-to-peer cooperative backup system. In The
USENIX Conference on File and Storage Technologies, Monterey, California, USA, January
2002.

[12] A. V. Goldberg and P. N. Yianilos. Towards an archival intermemory. In Proceedings IEEE
International Forum on Research and Technology Advances in Digital Libraries (ADL’98),
pages 147–156. IEEE Society, April 1998.

[13] G. M. Greco and L. Floridi. The tragedy of the digital commons. Ethics and Information
Technology, 6(2):73, 2003.

[14] C. Grothoff. An excess-based economic model for resource allocation in peer-to-peer networks.
Wirtschaftsinformatik, June 2003.

[15] E. Growchowski. Emerging trends in data storage on magnetic hard disk drives. In Datatech,
pages 11–16. ICG Publishing, September 1998.

[16] G. Hardin. The tragedy of the commons. Science, 162:1243–1248, 1968.

[17] O. Heckmann and A. Bock. The eDonkey 2000 Protocol. Technical Report KOM-TR-08-2002,
Multimedia Communications Lab, Darmstadt University of Technology, Dec. 2002.

[18] E. Hsu, J. Mellen, and P. Naresh. DIBS: distributed backup for local area networks. Technical
report, Parallel & Distributed Operating Systems Group, MIT, USA, 2004.

[19] J. Ioannidis, S. Ioannidis, A. D. Keromytis, and V. Prevelakis. Fileteller: Paying and getting
paid for file storage. In Sixth Annual Conference on Financial Cryptography, page 282299,
Bermuda, March 2002.

MoSAIC Progress Report 43/112

[20] F. Junqueira, R. Bhagwan, K. Marzullo, S. Savage, and G. M. Voelker. The Phoenix recovery
system: rebuilding from the ashes of an internet catastrophe. In Ninth Workshop on Hot
Topics in Operating Systems (HotOS IX), 2003.

[21] M.-O. Killijian, D. Powell, M. Banâtre, P. Couderc, and Y. Roudier. Collaborative backup for
dependable mobile applications. In Proceedings of 2nd International Workshop on Middleware
for Pervasive and Ad-Hoc Computing (Middleware 2004), pages 146–149, Toronto, Ontario,
Canada, October 2004. ACM.

[22] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: an architecture for global-
scale persistent storage. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2000), pages 190–201,
November 2000.

[23] K. Lai, M. Feldman, J. Chuang, and I. Stoica. Incentives for cooperation in peer-to-peer
networks. In Workshop on Economics of Peer-to-Peer Systems, 2003.

[24] M. Landers, H. Zhang, and K.-L. Tan. PeerStore: better performance by relaxing in peer-to-
peer backup. In Proceedings of the Fourth International Conference on Peer-to-Peer Com-
puting, pages 72–79, Zurich, Switzerland, August 2004.

[25] B. T. Loo, A. LaMarca, and G. Borriello. Peer-to-peer backup for personal area networks.
Technical Report IRS-TR-02-015, UC Berkeley; Intel Seattle Research (USA), May 2003.

[26] T. Lord. The GNU arch distributed revision control system, 2005.

[27] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison of peer-
to-peer overlay network schemes. Communications Surveys & Tutorials, IEEE, pages 72–93,
2005.

[28] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system based on
the XOR metric. Lecture Notes in Computer Science, 2429:53–??, 2002.

[29] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file system. In
Proceedings of the 18th ACM Symposium on Operating Systems Principles, pages 174–187,
October 2001.

[30] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: a read/write peer-to-peer file
system. SIGOPS Oper. Syst. Rev., 36(SI):31–44, 2002.

[31] Napster. Site internet napster : http://www.napster.com.

[32] N. Oualha and Y. Roudier. Cooperation incentive schemes and validation techniques. Tech-
nical report, Institut Eurecom, June 2006.

[33] S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In Proceedings of
the First USENIX Conference on File and Storage Technologies, pages 89–101, Monterey,CA,
2002.

[34] C. Randriamaro, O. Soyez, G. Utard, and F. Wlazinski. Data distribution in a peer to peer
storage system. Journal of Grid Computing (JoGC), Special issue on Global and Peer-to-Peer
Computing, Springer,Lecture Notes in Computer Science, 2006.

[35] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. October 2001.

[36] M. Rubel. Rsnapshot: a remote filesystem snapshot utility based on rsync, 2005.

[37] A. Shokrollahi. Raptor codes, 2003.

MoSAIC Progress Report 44/112

[38] E. Sit, J. Cates, and R. Cox. A DHT-based backup system. Technical report, MIT Laboratory
for Computer Science, August 2003.

[39] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative com-
parison. In Proceedings of the First International Workshop on Peer-to-Peer Systems, March
2002.

[40] L. L. You, K. T. Pollack, , and D. D. E. Long. Deep Store: an archival storage system
architecture. In Proceedings of the 21st International Conference on Data Engineering (ICDE
2005), pages 804–815, Tokyo, Japan, April 2005. IEEE.

MoSAIC Progress Report 45/112

MoSAIC Progress Report 46/112

A Survey of Cooperation Incentive Schemes
Nouha OUALHA, Yves ROUDIER

Institut Eurécom

MoSAIC Progress Report 47/112

Contents

A. Introduction 49

B. Applications 49

1. Ad-hoc packet routing 49
2. P2P applications 50
 a) File sharing 50
 b) P2P file system 51
 c) P2P backup 51
3. Wireless applications 52
 a) Wireless P2P backup 52
 b) Wireless information and access services 52
4. Commercial web sites 52
 a) Auction sites 52
 b) Review and recommendation sites 53
 c) Web page ranking system 53

C. Principles 53

1. Reputation based mechanisms 54
 a) Reputation based system architecture 54
 b) Reputation system operations 55
 c) Attacks and counter-measures 57
2. Remuneration based mechanisms 58
 a) Remuneration based system architecture 59
 b) Fair exchange 59

D. Validation techniques 61

1. Simulation 61
 NS-2 62
 OMNET++. 62
 GloMoSim/QualNet 62
 OPNET. 63
 PeerSim. 63
2. Game theory 64
3. Prototype-based evaluation 66

E. Conclusions 66

MoSAIC Progress Report 48/112

Introduction

Decentralized system algorithms and protocols have recently received a lot of interest in
mobile ad-hoc networks as well as in peer-to-peer (P2P) systems. The development of such
techniques is a necessity to be able to attain cost-effective and reliable applications in this
setting, yet it brings up far-reaching issues that have to be dealt with. In decentralized
systems, decision-making may not be located at a specific and central group of devices
(repeaters, bridges, routers, gateways, servers) but can be distributed to end-user devices.
Decisions and actions may use the computing power, bandwidth, and disk storage space of all
the participants (peers) in the network rather than being concentrated in a relatively low
number of special devices. The decentralized structure makes it possible to achieve minimal
administrative and operational costs. Peers in this type of system normally have equivalent
responsibilities and privileges. The intricate notions of self-organization and self-management
require that each peer provide his own contribution for the correct operation of the system.

The idea of handing basic mechanisms of the system over to autonomous peers raises new
concerns, in particular with respect to the establishment of trust between peers, to the
stimulation of their cooperation, and to the fairness of their respective contributions. Self-
organization opens up new security breaches because a peer must be able to defend against
others perpetrating new forms of denial of service. Selfishness, as illustrated by the so-called
free-riding attack, is a first type of such threats in which the attacker (called free-rider)
benefits from the system without contributing its fair share. Systems vulnerable to free-riding
either run at reduced capacity or collapse entirely because the costs of the system weigh more
and more heavily on the remaining honest peers encouraging them to either quit or free ride
themselves. Flooding is a second type of denial of service: the attack can be launched by
sending a large number of query messages asking for resources to a victim peer in order to
slow it until it is unusable or crashes. For example, an attacker can attempt to make a lot of
read and write operations in a distributed storage application. Cheating (or retention) is a third
form of denial of service in which the attacker retains data required for the system to work or
does not comply with the normal course of action in order to obtain an unfair advantage over
other peers. So-called "cooperation enforcement" mechanisms (which should more properly
be called cooperation incentive schemes) provide ways of managing and organizing resources
and aim at dealing with the security challenges that traditional security approaches (e.g.
authentication, access control) can not cope with.

The following sections introduce motivating applications for cooperation incentives, then
detail how incentive schemes work, and finally discuss how these schemes may be validated.

Applications

Cooperation incentives mechanisms are present in various application domains. It is generally
suggested that cooperation will help entities to succeed better than via competition. In [16],
Buttyán demonstrated that the best performance in routing is obtained when nodes are very
cooperative. In a cooperation incentive mechanism, cooperative behavior should be more
beneficial than an uncooperative behavior. The two main categories of incentives are
reputation and remuneration. This section describes several applications that benefit from
cooperation enforcement.

1. Ad-hoc packet routing

Multi-hop ad-hoc networks, as frequently referred to under the term MANETs (Mobile Ad
hoc NETworks), can be set up rapidly and spontaneously. Connections are possible over
multiple nodes. These nodes operate in a decentralized and self-organizing manner and do not
rely on a fixed network topology. Intermediate nodes in a route have to act as routers to
forward traffic towards its destination. To achieve this operation, incentives for cooperation
between nodes become a requirement, because rational users would rather preserve the

MoSAIC Progress Report 49/112

energy of their personal devices rather than spend it on cooperative routing. There has been a
wealth of work on cooperative network forwarding. In the Watchdog/Pathrater [38] scheme,
the watchdog detects non-forwarding nodes by overhearing the transmission, and the
pathrater keeps a rating of every node and updates it regularly. The two components enable
nodes to route messages avoiding misbehaving nodes in their route. Misbehaving nodes are
detected and avoided in the routing path but not punished. In CONFIDANT (Cooperation Of
Nodes, Fairness in Dynamic Ad-hoc NeTworks) [35], the response to misbehaving nodes is
more severe than just avoiding them for routing; it also denies them cooperation. Similarly to
Watchdog/Pathrater, in CONFIDANT reputation is self-carried by nodes. Nodes monitor their
neighborhood and gather second-hand information from others. By Bayesian estimation, they
classify others as normal or misbehaving. In CORE (COllaborative REputation) [32], the
information collected is classified into subjective reputation (direct information), indirect
reputation (positive reports from other nodes), and functional reputation (task-specific
information). The combined reputation value is used to make decisions regarding a given
node, that is to either cooperate with it or gradually isolate it. TermiNodes ([15] and [16])
uses a different approach based on a tamper-proof security module for each node maintaining
a nuglet counter. When the node wants to send a packet, it decreases its nuglet value by a
number of credits proportional to the estimated number of intermediate nodes in the route.
When the node forwards a packet, its nuglet purse becomes bigger. While TermiNodes uses a
tamper-proof hardware placed at each node, Sprite [39] does not require any tamper-proof
hardware at any node. Sprite is based on a central Credit Clearance Service (CCS). Every
node is supposed to have a digital ID obtained from a Certification Authority (CA). When a
node receives a message, the node keeps a receipt of the message. Sprite assumes that every
source node knows the entire path to the destination node through a secure ad hoc routing
protocol based upon DSR. The underlying ad hoc routing protocol only exists for packet
delivery, not for routing decision making. When the node has a fast connection to the CCS,
which is reachable via an overlay network, it reports to the CCS the messages that it has
received/forwarded by uploading its receipts. Depending on the reported receipts of a
message, the CCS then determines the charge and credit to each node involved in the
transmission of a message. [39] introduces a formal model in order to prove the effectiveness
of Sprite in restraining selfish behavior at the network layer, however Sprite presents a
weakness for it relies on the accessibility of the CCS.

2. P2P applications

a) File sharing

Peer-to-peer file sharing has become widespread over the Internet, accounting for almost 80%
of total traffic [26]. The flagship of P2P applications is file sharing. In the beginning, P2P
applications used to provide content sharing services. The early networks providing this
service were based on Napster1 protocol. These networks were hybrid peer-to-peer networks
in which the index service is provided centrally by a coordinating entity, the Napster server.
The functionality of the server is to deliver to a requesting peer a peers’ list having the desired
requested MP3 files. Then, the peer can obtain the respective files directly from the peer
offering them. In contrast, Gnutella2 functions without any central coordination authority.
Search requests are flooded into the network until the TTL (Time-To-Live hop counter) of the
message has expired or the requested file has been located. Positive search results are sent to
the requesting peer who can then download the file directly from the peer offering it. Both
Napster and Gnutella focus more on information retrieval than on publishing. Freenet [11]
provides anonymous publication and retrieval of data. Anonymity is provided through several
means encrypted search keys and source-node spoofing. In Freenet, when peer storage is
exhausted, files are deleted according to the least-recently-used principal so the system keeps
only the most requested documents. Another drawback is the complexity of file search

1 http://www.napster.com/
2 http://www.gnutella.com/

MoSAIC Progress Report 50/112

process. In fact there is a significant difference between Freenet and the systems presented so
far which is that files are not stored on the hard disk of the peers providing them, but they are
intentionally stored at other locations in the network. They are stored at peers having the
numerically closest identification number to their IDs. The document lookup is a routing
model based on keys to locate data similarly to Distributed Hash Tables (DHT). Free riding
has been notably observed in such applications, and first attempts at using reputation
incentives to counter it were made in systems like NICE [37]. NICE is a platform for
implementing cooperative distributed applications, in particular P2P applications. The NICE
system aims at identifying the existence of cooperative peers; it claims to efficiently locate
the minority of cooperating users, and to form a clique of users all of whom offer local
services to the community. The system is based on peer reputation which is stored in the form
of cookies. Peer cookies express if a peer correctly handled its transactions (transactions
consist of secure exchanges of resource certificates) with other peers. Before initiating a
transaction, every peer checks locally the cookie that’s speaks about the target peer and that
indicates if the latter can be trusted. However, if no cookie is available for that peer,
cooperation with other peers in acquiring that information is necessary.

b) P2P file system

A generation of P2P applications uses the promising DHT-based overlay networks. DHTs
such as CAN, Chord, Pastry, and Tapestry allow a decentralized, scalable, and failure-tolerant
storage. Well-known approaches are PAST [30] based on Pastry and OceanStore [12] based
on Tapestry. Each PAST node can act as a storage node and a client access point. These
schemes have basic similarities in the way they are constructed. Participants receive a
public/private key pair. Keys are used to create an unambiguous identification number for
each peer and for the stored files with the aid of a hash function. To take profit of the storage,
a peer has to pay a fee or to make available its own storage space. Keys generation and
distribution and monitoring are handled by “special” peers who have to be highly capable and
highly available. A further correspondence within these DHT-based schemes is that the
storage system has as primary function data backup. The service is provided by means of file
replication and random distribution of identification numbers to peers. The procedure
guarantees geographically-separated replicas which increases the availability of a given file.
Compared with PAST [30] and OceanStore [12], Free Haven [34] is designed for more
anonymity and persistence of documents than for frequent querying. An author in Free Haven
generates a public/private keys pair, signs his document fragments, and uploads them into the
server. Each server hosts data from the other servers in exchange for the opportunity to store
data of its own into the community of servers, servnet. Trading of document fragments adds
to author anonymity. When a reader wishes to retrieve a document from the servnet, he
requests it from any server, including a location and key which can be used to deliver the
document in a private manner. This server broadcasts the request to all other servers, and
those which are holding shares for that document encrypt them and deliver them to the
reader's location.

c) P2P backup

The latest generation of peer-to-peer systems is a generation of storage systems having data
backup as its primary function. Pastiche [17] is based on Pastry for locating nodes and
exploits excess disk capacity to perform peer-to-peer backup with no administrative costs.
Each Pastiche node minimizes storage overhead by selecting peers that share a significant
amount of data. It replicates its archival data on more than one peer. Most of these replicas
are placed nearby to ease network overhead and minimize restoration time. To address the
problem of storing data on malicious nodes, Pastiche uses a probabilistic mechanism to detect
missing backup state by periodically querying peers for stored data. However it sacrifices a
fair amount of privacy because one node can grab some information about the backup data.
This issue is less critical for the CIBS (Cooperative Internet Backup Scheme) [20] scheme
where fragments of a file are stored at different geographical locations, and partners are

MoSAIC Progress Report 51/112

tracked by a central server. To ensure a high reliability, the scheme adds redundancy through
Reed-Solomon erasure correcting code.

3. Wireless applications

a) Wireless P2P backup

Another P2P backup scheme but this time a wireless system is the Flashback [5] application
which has been proposed for Personal Area Network (PAN). Flashback is a solution designed
to provide peer-to-peer power-aware backup for self-managing, mobile, impoverished
devices. In Flashback each device has an identifier assigned out-of-band during the
installation of the Flashback. To ensure that devices only participate to the PANs to which
they are assigned, a lightweight certificate-based authentication scheme is used. In order to
keep track of replicas, Flashback maintains in persistent storage a replica table. It uses an
opportunistic model to replicate local data given the constraints imposed by the power and
storage resources.

b) Wireless information and access services

Wired peer-to-peer storage applications are probably the most widespread peer-to-peer
applications. For wireless networks, the most popular applications are information services.
There are three approaches to provide information services for wireless devices. The first
approach consists of the wireless Internet access offered by the new wireless technologies like
3G or 802.11. The second approach which is information servers was first proposed by the
DataMan project [8]. Information services such as e-mail, fax and web access are supplied by
placing these servers called info-stations at traffic lights, building entrances and airport
lounges. The third approach is based on peer-to-peer data dissemination among mobile users.
7DS [21] is an application based on the last approach. It allows a peer to browse the content
of the cache of a peer that has been made accessible to it to search for URLs or keywords.
This operation can be performed in two modes: on-demand mode or prefetching mode. In the
prefetch mode, 7DS anticipates the information needs of the peer. In the on-demand mode, it
searches for the information or the URL when the peer requests it. Mobile devices in 7DS do
not need any base stations to gain access to the service.

4. Commercial web sites

a) Auction sites

Auction sites allow sellers to list items for sale, buyers to bid for these items, then the items to
be sold to the highest bidder. In general, the person who puts the item up for auction pays a
fee to the auctioneer. In some cases, there is a minimum or reserve price; if the bidding does
not reach the minimum, the item is not sold. Reputation systems are used in auctioning in
order to help users making good choices when selecting transacting partners. EBay3 is one
popular online auction site. The feedback forum on eBay allows sellers and buyers to rate
each other as positive, negative, or neutral. Ratings of buyers and sellers are conducted after
the completion of a transaction, which is monitored by eBay. The reputation system relies on
a centralized repository that stores and manages ratings. The overall reputation of a
participant is the sum of ratings about him over the last 6 months. EBay also provides one
month old and seven day old ratings to let users know about recent behavior of the
participant. The EBay system makes it possible to perform fake transactions even though at a
cost for eBay charges a fee for listing items: still, this opens up opportunities to acquire undue
ratings.

3 http://ebay.com/

MoSAIC Progress Report 52/112

b) Review and recommendation sites

In review sites, individual reviewers, who are generally individuals, are providing information
to fellow consumers. In these systems, a reputation rating is applied to both products and
reviewers themselves, in particular to discourage product bashing. One example of such a
system is Amazon4, an online bookstore that allows members to write book reviews. A user
can become an Amazon member by simply signing up. Reviewers reviews of a book are
made of some text and a rating in the range of 1 to 5 stars. Members and users rate reviews as
being helpful or not. Amazon ranks reviewers based on their rating and other parameters
(which are not publicly revealed). Reviewers with a high ranking are given the status of top
reviewers. To reduce repetitive ratings from the same users, Amazon only allows one vote per
registered cookie for any given review. Another review site is Epinions5. This web site
charges product manufactures and online shops by the number of clicks consumers generate
as a result of reading about their products on Epinions’s web site. Amazon does not give any
financial incentive for well-reputed reviewers. Top reviewers however are paid in Epinions.
Except for this financial plus to reviewers, the reputation system of Epinions operates in the
same way as in Amazon with some little non-important differences.

c) Web page ranking system

Early web search engines simply presented all web pages that matched the keywords entered
by the user without ranking them, which often results in too many and irrelevant pages being
listed. PageRank [18] was proposed to rank web pages based on page reputation. Google6’s
search engine is based on this algorithm. The PageRank of a web page u is given in [18] as:

!
"#

+
+=

)(|)(|

)(
)()(

uNv
vN

vR
cucEuR

where N-(u) denotes the set of web pages pointing to u, N+(v) denotes the set of web pages
that v points to, and E corresponds to a source of rank. So, a hyperlink is a positive referral of
the page it points to. Negative referrals do not exist because it is impossible to blacklist a web
page using the above equation. The public PageRank measure7 does not fully describe
Google's page ranking algorithm, which takes into account other parameters for the purpose
of making it difficult or expensive to deliberately influence ranking results in what can be
seen as a form of "spamming" (this term has prevailed to denote such a behavior in a similar
way to email spam that pollutes one's email box).

Principles
Cooperation is a central feature of decentralized systems, and even more so ad-hoc ones, to
compensate for the lack of a central and dedicated entity and still achieve some general
function. However, cooperation to achieve some functionality may be hampered by the fact
that users have full authority on their devices and, as proven by experience, will on average
try to maximize the benefits they get from the network. In general, the cooperative behavior
of a device will indeed result in an increase in its resource consumption or missed
opportunities to take more than its fair share of a resource (e.g. network, CPU, storage space).
In case of mobile ad hoc forwarding for instance, the node forwarder is confronted with
additional energy and bandwidth usage for reception and transmission of packets, as well as
with the increase of computational resource consumption. Knowing that mobile devices have
inherently scarce resources, each of these devices has better not cooperate from its point of
view. In case of file sharing applications, a node can take advantage over the system by
downloading files without contributing to it. To counterbalance this, and achieve an overall

4 http://www.amazon.com/
5 http://www.epinions.com/
6 http://www.google.com/
7 http://pr.blogflux.com/

MoSAIC Progress Report 53/112

better result, it is primordial to design incentive mechanisms for cooperation that discourage
uncooperative behavior be it passive or malicious. At the same time, these mechanisms can
not prevent the non cooperative behavior of devices due to valid and reasonable reasons (e.g.
crashing, energy shortage, route breaks), which should normally not be punished similarly to
malicious non-cooperation.

As seen in section B, there are many cooperation incentive schemes which are diverse not
only in terms of the applications for which they are employed, but also in terms of the
features they implement, the type of reward and punishment used, and their operation over
time. Obreiter et al. [33] classified cooperation enforcement mechanisms by essentially
differentiating trust-based patterns from trade-based patterns. The authors make a distinction
between static trust which is about pre-established trustworthiness between peers, and
dynamic trust which refers to reputation-based trust. In trade-based patterns, remuneration is
the central notion and can be immediate, which they term barter trade, or deferred, which they
term bond-based. While this classification was the first to relate many incentive mechanisms
together, we do not agree with some naming choices, nor with the relationship of trust and
incentives put forward by the authors. Trust reflects the individual view of an entity about
another entity’s trustworthiness. Whatever the incentive mechanism, an entity will have to ask
itself whether it trusts another entity to cooperate with it. Trust establishment easily maps to
reputation systems but may use remuneration systems as well. We similarly classify
cooperation mechanisms into two types: remuneration-based and reputation-based
mechanisms (corresponding respectively to trust-based and trade-based patterns in the
Obreiter et al. paper [33]). We describe them one by one in the following.

5. Reputation based mechanisms

In reputation-based mechanisms, the decision to interact with a peer is based on its reputation.
Reputation mechanisms need reputation management systems for which the architecture is
either centralized, or decentralized, or both.

a) Reputation based system architecture

The estimation of reputation can be performed either centrally or in a distributed fashion. In a
centralized reputation system, the central authority that collects information about peers
typically derives a reputation score for every participant and makes all scores available
online. In a distributed reputation system, there is no a central authority for submitting ratings
or obtaining reputation scores of others. However it might be some kind of distributed stores
where ratings can be submitted. One example of such architecture is FastTrack [13]
architecture which is used in P2P networks like KaZaA8, Grokster9, and iMesh10. These
networks have two-tier hierarchy consisting of ordinary nodes (ONs) in the lower tier and
supernodes (SNs) in the upper tier. SNs are generally more powerful in terms of connectivity,
bandwidth, processing and non-NATed (Network Address Translations) accessibility. SNs
keep tracks of ONs and other SNs and act as directory servers during the search phase. Such
architecture can be convenient to manage peers’ reputation using supernodes as distributed
stores; unfortunately this is not the case in the existing FastTrack-based P2P networks. In
KaZaA for example, each node has a participation level based some QoS (Quality of Service)
parameters which is stored locally. The participation level score is used in prioritizing peers
during periods of high demand. Most of the time in a distributed architecture, ratings are
estimated autonomously by each peer. Each peer records ratings about its experiences with
other peers and/or tries to obtain ratings from other parties who have had experiences with a
given target peer. A good example of decentralized reputation-based approach to trust
management is NICE [37]. This system searches the network on the runtime and builds a trust
graph where each edge represents how much the source trusts the destination. A reputation

8 http://www.kazaa.com/
9 http://www.grokster.com/
10 http://imesh.com

MoSAIC Progress Report 54/112

value is calculated based on this trust graph. Then, NICE algorithm selects a trust path based
on whether it is the strongest path or using a weighted sum of strongest disjoint paths.

The centralized approach to reputation management is not fault-tolerant. In the decentralized
approach, it is often impossible or too costly to obtain cooperation evaluations resulting from
all interactions with a given peer. Instead reputation is based on a subset of such evaluations,
usually obtained from the neighborhood. The reputation mechanism should therefore be
designed such as to avoid inconsistencies.

Figure 1 Reputation-based Mechanism

b) Reputation system operations

A reputation-based mechanism is composed of three phases (Figure 1):

1. Collection of evidence: Peer reputation is constructed based on the observation of the
peer, experience with it, and/or recommendations from third parties. The semantics of the
information collected can be described in terms of a specificity-generality dimension and
a subjectivity-objectivity dimension.

• Specific vs. general information: specific information about a given peer
relates to the evaluation of a specific functionality or aspect of this peer such
as its ability to deliver a service on time. Whereas, general information refers
to all functionalities (e.g. measured as average).

MoSAIC Progress Report 55/112

• Objective vs. subjective information: A peer obtains objective information
(a.k.a. direct or private information) about a given peer through his personal
interactions with the considered peer and subjective information (a.k.a.
indirect or public information) by listening to messages or negotiations that
are intended to other peers, or by asking neighboring peers.

2. Cooperation decision: Based on the collected information, a peer can make a decision
whether he should cooperate with a peer. He will make his decision taking account of the
peer’s reputation. There are various methods for computing peers’ reputation. Here we
describe some of them.

• Summation or average of ratings: the simplest method to compute reputation
is to compute the sum of positive ratings minus the sum of negative ratings.
This is the principle used in eBay11’s reputation forum. Amazon uses another
simple scheme where the reputation score is computed as the average of all
ratings.

• Bayesian based computation: Reputation is computed based on the previous
estimated reputation with the new evaluation score. The reputation system
uses the beta PDF (Probability Density Function) denoted by beta(p |α,β)
using the gamma function Γ.

!

beta(p |",#) =
$(" + #)

$(") + $(#)
p
"%1
(1% p)# %1;0 & p &1," > 0,# > 0

Where α and β represent the amount of positive and negative ratings
respectively, and p represents the probability variable. The PDF expresses the
uncertain probability that future interactions will be positive (cooperation).

• Flow model based computation: “systems that compute trust or reputation by
transitive iteration through looped or arbitrarily long chains can be called
flow models” [2]. One example is Google’s PageRank where the PageRank
of a web page increases if there are many hyperlinks coming to this page
web, and decreases if there are many hyperlinks leaving the webpage.
Another flow model is EigenTrust [36]. The EigenTrust system computes a
global trust value for a peer by multiplying iteratively normalized local
matrices of trust scores of each peer in the system. For a large number of
matrices, all will converge to stable trust values.

• Further reputation computation models are given in [2] sec.8. In the discrete
trust model, the trustworthiness of the neighbor is taken into account before
considering subjective information. The belief model relates to the
probability theory. In this model, the sum of probabilities over all possible
outcomes does not necessarily add up to 1, the remaining probability being
interpreted as uncertainty. In fuzzy models finally, reputation and trust are
considered as fuzzy logic concepts.

3. Cooperation evaluation: The occurrence of interaction with a peer is conditional on the
precedent phase. After interaction, a node must provide an evaluation of the degree of
cooperation of the peer involved in the interaction. Peers performing correct operations,
that is, behaving cooperatively, are rewarded by increasing their local reputation
accordingly. A peer with a bad reputation will be isolated from the functionality offered
by the group of peers as a whole. The evaluation of the current interaction can convey
extra information about other past interactions (piggybacking) that can be collected by the
neighboring peers.

11 http://ebay.com

MoSAIC Progress Report 56/112

c) Attacks and counter-measures

This type of mechanisms has to cope with several problems due to node misbehavior.
Misbehavior ranges from simple selfishness or lack of cooperation to active attacks aiming at
denial of service (DoS), attacks to functionality (e.g., subversion of traffic), and attacks to the
reputation system (liars).

To guard against the impact of liars, the CORE mechanism [32] for instance takes into
account only positive reputation from indirect information, together with reputation from
direct information (does the node hear the packet forwarded by its peer?): defamation is thus
avoided, yet unjustified praising is still possible. In a more restrictive manner, RPG
(Reputation Participation Guarantee) [7] forbids the diffusion of reputation between peers.
Only direct information is taken into account; selfishness is detected by sending probe
packets.

A different approach, relying on indirect information, is taken in Watchdog/Pathrater [38]. A
watchdog is in charge of identifying the misbehaving nodes, and a path rater is in charge of
defining the best route avoiding these nodes. It is pretty much the same approach that is taken
in CONFIDANT [35]: a neighborhood monitor has the role of identifying misbehavior, which
is rated.

A trust manager sends and receives alarm messages to and from other trust managers, while a
path manager maintains path ranking. As a result, nodes in the network will exclude
misbehaving nodes by both avoiding them for routing and by denying them cooperation. So
misbehaving nodes will not pay off but they will be isolated. Contrary to many proposals,
Watchdog/Pathrater [38] evaluates cooperation but does not enforce it: non cooperative nodes
in Watchdog/Pathrater will not be punished like in CORE [32] or CONFIDANT [35], their
messages are still forwarded while they are not forced to forward the messages of the other
nodes.

The systems presented so far focus on the network layer forwarding. In this type of
application, cooperation evaluation is immediate, yet other mechanisms may require the
evaluation to take place on a longer timescale. Reputation estimates then need to be
preserved: this may mean that it is self-carried by the peer if reputation is based on direct
information; otherwise, reputation should not depend on the proximity of the peer since
nearby nodes are likely to move away over a long period of time. This is for instance the case
for distributed backup applications.

In the CIBS (Cooperative Internet Backup Scheme) scheme [20], each computer has a set of
geographically-separated partner computers that collectively hold its backed up data. In
return, the computer backs up a part of its partner’s data. To thwart free riding attacks, a
computer can periodically challenge each of its partners by requesting him a block of the
backed up data12. An attack can then be detected and the data blocks of the attacker that are

12 Some disruption attacks, i.e. attacks aiming at disrupting, impairing or destroying a system or a
particular user, can be avoided by limiting reads to mutually chosen random blocks.

MoSAIC Progress Report 57/112

stored in the attacked computer are consequently dropped. In this scheme, each peer takes
note of its direct experience with a partner, and if this partner does not cooperate voluntarily
or not beyond some threshold, the peer may decide to establish a backup contract with
another partner.

Another example of reputation-based mechanisms for distributed storage is the Free Haven
project [34]. The overall design of the project is based on a community of servers, called the
servnet where each server hosts data from other servers in exchange of the opportunity to
store data of its own in the servnet. The incentives for cooperation are based on a reputation
mechanism. A trust module on each server maintains a database of each other server, logging
past direct experience as well as what other servers have said.

6. Remuneration based mechanisms

In contrast to reputation-based mechanisms, remuneration based incentives are an explicit
counterpart for cooperation and provide a more immediate penalty to misconduct.
Remuneration brings up requirements regarding the fair exchange of the service for some
form of payment [24]. This requirement in general translates to a more complex and costly
implementation than for reputation mechanisms. In particular, remuneration based

Figure 2 Remuneration-based Mechanism

MoSAIC Progress Report 58/112

mechanisms require trusted third parties (TTP) such as banks to administer remuneration of
cooperative peers; these entities do not necessarily take part in the online service, but may be
contacted in case of necessity to evaluate cooperation. Tamper proof hardware (TPH) like
secure operating systems or smart cards have been suggested or used to enforce in a
decentralized fashion the fair exchange of the remuneration against a proof that the
cooperative service was undertaken by a peer node.

a) Remuneration based system architecture

A remuneration based mechanism comprises four main operations (see Figure):

• Negotiation: The two peers may often negotiate the terms of the interaction. Negotiating
the remuneration in exchange for an enhanced service confers a substantial flexibility to
the mechanism. The negotiation can be performed either between the participating peers
or between peers and the authority.

• Remuneration: The remuneration can consist in virtual currency units (a number of
points stored in a purse or counter) or real money (banking and micropayment), or
bartering units (for instance quotas defining how a certain amount of resources provided
by the service may be exchanged between entities). The latter can even be envisioned in
the form of micropayments [23]. Regarding real money, this solution assumes that every
entity possesses a bank account, and that banks are enrolled in the cooperative system,
directly or indirectly through some payment scheme. The collaborating peer is
remunerated by issuing a check or making a transfer of money. In the first case,
remuneration implies a number of points added to a counter connected with the
collaborating peer. The remuneration can be guaranteed at once or only after a certain
number of steps (deposit, remuneration for data storage, remuneration for data
retrieval…).

• Cooperation decision: The peer in a self-organizing network is always the decision
maker. During negotiation and based on its outcome, a peer can decide if it is better to
cooperate or not.

• Cooperation evaluation: The interaction is controlled by a TTP, which can be
centralized or distributed. In all cases, a conflict regarding negotiation, or remuneration
is ultimately arbitrated by the TTP, even though this may possibly be a non immediate
process. Deciding about cooperation may be assisted by the authority that can sometimes
access to information unavailable to a peer.

These operations can be used repeatedly to perform some cooperative service on a finer
granularity basis, which may ease cooperation enforcement. In particular, micropayment is
often envisioned rather than an actual (macro-)payment in remuneration based cooperation
enforcement mechanisms.

b) Fair exchange

As mentioned in [45], "many commercial transactions can be modeled as a sequence of
exchanges of electronic goods involving two or more parties. An exchange among several
parties begins with an understanding about what item each party will contribute to the
exchange and what it expects to receive at the end of it. A desirable requirement for exchange
is fairness. A fair exchange should guarantee that at the end of the exchange, either each
party has received what it expects to receive or no party has received anything." Fair
exchange protocols thus provide ways to ensure that items held by two or more parties are
exchanged without one party gaining an advantage. In remuneration systems, obtaining an
efficient cooperation incentive depends upon devising a protocol that enforces a fair exchange
of the remuneration (virtual or not) against some task. This property can only be attained by
intricately integrating the remuneration operation with the application functionality. Fair
exchange protocols rely on the availability of a trusted (and neutral) third party (TTP) caring

MoSAIC Progress Report 59/112

for the correctness of the exchange. Two types of protocols should be distinguished: online
protocols, which mediate every interaction through the TTP, which can lead to performance
and reliability problems with the TTP constituting a bottleneck as well as a single point of
failure; offline ones, also called optimistic fair exchange protocols, which resort to the TTP
intermediation only if one the parties wants to prove that the exchange was not fairly
conducted.

The TermiNodes project ([15] and [16]) addresses the security of the networking function of
packet forwarding through remuneration schemes. Each device possesses a security module
that manages its account by maintaining a counter called nuglet, interpreted as virtual money.
The project proposes two models for remuneration aiming at enforcing fair exchange for
stimulating a cooperative behavior. In the first one, called Packet Purse Model, each packet
carries a given number of nuglets and intermediate nodes get paid with some nuglets, which
get removed from the packet purse when forwarded by the node. In the second model, called
Packet Trade Model, each intermediate node buys packets from the previous node on the
route then sells them to the next node for more nuglets, until the destination node, which
finally pays the total cost of forwarding packets.

The architecture of Sprite [39], a credit-based system for stimulating cooperation among
selfish nodes in mobile ad hoc networks, is not very different from TermiNodes except for the
fact that it does not use security modules. It consists of a Credit Clearance Service (CCS) and
of mobile nodes. In Sprite, a node transmitting its own messages loses some credits (i.e.,
virtual money paid by the node to the CCS), which will be used to cover the costs for packet
forwarding by intermediate nodes. In order to earn credits, a node must transmit the CCS
receipts of forwarded messages. The system does not guarantee balanced payments, i.e., it
does not require that the sender’s total debt equal the total intermediate nodes credit received
for their forwarding activity. In fact, to prevent cheating behaviors, the CCS debits the sender
with a higher amount than that due to intermediate nodes; only later does the CCS uniformly
share the exceeding credit among nodes, or give a fixed credit amount to each node. Sprite
focuses on combating cheating behaviors and on promoting cooperation among network
nodes; it does not prevent active attacks on the system (e.g. Denial of Service attacks).

Remuneration-based mechanisms are also used for peer-to-peer storage like in PAST [30].
PAST is based on the Pastry routing scheme that guarantees that peers contributing to
cooperative storage are geographically separated. The storage scheme relies on the use of
smart cards to ensure that clients cannot use more remote storage than they are providing
locally, which is optional in PAST. Smart cards are held by each PAST user and issued by a
third party, and support a quota system that balances supply and demand of storage space in
the system. With fixed quotas and expiration dates, users are only allowed to use as much
storage as they contribute. In contrast, in OceanStore [12], the remuneration of cooperative
peers is monetary as the service is envisioned to be provided by a confederation of
companies. In exchange for economic compensation, computers joining the system contribute
with storage or provide access to local users. Each user is supposed to pay a fee to one
particular provider who buys storage space from and sells it to other providers. Legal
contracts and enforcement can be used to punish peers that do not keep their end of the
bargain, based on planned billing and auditing systems.

Smart cards (or similar forms of tamper-proof hardware) have been proposed for some time
now as a means to implement an optimistic fair exchange protocol. The use of smart cards is
especially interesting since it provides both the convenient form factor of a personal token
and a perfect implementation of a secure purse. Smart cards also offer a tamper-resistant area
for a trusted third party to store secrets, or implement critical security functions, in particular
for revoking the user from the system. [44] for instance proposes the use of one card for all
parties involved in a transaction and focuses on providing a neutral platform for enforcing fair
exchange. Another solution is to use one card for each party [43], which aims at reducing the
number of messages exchanged; this solution may also be interesting, although this benefit is
not mentioned by the authors, for gaining a better understanding of the liability of each party

MoSAIC Progress Report 60/112

involved and thus ease the reconciliation of the data by the TTP during the online phase of the
protocol, in case of a problem in the offline phase. In addition, the latter technique makes it
possible to attach data like some credit to every user and let the smartcard manage this
"currency" as part of the fair exchange protocol. As discussed above however, remuneration
has to be integrated with the application: this means that interactions with such hardware must
be carefully integrated within the application protocol in order to prevent its bypassing or
abuse: with smart cards for instance, this involves the mediation of terminals, which are
distrusted with respect to remuneration handling.

 Table 1 summarizes the various approaches to cooperation and their respective features as
discussed in the last two sections.

Incentives for cooperation Network type Application

Reputation-based
incentives

Remuneration-
based incentives

No Incentives
for

cooperation

Ad hoc
network

Packet
forwarding

CORE [32], RPG [7],
Watchdog/pathrater
[38], CONFIDANT

[35]

TermiNodes [15]

File-sharing NICE [37] Napster13,
Gnutella14,

Freenet [11]

File system Free Haven [34] PAST [30],
OceanStore [12]

Decentralized
networks

P2P
network

Backup CIBS [20] Pastiche [17]

Backup FlashBack [5] De/centralized
networks

Mobile
network

Info-station 7DS [21]

Centralized
networks

Web
Sites

 Ebay15, Amazon,
Epinions16, Google17

Table 1 Cooperation enforcement schemes in various applications

Validation techniques
In the context of self-organizing networks like for instance wireless mobile ad hoc networks,
cooperative mechanisms have to be investigated in terms of performance, fairness, and
resilience to attacks, as well as cooperation enforcement.

7. Simulation

A first validation technique for cooperative systems consists in taking advantage of existing
network simulators. These are tailored to fit the simulation context and match the objectives

13 http://www.napster.com/
14 http://www.gnutella.com/
15 http://ebay.com/
16 http://www.epinions.com/
17 http://www.google.com/

MoSAIC Progress Report 61/112

of simulation by the application of patches and/or individual adjustments. According to [1],
“simulation can be defined as the process of designing a model of a real system and
conducting experiments with this model for the purpose of understanding the behavior of the
system and/or evaluating various strategies for the operation of the system”. This means that
simulating cooperation incentives with the purpose of testing their efficiency would also
require simulating non-cooperative behaviors (and not only an ideal cooperative behavior).

There are some difficulties when simulating overlay networks. Firstly, most overlay networks
need to be scalable (thousands of simultaneous users) which is difficult to realize due to
memory constraints even for most powerful machines. However, some tools allow a
simulation to be distributed over a set of machines (distributed simulation). Additionally, it
may be desirable that a simulation behaves in accordance with a physical network (packet
delay, traffic and network congestion, bandwidth limitations etc). These considerations also
increase the overhead on the host machine. When choosing a network simulation tool for a
given network, a distinction must be made between simulation tools that are suitable for low
level networks and those that are suitable for overlay networks. Packet-level network
simulators such as NS-2 [41], OMNET++ [42], GloMoSim/QualNet ([10], [40]), and OPNET
[29] must be distinguished from overlay network simulators like PeerSim [6].

NS-2. There is no doubt that the most popular network simulator is NS (version 2) [41]. NS-2
is an object-oriented, discrete event driven network simulator developed at UC Berkeley. A
discrete-event simulator is a simulator where state variables change only at discrete points in
time at which events occur caused by activities and delays. The simulator NS-2 is written in
C++ and OTcl. NS-2's code source is split between C++ for its core engine and OTcl, an
object oriented version of TCL for configuration and simulation scripts. The combination of
the two languages offers an interesting compromise between performance and ease of use. An
NS-2 simulation scenario is a Tcl file that defines the topology and the movement of each
host that participates in an experiment. Implementing a new protocol in NS-2 typically
requires adding C++ code for the protocol's functionality, as well as updating key NS-2 OTcl
configuration files in order for NS-2 to recognize the new protocol and its default parameters.
The C++ code also describes which parameters and methods are to be made available for
OTcl scripting. Debugging is difficult in NS-2 due to the dual C++/OTcl nature of the
simulator. For the moment, there is only one P2P simulation available for NS2 which is
Gnutella. A more troublesome limitation of NS-2 [41] is its large memory footprint and its
lack of scalability as soon as simulations of a few hundred to a few thousand of nodes are
undertaken. NS-2 is well documented with active mailing lists.

OMNET++. Another discrete event simulator is OMNET++ [42]. OMNET++ is an open-
source, component-based simulation environment developed by Andras Varga with a strong
focus on supporting the user with a Graphical User Interface (GUI). It is a very modular and
well structured simulator. Modules are programmed in C++ and assembled into larger
components using a high level language (NED). It is possible to simulate peer-to-peer
networks with OMNET++ which can also run distributed simulations over a number of
machines. OMNET++ has a rapidly increasing user base now, with lots of useful modules, an
active mailing list and even workshops. Both NS-2 and OMNET++ are packet-level
simulators; so scalability is a major issue. Thus, both are more suitable for small networks.

GloMoSim/QualNet ([10], [40]). GloMoSim is built as a scalable simulation environment
for wireless and wired network systems. It is designed using the parallel discrete-event
simulation capability provided by PARSEC (C-based simulation language). PARSEC is
designed to cleanly separate the description of a simulation model from the underlying
simulation protocol, sequential or parallel, used to execute it. GloMoSim is built using a
layered approach. Standard APIs are used between the different layers. This allows the rapid
integration of models developed at different layers. To specify the network characteristics, the
user has to define specific scenarios in text configuration files: app.conf and Config.in. The
first contains the description of the traffic to generate (application type, bit rate, etc.) and the
second contains the description of the remaining parameters. The statistics collected can be

MoSAIC Progress Report 62/112

either textual or graphical. With GloMoSim, it is difficult to describe a simple application that
bypasses most OSI layers. The bypass of the protocol stack is not obvious to achieve as most
applications usually lie on top of it which makes the architecture much less flexible.
GloMoSim version is for academic use only. The commercial GloMoSim-based product is
QualNet. The development framework is in C/C++ mostly provided in source form. It
includes a graphic development tool for adding/revising protocols. There are some similarities
between these simulators; specially the fact that they provide as primary function substantial
support for simulation of routing protocols over wired and wireless networks.

OPNET. A different commercial tool is OPNET [29] Modeler. The OPNET Modeler is just
one of the many tools from the OPNET Technologies suite (Optimized Network Engineering
Tools). It is a commercial tool by MIL3, Inc. OPNET is an event-driven scheduled simulator
integrating analysis tools for interpreting and synthesizing output data, graphical specification
of models and a hierarchical object-based modeling. It can simulate all kinds of wired
networks, and an 802.11 compliant MAC layer implementation is also provided. OPNET is a
well established product used by large companies to diagnose or reorganize their network. It
can simulate wired and wireless networks. Models built with OPNET are hierarchically
structured. At the lowest level the process domain is structured as a finite state machine
(FSM). The FSM can be structured with the help of a graphical editor that allows the user to
specify the relation between the single states and their transitions. The single states and the
transition conditions can then be programmed with a C like language called Proto-C.
Basically, the deployment process goes through the following phases. First you have to
choose and configure the node models you want to use in the simulations, for example, a
wireless node, a workstation, a firewall, a router, a web server, etc. Then you build and
organize your network by connecting the different entities. The last step consists in selecting
the statistics you want to collect during the simulations. Most of the deployment in OPNET is
done through a hierarchical GUI. OPNET scales quite well but still there are not enough data
in the literature to demonstrate this capability.

PeerSim. In addition to these network simulators, there have also been simulators that only
focus on overlay networks. A good example is PeerSim [6] which has been developed for
large-scale overlay systems within the BISON project. It takes into account the proprieties of
high scalability and dynamism. PeerSim is written in the Java language. It is composed of two
simulation engines: the cycle-based one and a more traditional event-based engine. The cycle-
based engine does not model the overhead of the transport layer and subsequently is more
scalable. The event-based engine is less efficient but more realistic. The simulation engines
are supported by many simple, extendable, and pluggable components, with a flexible
configuration mechanism.

Other simulations may be found in the existing literature about peer-to-peer or overlay
systems e.g. 3LS [25], Query-Cycle Simulator [22], Anthill [28] and NeuroGrid [27].
None of these simulators is really satisfactory. 3LS, Anthill and NeuroGrid have scalability
limitations. Query-Cycle is limited to file-sharing. All lack a sufficient support for
dynamicity. In conclusion, we have identified in NS-2 [41], GloMoSim/QualNet ([10], [40]),
OMNET++ [42], OPNET [29] and PeerSim [6] the possible candidates to build up the
simulation environment for an ad hoc or P2P cooperative system. OPNET and NS-2 possess
an extensive set of models, protocols and algorithms already produced, but less than
OMNET++. The modular nature of OMNET++ allows the possibility to carry out studies
over a wide range of situations in detail. Also, in the sense of the ease of
use/modification/extension, OMNET++ appears to be the best simulator. OPNET and
QualNet are more than satisfactory with respect to this capability, however NS-2 scores
poorly.

Some of the proposed incentives for cooperation schemes were investigated using a network
simulator. In 7DS [21] simulation scenarios, hosts were modeled as NS-2 [41] mobile nodes.
Mobile nodes move according to the random waypoint mobility model, which is commonly
used to model the movement of individual pedestrians. A waypoint model breaks the

MoSAIC Progress Report 63/112

movement of a mobile node into alternating motion and rest periods. A mobile node moves at
a speed uniformly chosen from an interval to a randomly chosen location where it stays for a
fixed amount of time; then it chooses another random location and moves towards it, and so
on. A NS-2 [41] simulation study was also carried out for the ORION project [3] where the
performance of ORION was compared to off-the-shelf approaches based on a P2P file-
sharing system for the wired Internet, TCP and a MANET routing protocol. In the simulated
scenarios, an IEEE 802.11 standard MAC layer was used along with the standard physical
layer, the two-ray ground propagation model. NS-2 was widely employed for simulation
principally in wireless mobile networks more than in P2P or ad hoc networks where other
simulators like QualNet ([10], [40]) were more or less adopted. CORE [31] was evaluated
based on QualNet simulations and CONFIDANT [35] based on GloMoSim ([10], [40]).

Table 2 Characteristics of discussed simulators [1]

 To validate the cooperative system, it is possible to simulate the system with a simulation
model created for this purpose without resorting to an existing network simulator. A mobile
P2P file-sharing simulation model in [14] contains a “network” component to model the
network and devices’ particularities and restrictions. It includes as well a “source traffic”
component to model the transmitted data and the behavior of peers in the network. The
proposed mobile P2P architecture in this model is based on the eDonkey P2P file-sharing
protocol and is enhanced by additional caching entities and a crawler. In the simulation, a
mobile peer is described by an ON/OFF-process to reflect the fluctuating connection status of
a mobile peer. ON and OFF periods are determined by exponential distributions. The file
request arrivals are modeled by a Poisson process. An abstract model using a subset of the
parameters of the detailed simulation is proposed to reduce the computing time. The abstract
model is used to identify which cache replacement strategy fits the best for the mobile P2P
system. For this, the request arrival process is simulated in detail while the used transport
mechanism and the upload queue mechanism are neglected.

8. Game theory

Results obtained through simulation studies give a proof-of-concept of the proposed
cooperative mechanism. The results do not demonstrate if the incentives for cooperation are

 Simulator P2P protocols Language Distributed
simulation

Conditions

NS-2 [41] Gnutella C++/OTcl Yes Open source

OMNET++
[42]

None C++/NED Yes Academic
public license

GlomoSim/
QualNet
([10], [40])

--- C/C++ Yes Free for
universities /
commercial

Packet-
level
network
simulator

OPNET
[29]

--- Proto-C Yes Commercial

PeerSim
[6]

Collection of
internally developed
P2P models

Java No Free

3LS [25] Gnutella Java No ---

Overlay
network
simulator

NeuroGrid
[27]

Gnutella, NeuroGrid,
Pastry, FreeNet [11]

Java No Free

MoSAIC Progress Report 64/112

crucial. For this, game theory provides an alternative tool to declare that a cooperative
mechanism is a cooperation strategy. Game theory models strategic decision situations where
self-interested users follow a strategy aiming at maximizing their benefits and minimizing
their resource consumption. Game theory offers different methods for study e.g. non-
cooperative game, cooperative game, and evolutionary game. Non-cooperative game focuses
on users’ strategies. It describes the strategy of a user that has to make a decision about
whether to cooperate or not with a randomly chosen user. On the other hand, cooperative
game focuses on mutually advantageous results for the different parties. In this game, users
are able to enforce contracts and make binding agreements. Evolutionary games study the
evolution of various strategy profiles over time and space.

We describe the decision making process that a peer will undertake when participating in a
non-cooperative game, through the example of a classical game, the prisoner’s dilemma. In
this well-known game, two players are both faced with a decision to either cooperate (C) or
defect (D). The two players’ decisions are made simultaneously with no knowledge of the
each other’s decision. If the two players cooperate they receive a benefit R. If both defect they
receive a punishment P. If one player defects and the other one cooperates, the defecting
player receives a given benefit T and the cooperator a punishment S. The canonical form of
the prisoner’s dilemma pay-off is shown in the table below:

Player 2

C D

C (R, R) (S, T)
Player 1

D (T, S) (P, P)

Table 3 Prisoner’s dilemma pay-off matrix

In order to have a dilemma, the following expressions must hold:

T>R>P>S and R>(S+T)/2

We see here that a player in this dilemma has better to defect regardless of the decision of the
other player because the strategy D strictly dominates the strategy C (T>R and P>S). The
solution of this game is the Nash equilibrium. We call a set of strategies a Nash equilibrium in
the case where no player could improve his payoff, given the strategies of all other players in
the game, by changing his strategy while the other players keep their strategies unchanged.
The analysis of the interaction between decision-makers involved in the prisoner’s dilemma
game can be extended to repeated (or iterated) games. There are several strategies that a
player can adopt to determine whether to cooperate or not at each of its moves in the repeated
game. There is a strategy known as tit-for-tat where a player cooperates in the first period
then copy his opponent’s last move for all subsequent periods. Another strategy called
Spiteful is to cooperate in the first period and for later periods cooperate if both players have
always cooperated; if either player defects then defect for the remainder of the game. A
cooperation enforcement mechanism can be translated into a strategy for a player and
compared to these straightforward strategies. Another important concept is the idea of
evolutionary stable strategy. A set of strategies is at evolutionary stable strategy equilibrium
if no individual playing one strategy could improve its payoff by switching to one of the other
strategies in the proportion and also no individual playing a different strategy (called a
mutant) could establish itself in (invade) the population, i.e., make other individuals in the
population choose his strategy. With these different concepts we can give a good analysis of
the cooperation enforcement mechanism in terms of both promoting cooperation and the
evolution of cooperation. Cooperation and coalition formation can be explained using a two-
period structure. Players first decide whether or not join a coalition and in the second step the
coalition and non-cooperative peers choose their behavior non-cooperatively. A coalition is
defined as stable if no peer in the coalition has an incentive to leave. In this sense, a

MoSAIC Progress Report 65/112

preference structure was suggested defined by the ERC-theory [9]. In this theory, the utility of
a decision-maker is not solely based on the absolute payoff but also on the relative payoff
compared to the overall payoff to all peers. The model explains observations from games
where equity, reciprocity or competition plays a role.

The CORE mechanism [31] was for instance validated following two methodologies. The
first approach was to use a simulation tool, GloMoSim ([10], [40]), while the second
validation used a game-theoretic methodology. For this, two models were provided based on
cooperative and non-cooperative game theory to demonstrate the need for cooperation
incentives in the network. The CORE mechanism was then translated into a strategy model
and its evolutionary stability was proven. Further, the authors showed that in a more realistic
scenario (communication errors, failures etc) CORE outperforms other basic cooperation
strategies. Sprite [39] also used a game-theoretic model to prove that the solution of the
scheme prevents cheating behaviors. The main results work for packet forwarding in unicast
communication. The most important role of the game-theoretic validation of Sprite algorithms
is in determining payments and charges of nodes in the system to motivate each node to
cooperate honestly and to report its behavior to the CCS (Credit Clearance Service). Finally,
remuneration fairness was studied from a game theoretic point of view in [46], in which the
authors discuss different equilibrium concepts as a model for the various types of fair
exchange.

9. Prototype-based evaluation

A cooperation mechanism can be validated just a stage before the final design by building a
prototype, that is, a physical model of a proposed product concept that allows demonstration,
evaluation, or testing of the product. A prototype thus combines the most representative
attributes and particularities of a mechanism and it can be developed for testing it. It is also
usually intended to evolve the design into a more final state. In the literature, there are a lot of
examples of P2P or ad hoc cooperation mechanisms where the evaluation process is based on
prototypes. To validate their incentives system for ad hoc networking, a prototype was used
for Sprite [39] to determine how much overhead the incentive scheme necessities and how is
the packet routing performance of the system (percentage of packets successfully relayed
from the sender to the destination). Results show that the overhead of the Sprite system is
insignificant, and that nodes in the system cooperate and forward each other’s messages
unless their resources are extremely low. The Pastiche [17] scheme was evaluated using also
the prototyping approach. Pastiche's prototype consists of two main components: the
chunkstore file system implemented in user space and written in C and a backup daemon.
With the evaluation of the prototype, it was demonstrated that the backup service does not
penalize the file system performance unduly and also that node discovery was effective. CIBS
[20] was also prototyped for the validation of the backup scheme. To measure the
performance of their Internet backup scheme its authors used a number of personal computers
running instances of the prototype software. Each instance was partnered with the other
instances located in different PCs so that all communication between partners went through
the network. Experiments on the prototype have shown that the backup scheme performance
is acceptable in practice and that the technique is feasible and cheap.

Conclusions
Different approaches can be taken for cooperation enforcement, yet cooperation evaluation is
clearly the part most dependent on application-specific requirements and constraints, in
particular concerning deployment. The choice of a particular technique for validating the
effectiveness of cooperation, a critical step to ensuring that the application will reach its
objectives, depends heavily on the application chosen. This may in particular hamper the use
of one technique because of scalability issues or of the properties that need to be proven.

Trust, as one would like to evaluate it in the applications mentioned above, can be static
(identity-based for instance) or dynamic (self-organized). Static trust refers to the statement of

MoSAIC Progress Report 66/112

trust that remains the same until it is revoked, whereas dynamic trust exhibits self-learning
and self-amplifying characteristics. The latter arises from behaviors experienced in the system
and continuously changes accordingly to them. An entity trusts another entity because the
information it has about it shows that the actual entity is trustful and also because it has a lot
of information about it. [19] for instance introduces a trust model that does not only
concentrate on the content of evidence but also on the amount of such evidence.

Trust, although closely related with cooperation, may not be valuably accounted for by all
cooperation evaluation metrics of the mechanisms listed above. In particular, whereas
reputation seems well adapted to reason with the trustworthiness of a peer, remuneration may
be much poorer semantically, especially if the payment may be used to enforce cooperation
for different self-organized services. This does not mean that trust does not require
cooperation as a prerequisite, but instead that trust establishment might not be as reliable as
expected if the evaluation of its cooperative component relies on an unsuitable incentive
mechanism.

References
[1] A. Brown, M. Kolberg, “Tools for Peer-to-Peer Network Simulation”, March 3rd, 2006,

http://www.ietf.org/internet-drafts/draft-irtf-p2prg-core-simulators-00.txt

[2] A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust and Reputation Systems for
Online Service Provision”, In Proceedings of Decision Support Systems, 2005.

[3] A. Klemm, C. Lindemann, and O. Waldhorst, “A Special-Purpose Peer-to-Peer File
Sharing System for Mobile Ad Hoc Networks”, Proc. IEEE Semiannual Vehicular
Technology Conference (VTC2003-Fall), Orlando, FL, October 2003.

[4] A. Montresor, G. Di Caro, P. E. Heegaard, “Architecture of the Simulation
Environment”, BISON IST-2001-38923, January 29, 2004.

[5] B. T. Loo, A. LaMarca, and G. Borriello, “Peer-To-Peer Backup for Personal Area
Networks”, Intel Research Technical Report IRS-TR-02-15, October 2002.

[6] Biology-Inspired techniques for Self-Organization in dynamic Networks, BISON
Project, http://www.cs.unibo.it/bison/

[7] D. Barreto, Y. Liu, J. Pan, and F. Wang, “Reputation-based participation enforcement
for ad hoc networks”, 2002.

[8] DATAMAN, http://planchet.rutgers.edu/~badri/dataman/research-projects.html

[9] G. E Bolton and A. Ockenfels, “ERC: a theory of equity, reciprocity, and competition”,
American Economic Review 90(1): 166-193, 2000.

[10] Global Mobile Information Systems Simulation Library, GloMoSim,
http://pcl.cs.ucla.edu/projects/glomosim/

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anonymous
information storage and retrieval system”, In Designing Privacy Enhancing
Technologies: International Workshop on Design Issues inAnonymity and
Unobservability, LNCS 2009, New York, 2001.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “ OceanStore: An
architecture for globalscale persistent storage”, in Proceedings of the Ninth international
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000), Nov. 2000.

[13] J. Liang, R. Kumar & K.W. Ross, “The FastTrack overlay: A measurement study”,
Computer Networks, 50, 842-858, 2006.

MoSAIC Progress Report 67/112

[14] J. Oberender, F. –U. Andersen, H. de Meer, I. Dedinski, T. Hoßfeld, C. Kappler, A.
Mäder, and K. Tutschku, “Enabling Mobile Peer-to-Peer Networking. Mobile and
Wireless Systems”, In Proceedings of Mobile and Wireless Systems, LNCS 3427,
Dagstuhl, Germany, January 2005.

[15] L. Buttyán and J. Hubaux, “Nuglets: a virtual currency to stimulate cooperation in self-
organized ad hoc networks”, Technical report, EPFL, 2001.

[16] L. Buttyán and J.-P Hubaux, “Stimulating Cooperation in Self-Organizing Mobile Ad
Hoc Networks”, ACM/Kluwer Mobile Networks and Applications, 8(5), October 2003.

[17] L. P. Cox and B. D. Noble, “Pastiche: making backup cheap and easy”, in Proceedings
of the Fifth USENIX Symposium on Operating Systems Design and Implementation,
Boston, MA, December 2002.

[18] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web”, Technical report, Stanford Digital Library Technologies
Project, 1998.

[19] M. Carbone, M. Nielsen, and V. Sassone, “A Formal Model for Trust in Dynamic
Networks”, BRICS tech. report RS-03-4, Univ. Aarhus, 2003.

[20] M. Lillibridge, S. Elnikety, A. Birrell, M.Burrows, and M. Isard, “A Cooperative
Internet Backup Scheme”, In Proceedings of the 2003 Usenix Annual Technical
Conference (General Track), pp. 29-41, San Antonio, Texas, June 2003.

[21] M. Papadopouli and H. Schulzrinne, “A Performance Analysis of 7DS, A Peer-to-Peer
Data Dissemination and Prefetching Tool for Mobile Users”, In Advances in wired and
wireless communications, IEEE Sarnoff Symposium Digest, March 2001.

[22] M. Schlosser and S. Kamvar, “Simulating a file-sharing p2p network”, In Proceedings
of the First Workshop on Semantics in P2P and Grid Computing, 2002.

[23] Markus Jakobsson, Jean-Pierre Hubaux, and Levente Buttyan, “A Micro-Payment
Scheme Encouraging Collaboration in Multi-Hop Cellular Networks”, In Proceedings of
Financial Crypto, La Guadeloupe, Jan. 2003.

[24] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Exchange. In
Proceedings of the 4th ACM Conference on Computer and Communications Security,
Zurich, April 1997.

[25] N. S. Ting, R. Deters, “3LS - A Peer-to-Peer Network Simulator”, IEEE International
Conference on Peer-to-Peer Computing, 2003.

[26] Nadia Ben Azzouna and Fabrice Guillemin, “Experimental analysis of the impact of
peer-to-peer applications on traffic in commercial IP networks”, European transactions
on Telecommunications: Special issue on P2P networking and P2P services, ETT 15(6),
November-December 2004.

[27] NeuroGrid, http://www.neurogrid.net

[28] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A framework for the development
of agent-based peer-to-peer systems”, In Proceedings of the 22th International
Conference on Distributed Computing Systems (ICDCS'02), Vienna, Austria, July 2002.

[29] OPNET, http://www.opnet.com/

[30] P. Druschel and A. Rowstron, “PAST: A large-scale, persistent peer-to-peer storage
utility”, in Proceedings of HotOS VIII, May 2001.

[31] P. Michiardi, “Cooperation enforcement and network security mechanisms for mobile ad
hoc networks”, PhD Thesis, December 14th, 2004.

MoSAIC Progress Report 68/112

[32] P. Michiardi, and R. Molva, “CORE: a collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks”, CMS'2002, Communication and
Multimedia Security 2002 Conference, Portoroz, Slovenia, September 26-27, 2002.

[33] P. Obreiter & J. Nimis, “A Taxonomy of Incentive Patterns - the Design Space of
Incentives for Cooperation”, Technical Report, Universität Karlsruhe, Faculty of
Informatics, 2003.

[34] R. Dingledine, “The free haven project: Design and deployment of an anonymous secure
data haven”, Master’s thesis, MIT, June 2000.

[35] S. Buchegger, and J. Y. L. Boudec, “Performance Analysis of the CONFIDANT
Protocol: Cooperation Of Nodes — Fairness In Distributed Ad-hoc NeTworks”, In
Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing
(MobiHOC), Lausanne, CH, IEEE (2002) 226–236, 2002.

[36] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust Algorithm for
Reputation Management in P2P Networks”, In Proceedings of the Twelfth International
World Wide Web Conference, Budapest, May 2003.

[37] S. Lee, R. Sherwood, B. Bhattacharjee. "Cooperative peer groups in NICE". In
INFOCOM'03, April 2003.

[38] S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in mobile ad
hoc networks”, Mobile Computing and Networking 255–265, 2000.

[39] S. Zhong, J. Chen, Yang Richard Yang, “Sprite: A Simple, Cheat-Proof, Credit-Based
System for Mobile Ad-Hoc Networks”, INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Societies.

[40] Scalable Network Technologies (SNT), http://www.scalable-networks.com/products/

[41] The network Simulator NS-2, http://www.isi.edu/nsnam/ns/index.html

[42] The OMNeT++ Community Site, http://www.omnetpp.org/

[43] M. Terada, M. Iguchi, M. Hanadate, and K. Fujimura. An Optimistic Fair Exchange
Protocol for Trading Electronic Rights. In 6th Smart Card Research and Advanced
Application conference (CARDIS'2004), 2004.

[44] H. Vogt, H. Pagnia, and F. C. Gärtner. Using Smart cards for Fair-Exchange. WELCOM
2001, LNCS 2232, Springer, pp. 101-113, 2001.
http://citeseer.ist.psu.edu/vogt01using.html

[45] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Exchange. In
Proceedings of 4th ACM Conference on Computer and Communications Security,
Zurich, April 1997. http://citeseer.ist.psu.edu/article/asokan96optimistic.html

[46] L. Buttyan and J.-P. Hubaux, Toward a formal model of fair exchange -- a game
theoretic approach, 2000, http://citeseer.ist.psu.edu/article/buttyan00toward.html, SSC
Technical Report

MoSAIC Progress Report 69/112

MoSAIC Progress Report 70/112

4-Published Papers

MoSAIC Progress Report 71/112

Collaborative Backup for Dependable Mobile Applications

[Extended Abstract]

Marc-Olivier Killijian,
David Powell
LAAS-CNRS

7 Avenue du Colonel Roche
31077 Toulouse cedex 4

France

Michel Banâtre,
Paul Couderc

IRISA
Campus Universitaire de

Beaulieu
35042 Rennes cedex, France

Yves Roudier
Institut Eurécom

2229 Route des Crêtes
Sophia Antipolis
06560 Valbonne

France

ABSTRACT
We describe the work we are conducting on new middleware
services for dependable and secure mobile systems. This
work is based on approaches à la peer-to-peer in order to
circumvent the problems introduced by the lack of infras-
tructure in self-organizing networks of mobile nodes, such
as MANETs. The mechanisms we propose are based on
collaboration between peer mobile devices to provide mid-
dleware services such as trust management and critical data
storage. This short paper gives a brief description of the
problems we are trying to solve and some hints and ideas
towards a solution.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems

Keywords
Mobile applications, data back-up, collaboration

1. INTRODUCTION
The MoSAIC (Mobile System Availability, Integrity and

Confidentiality) project [9] aims to investigate novel depend-
ability and security mechanisms for mobile wireless devices,
especially personal mobile devices, in ambient intelligence
applications. The mobile devices of interest include, for
instance: personal digital assistants (PDAs), laptop com-
puters, mobile telephones, digital cameras, etc., and ex-
tend to systems embedded within vehicles. The focus is on
sparse ephemeral self-organizing networks, using predomi-
nately single-hop wireless communication, i.e., networks of
a small number of a potentially large population of mobile
devices that come into existence spontaneously by virtue of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing
Toronto, Canada
Copyright 2004 ACM 1-58113-951-9 ...$5.00.

physical proximity and mutual discovery, and that cease to
exist as soon as communication is no longer possible.

Most of the data carried on a PDA is a copy of data that
is mainly produced and also stored elsewhere. For exam-
ple, a PDA contact database is regularly synchronized with
a desktop computer application. This reduces the impact
of failure of such devices to the data that is produced di-
rectly on the device between synchronizations. However,
in the case of capture devices (devices capable of acquir-
ing data such as pictures, sound or video), large quantities
of data are generated directly on the mobile device, lead-
ing to a much larger quantity of data that remains sensitive
to device failure until a backup copy can be created. This
highlights the need for new ways of ensuring data availabil-
ity. Because the density of these devices is increasing (as
mobile devices are becoming more and more popular), there
is an opportunity for cooperatively backing up data by us-
ing neighborhood devices. The first objective of our work is
therefore to define an automatic data back-up and recovery
service based on mutual cooperation between mobile devices
with no prior trust relationships. Such a service aims to en-
sure continuous availability of critical data managed by mo-
bile devices that are particularly prone to energy depletion,
physical damage, loss or theft. The basic idea is to allow
a mobile device to exploit accessible peer devices to man-
age backups of its critical data. To our knowledge, no work
has already exploited this principle of cooperative backup
for mobile devices. Indeed, relatively little work appears to
have been devoted to tolerance of device failures in a mobile
self-organized network scenario [14] [2] [1], although there
has been considerable work on checkpointing in cellular mo-
bile computing environments (see, e.g., [18] [19] [20] [4] [16]
[17]).

The implementation of such a service by cooperation be-
tween mobile nodes with no prior trust relationship is far
from trivial since new threats are introduced: (a) selfish
devices may refuse to cooperate; (b) backup repository de-
vices may themselves fail or attack the confidentiality or
integrity of the backup data; (c) rogue devices may seek
to deny service to peer devices by flooding them with fake
backup requests; etc. We intend to study trust manage-
ment mechanisms to support cooperative services between
mutually suspicious devices. Of particular interest are mech-
anisms based on reputation (for prior confidence-rating and
posterior accountability) and rewards (for cooperation inci-

MoSAIC Progress Report 72/112

tation). In the sparse ephemeral networks considered, these
mechanisms can rely neither on accessibility to trusted third
parties nor on connectivity of a majority of the considered
population of devices [22]. Self-carried reputation and re-
wards are therefore of prime interest. This approach con-
trasts to most existing approaches to mobile system security,
which have mainly focused on key management and distri-
bution (see, e.g.,[22] [8] [12]) and on secure ad-hoc network
routing (see, e.g., [3] [6] [15] [21]).

Achieving dependability and security despite accidental
and malicious faults in networks of mobile devices is par-
ticularly challenging due to their intrinsic asynchrony (un-
reliable communication, partitioning, mobility, etc.) and
the consequent absence of continuous connectivity to global
resources such as certification and authorization servers,
system wide stable storage, a global time reference, etc.
Furthermore, the threats to dependability and security are
particularly severe: device lifetime and communication are
severely limited by scarcity of electrical energy; use of wire-
less links means susceptibility to link attacks ranging from
passive eavesdropping to active impersonation, message re-
play, and message distortion; poor physical protection of
mobile devices (especially in a hostile environment) makes
them susceptible to physical damage, and vulnerable to theft
or subversion.

There are thus two related issues that need to be ad-
dressed :

1. Fault- and intrusion-tolerant collaborative data
backup (with possible extension to checkpointing).

2. Self-carried reputation and rewards for collaboration
between sporadically interconnected and mutually sus-
picious peer devices without reliance on a fixed infras-
tructure and access to trusted third parties.

Common to both is our emphasis on spontaneous inter-
action between peer mobile devices with no prior trust rela-
tionships. In this paper, we focus on the first of these two
issues.

2. FAULT TOLERANCE BY
COLLABORATIVE BACKUP

We are investigating middleware services to support the
dependability and security of mobile ambient intelligence
applications. We consider highly dynamic systems consist-
ing of wireless-equipped mobile devices that communicate
with each other mostly by direct, single-hop communica-
tion. However, we do not preclude extensions to include
indirect communication via a multi-hop ad-hoc network or
occasional access to a fixed communication infrastructure.
We are not addressing mobile ad-hoc routing protocols, or
dependability and security issues at the wireless network
level, which are largely covered in the litterature.

We consider the design and implementation of a prototype
service for data backup and recovery by cooperation be-
tween ephemerally-connected and mutually-suspicious mo-
bile devices. The problems we consider arise from the
specific characteristics of ambient intelligence applications
based predominately on sparse ephemeral networks of mo-
bile devices: disconnected mode or absence of fixed infras-
tructure, absence of prior organization, ephemeral interac-
tions, user transparency, and user privacy. Limits on mobile

device energy, computation and storage will also constrain
the technical solutions that can be considered.

A typical scenario for such a service might be a researcher
travelling to a conference, using her PDA to take important
notes, and using the PDAs of fellow attendees or travellers
to host temporary back-ups of critical data. Such temporary
back-ups provide the means for recoverying critical data in
the event that her PDA fail, break or be stolen. Recovery
can be achieved by purchasing a new PDA, authenticating it
and then recollecting the critical data chunks backed-up on
other devices. An important aspect of this scenario concerns
the fact that the users (and their devices) cooperating for
achieving this back-up service have no prior trust relation-
ship. They must thus protect, for example (a) the backed-up
data against confidentiality and availability attacks and (b)
the back-up devices against denial of service attacks.

Other scenarios, with varying prior trust models, can be
imagined in military applications (e.g., recovery and redis-
tribution of critical command and control data during bat-
tlefield operations), civilian emergency operations, home au-
tomation and entertainment, etc.

The need for such a fault-tolerance service is motivated
by: (a) the increasing dependency of users on the availabil-
ity, integrity and confidentiality of data carried by mobile
devices and (b) the fragility of mobile devices and other
risks relating to their use in a harsh or even hostile envi-
ronment. We purposely limit ourselves to the issue of data
backup, but note that such a service could serve as the basis
for mobile device checkpointing and recovery, and for real-
time tolerance of mobile device failure based on redundant
devices.

The problems to be addressed include: resource alloca-
tion, garbage collection of obsolete backups, integrity and
confidentially of backup data, resistance to denial-of-service
(DoS) attacks, etc. The service is to be supported by nego-
tiation between peer mobile devices with no prior trust rela-
tionship. Among the various approaches that might be con-
sidered, we intend to take inspiration from current work in
the area of peer-to-peer (P2P) applications [13] [5] [10] [11],
which have characteristics that are particularly well-adapted
to the considered environment: absence of pre-established
organization, service through cooperation, short-duration
interactions, etc. We also plan to take inspiration from
our know-how in the domain of fragmentation-replication-
dissemination (FRD) techniques, which exploit distribution
to increase availability, integrity and confidentiality in the
face of accidental faults and malicious attacks [7]. Until
now, these FRD techniques have only been considered in
the case of fixed infrastructure systems. We might also con-
sider the advantages that could be drawn from occasional
access to a common time reference (e.g., through the Global
Positioning System (GPS)) or from exploiting mobility for
data dissemination.

In the sequel, we use the terms data owner to refer to a
device requesting its data to be backed up and data saver
for a device hosting back-up data. Any device may be both
a data owner and a data saver. However, to simplify our
discourse, we usually consider a single data owner.

2.1 Threats
The data back-up service must face up to the following

threats:

1. Permanent and transient accidental faults affecting a

MoSAIC Progress Report 73/112

data owner.

2. Theft or loss of a data owner device.

3. Accidental or malicious faults causing a data saver to
be unavailable when recovery is required (i.e., on fail-
ure of the data owner).

4. Accidental or malicious modification of data backups
that could violate data integrity if recovery should be
required.

5. Malicious read access to data backups. Back-ups may
contain sensitive confidential data that should be made
unintelligible to the user of the data saver device.

6. Denial of service through selfishness. Cooperation may
be thwarted if there is no incentive for devices to par-
ticipate.

7. Denial of service through maliciousness. A malicious
data owner could attempt to saturate data savers by
false back-up requests, and thereby deny service to
other data owners and to users of the attacked data
saver devices. A malicious data saver may also choose
to withhold backed-up data (cf. threat 3).

It will also be important to distinguish various contexts of
utilization of the data back-up service according to the type
of user community and appropriate prior trust model. For
example, in a closed (and non-infiltrated) military context,
certain threats such as denial-of-service through selfishness
or malicious attack may be considered negligible.

2.2 Back-up process
The primary aim of the back-up service is to provide pro-

tection against permanent and transient accidental faults of
data owners (threat 1). Depending on the utilization con-
text, complete or partial back-up of data may be considered.
Partial delta back-ups or update operation logs might be
preferred to minimize the amount of data to be transferred
to and stored on data savers, or even to provide some pro-
tection against confidentiality attacks on back-ups (threat
5).

The back-up service also provides protection of data avail-
ability in the face of loss or theft of the data owner device
(threat 2). Confidentiality might be provided in such a sit-
uation by an “auto-delete” function triggered by a failed
user-authentication challenge.

Unavailability and modification of back-ups (threats 3 and
4) are only of importance if the data owner should fail. Tol-
erance of multiple faults may be achieved by installing re-
dundant back-ups on independent data savers. Malicious
read access to back-ups (threat 5) may be prevented by cryp-
tographic techniques, with appropriate trade-offs between
the level of protection provided and the associated costs in
energy and resource consumption. The strength (key length,
degree of redundancy, etc.) and cost of the deployed tech-
niques may be adapted according to the degree to which
data savers may be trusted (e.g., devices of colleagues or
those of strangers). The adaptation could also make use of
a dynamic measure of the “reputation” of the data saver (cf.
issue 2 raised in the introduction).

Fragmentation–replication–dissemination (FRD) tech-
niques [7] are also of interest here. Data confidentiality may

be provided by cutting back-up data into fragments that
are disseminated over different data savers. Fragments may
also be replicated to ensure data availability and integrity
(by voting on multiple replicas). Fragmentation, replication
and dissemination may be modulated in both space and time
according to the number of trustable devices available in a
given place or at a given instant.

Denial of service through selfishness (threat 6) may be
discouraged by the use of a “reward” scheme to motivate de-
vice participation, inspired from micro-economy approaches
developed in peer-to-peer applications. Devices acting as
data savers are rewarded for their participation and may re-
deem their earnings when acting as data owners that wish
to purchase back-up service. Denial of service through ma-
liciousness (threat 7) may also be discouraged by an ap-
propriate “reputation” mechanism. Devices with a history
of detected maliciousness will have a poor reputation and
will be spurned by data owners when negotiating to pur-
chase back-up service. The related notions of reward and
reputation are the subject of the cooperative service trust
mechanisms that we also plan to investigate.

2.3 Recovery process
The second important aspect of the proposed data back-

up service concerns the means by which back-up data may
be re-installed when required on data owners, i.e., data re-
covery. This involves finding the data that has been backed
up and transferring it back to the data owner or its surro-
gate.

The recovery process will depend heavily on whether or
not devices can occasionally connect to a fixed infrastruc-
ture. If access to a fixed infrastructure cannot be consid-
ered (e.g., in a battlefield scenario), then access to back-up
data has to be based on establishing a wireless communica-
tion channel between data owner and saver devices. If direct
communication is not possible (which will be the usual case)
then the solution may be to create an ad-hoc network with
intermediate devices, or to wait until the devices are again
within wireless range (by chance encounter or by planned
rendezvous).

At least two recovery modes can be distinguished:

• Push recovery: the data saver automatically sends
data backups to the data owner or its surrogate. The
most appropriate way might be for data savers to trig-
ger such a boomerang operation as soon as they have
access to a fixed infrastructure. The data could be
transferred either immediately to the data owner or its
surrogate, or possibly through a trusted third party.

• Pull recovery: the data owner searches for the data
copies that it requires. Again, we may take inspira-
tion from P2P systems that seek to develop totally
distributed file search engines. Requests to the search
engine might target the requested data by specifying
particular places or times, e.g., “the data I backed up
during the flight from Toulouse to Rennes on January
10, 2004”.

When partial back-ups have been created, like when frag-
mentation-replication-dissemination is used, the recovery
process will also need to tackle the problem of reconstructing
the complete data from the various parts.

MoSAIC Progress Report 74/112

Many various optimizations of the proposed back-up ser-
vice may be considered. For example, in the case of in-
cremental back-ups, the optimal period of back-up creation
may depend on several factors, including the relative size of
the increments (deltas or update logs) and the performance
of recovery based on those increments. The chosen solutions
need to be flexible and adaptable to various application sce-
narios. Another important issue is that of garbage-collecting
obsolete back-up data. This may depend on the notion of a
contract set up between data owners and savers, or be trig-
gered when the data owner announces that the earlier back-
ups are obsolete. The appropriate solutions imply various
business models associated with micro-economy mechanisms
of various complexity: fines, contracts, leases, etc.

3. CONCLUSIONS
While the area of dependability of the low level network

layers for mobile devices has received much attention (e.g.
fault-tolerant routing), middleware and application-level de-
pendability mechanisms remain almost unexplored. As mo-
bile devices become more and more common - we can now
embed a real-time operating system with wireless capabili-
ties in a wrist-watch - users will increasingly use them for
more critical tasks and will expect greater reliability from
them. For example, loosing the automatically gathered or-
ders of the clients that a salesman visited during the morning
is completely unacceptable. Even if most of the data carried
on a PDA is typically regularly synchronized with a desktop
computer, some of its data is produced or modified between
these synchronizations. In the case of capture devices, this
amount of data is even larger. The user cannot afford to
lose the critical data created or modified between synchro-
nizations. The mechanisms we describe in this paper try to
tackle the issue of using peer-provided resources for build-
ing a collaborative backup service between mobile devices
with no prior trust relationship. We think that the impact
of such a technology will be high and can be extended to
other scenarios like exploratory operations, sensor networks
and military missions.

4. REFERENCES
[1] M. Boulkenafed and V. Issarny. AdHocFS: Sharing

Files in WLANs. In 2nd Int. Symp. on Network
Computing and Applications, pages 156–63. IEEE CS
Press, 2003.

[2] M. Boulkenafed and V. Issarny. A middleware service
for mobile ad hoc data sharing, enhancing data
availability. In 4th ACM/IFIP/USENIX International
Middleware Conference, pages 493–511. Springer,
2003.

[3] S. Buchegger and J.-Y. L. Boudec. The selfish node:
Increasing routing security in mobile ad hoc networks.
Technical Report RR 3354, IBM, May 2001.

[4] G. Cao and M. Singhal. Mutable checkpoints: a new
checkpointing approach for mobile computing systems.
IEEE Transactions on Parallel and Distributed
Systems, 12:157–72, 2001.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. Lecture Notes in Computer
Science, 2009:46, 2001.
http://freenet.sourceforge.net.

[6] B. Dahill, B. Levine, E. Royer, and C. Shields. A
secure routing protocol for ad hoc networks. In 10th
Conference on Network Protocols (ICNP), November
2002.

[7] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion
tolerance in distributed systems. In IEEE Symposium
on Security and Privacy, pages 110–121. IEEE CS
Press, 1991.

[8] A. Khalili, J. Katz, and W. A. Arbaugh. Toward
secure key distribution in truly ad-hoc networks. In
Symp. on Applications and the Internet Workshops
(SAINT’03 Workshops), pages 342–46, 2003.

[9] M.-O. Killijian, M. Banâtre, P. Couderc, L. Courtès,
S. Crosta, R. Molva, D. Powell, Y. Roudier, and
F. Weiss. The MoSAIC project.
http://www.laas.fr/mosaic/.

[10] D. Kügler. An analysis of gnunet and the implications
for anonymous, censorship-resistant networks.
http://www.ovmj.org/GNUnet/.

[11] S. Lee, R. Sherwood, and B. Bhattacharjee.
Cooperative peer groups in NICE. In INFOCOM’03,
April 2003.

[12] D. Liu, P. Ning, and K. Sun. Efficient self-healing
group key distribution with revocation capability. In
10th ACM Conf. on Computer and Communications
Security (CCS’03), pages 231–40, 2003.

[13] MNET. The MNET project.
http://mnetproject.org.

[14] P. Nikander. Fault tolerance in decentralized and
loosely coupled systems. In Ericsson Conference on
Software Engineering. Ericsson, 2000.

[15] P. Papadimitratos and Z. J. Haas. Secure routing for
mobile ad hoc networks. In SCS Communication
Networks and Distributed Systems Modeling and
Simulation Conference (CNDS 2002), 2002.

[16] T. Park, N. Woo, and H. Y. Yeom. An efficient
recovery scheme for mobile computing environments.
In Int. Conf. on Parallel And Distributed Systems
(ICPADS), pages 53–60. IEEE CS Press, 2001.

[17] C. Pedregal-Martin and K. Ramamrithan. Support for
recovery in mobile systems. IEEE Transactions of
Computers, 51:1219–24, 2002.

[18] D. K. Pradhan, P. Krishna, and N. H. Vaidya.
Recoverable mobile environment: Design and trade-off
analysis. In 26th IEEE Int. Symp. on Fault-Tolerant
Computing (FTCS-26), pages 16–25. IEEE CS Press,
1996.

[19] R. Prakash and M. Singhal. Low-cost checkpointing
and failure recovery in mobile computing systems.
IEEE Transactions on Parallel and Distributed
Systems, 7:1035–48, 1996.

[20] B. Yao, K.-F. Ssu, and W. K. Fuchs. Message logging
in mobile computing. In 29th IEEE Int. Symp. on
Fault-Tolerant Computing (FTCS-29), pages 294–301.
IEEE CS Press, 1999.

[21] M. Zapata and N. Asokan. Securing ad hoc routing
protocols. In ACM Workshop on Wireless Security
(WiSe 2002), September 2002.

[22] L. Zhou and Z. Haas. Securing ad hoc networks. IEEE
Network Magazine, 13:24–30, 1999.

MoSAIC Progress Report 75/112

MoSAIC Progress Report 76/112

Sauvegarde coopérative entre pairs
pour dispositifs mobiles *

Ludovic Courtès Marc-Olivier Killijian David Powell Matthieu Roy

prénom.nom@laas.fr
LAAS-CNRS

7 Avenue du Colonel Roche
31077 Toulouse cedex 4

France

Résumé/Summary

Nous présentons les fonctionnalités d’un service de sauvegarde coopérative pour dispositifs mobiles. Ce service repose sur la
collaboration entre dispositifs pour assurer la sauvegarde et le recouvrement des données de chaque dispositif. Nous identifions
les propriétés de sûreté de fonctionnement que l’on est en mesure d’attendre d’un tel service. Nous analysons les systèmes
de sauvegarde coopérative pair-à-pair décrits dans la littérature afin d’identifier d’éventuelles fonctionnalités transposables
à l’environnement mobile. Enfin, nous concluons sur les spécificités de cet environnement et identifions les axes de recherche
à explorer.

Mots-clef : Sauvegarde, dispositifs mobiles, coopération, pair-à-pair.

We present the features of a collaborative backup service for mobile devices. This service relies on collaboration among peers
in order to provide data backup and recovery. We identify the expected dependability properties for such a service. We then
survey peer-to-peer collaborative backup systems described in the literature and identify mechanisms relevant to the mobile
environment. We conclude on the specificities of this environment and identify future research directions.

Keywords : Mobile applications, data back-up, collaboration, peer-to-peer.

* Ces travaux s’intègrent dans le cadre du projet MoSAIC (Mobile System Availability, Integrity and Confidentiality,
http://www.laas.fr/mosaic/)partiellementfinancé par l’Action Concertée Incitative (ACI)Sécurité& Informatiquedu Ministère
délégué à la Recherche et aux Nouvelles Technologies.

MoSAIC Progress Report 77/112

Sauvegarde coopérative entre pairs
pour dispositifs mobiles *

Ludovic Courtès Marc-Olivier Killijian David Powell Matthieu Roy

prénom.nom@laas.fr
LAAS-CNRS

7 Avenue du Colonel Roche
31077 Toulouse cedex 4

France

RÉSUMÉ
Nous présentons les fonctionnalités d’un service de sauve-

garde coopérative pour dispositifs mobiles. Ce service repose
sur la collaboration entre dispositifs pour assurer la sauve-
garde et le recouvrement des données de chaque dispositif.
Nous identifions les propriétés de sûreté de fonctionnement
que l’on est en mesure d’attendre d’un tel service. Nous ana-
lysons les systèmes de sauvegarde coopérative pair-à-pair dé-
crits dans la littérature afin d’identifier d’éventuelles fonc-
tionnalités transposables à l’environnement mobile. Enfin,
nous concluons sur les spécificités de cet environnement et
identifions les axes de recherche à explorer.

Mots-clef : Sauvegarde, dispositifs mobiles, coopération,
pair-à-pair.

SUMMARY
We present the features of a collaborative backup service

for mobile devices.This service relies on collaboration among
peers in order to provide data backup and recovery.We iden-
tify the expected dependability properties for such a service.
We then survey peer-to-peer collaborative backup systems
described in the literature and identify mechanisms relevant
to the mobile environment. We conclude on the specificities
of this environment and identify future research directions.

Keywords : Mobile applications, data back-up, collabora-
tion, peer-to-peer.

1. INTRODUCTION
Nous abordons la problématique liée à la conception d’un

intergiciel fournissant des mécanismes de sûreté de fonction-

*Ces travaux s’intègrent dans le cadre du projet MoSAIC
(Mobile System Availability, Integrity and Confidentiality,
http://www.laas.fr/mosaic/) partiellement financé par l’Ac-
tion Concertée Incitative (ACI) Sécurité & Informatique du
Ministère délégué à la Recherche et aux Nouvelles Techno-
logies.

nement à des dispositifs mobiles dotés de moyens de com-
munication sans fil. Nous considérons des dispositifs très dy-
namiques et mobiles, n’ayant accès à une infrastructure fixe
de communication (un réseau local ou Internet) que par in-
termittence. Ces dispositifs mobiles doivent être capables de
communiquer entre eux, lorsqu’ils sont à proximité physique,
en utilisant des moyens de communication ad hoc à un saut
ou à plusieurs sauts. Cependant, nous souhaitons que le ser-
vice développé soit utile à une large palette de systèmes, al-
lant aussi bien de dispositifs très mobiles n’ayant que rare-
ment accès à Internet, à l’autre extrême représenté par des
machines connectées en permanence à Internet et peu ou pas
mobiles. Il est important de noter que dans ce schéma, nous
faisons l’hypothèse que les participants à ce service n’ont au-
cune relation de confiance au préalable.

Le service a pour objectif de permettre aux dispositifs sur
lesquels il s’exécute de tolérer les fautes pouvant entraîner la
perte de données : perte ou vol du dispositif mobile, efface-
ment accidentel de données par l’utilisateur. Pour résister à
de telles fautes, il doit fournir les moyens de sauvegarder les
données de l’utilisateur sur un périphérique tiers, en utilisant
les moyens de communication dont il dispose.

À l’heure actuelle, les utilisateurs de systèmes mobiles,
qu’il s’agisse d’ordinateurs portables (laptop) ou d’assistants
numériques personnels (PDA), effectuent le plus souvent la
sauvegarde de leurs données lorsqu’ils ont accès à leur ma-
chine de bureau en synchronisant les données entre les deux
machines. Typiquement, les premières générations d’assis-
tants personnels avaient pour seul moyen de communication
un système de courte portée, généralement un câble série ou
un port infrarouge, demandant à l’utilisateur de se trouver
à proximité de la machine sur laquelle s’effectue la sauve-
garde. Les dispositifs mobiles actuels disposent généralement
de plusieurs interfaces de communication (par exemple IEEE
802.11, Bluetooth). Lorsqu’une infrastructure réseau est dis-
ponible dans leur environnement, par exemple des points
d’accès Wifi, ces dispositifs mobiles peuvent avoir l’occasion
de se connecter à leur machine de bureau pour y sauvegarder
leurs données.

Dans la pratique, il est pourtant rare que cette possibilité
soit utilisée pour effectuer à distance des sauvegardes, et ce
pour plusieurs raisons :

• elle nécessite que la machine distante soit en fonctionne-
ment, connectée à Internet et accessible;

• l’accès à une infrastructure par des moyens de communi-
cation sans fil est encore rare (et cher) et il peut s’écouler

MoSAIC Progress Report 78/112

longtemps avant que le système mobile soit en mesure de
se connecter à Internet;

• enfin, à notre connaissance, les logiciels capables de
tenter automatiquement une sauvegarde sur la machine
de bureau sont encore rares.

Une autre solution consiste à utiliser les services d’un tiers
de confiance qui garantit la disponibilité de ses serveurs de
sauvegarde. Différentes offres commerciales permettent de
sauvegarder ses données moyennant un abonnement annuel
pour des capacités de stockage souvent limitées.

En revanche, nous pensons que l’avènement de disposi-
tifs mobiles équipés de moyens de communication sans fil de
courte portée offre des possibilités d’interactions entre pairs
dont pourrait profiter un système de sauvegarde coopéra-
tif. En effet, l’utilisation répandue de systèmes mobiles com-
municant va permettre des interactions fréquentes mais de
courte durée.Nous souhaitons tirer profit de ces interactions :
à chaque rencontre de deux systèmes mobiles, le service va
automatiquement initier une demande de sauvegarde pour
une partie de ses données. En contrepartie, il devra rendre le
même service à la communauté.Pour être pratique, ces tran-
sactions devront s’effectuer automatiquement, sans aucune
intervention de l’utilisateur. De cette façon, chaque utilisa-
teur pourra sauvegarder tout ou partie de ses données, et ce
avec une granularité assez fine compte-tenu de la fréquence
des rencontres que l’on peut envisager.

Nous présentons dans la section suivante les objectifs que
nous souhaitons atteindre, notamment en termes de sûreté
de fonctionnement,en fonction des problèmes nouveaux qu’il
pose. La section 3 présente les travaux décrits dans la litté-
rature en matière de réseaux pair-à-pair, de stockage réparti,
et de sauvegarde coopérative dont pourra s’inspirer notre sys-
tème de sauvegarde. Enfin, la section 4 présente nos conclu-
sions quant à l’apport des systèmes de sauvegarde pair-à-pair
par rapport à nos objectifs ainsi que nos pistes de recherche
à venir.

2. OBJECTIFS ET PROBLÉMATIQUE
Un mécanisme de sauvegarde est une fonctionnalité a

priori indépendante des applications et qui s’inscrit dans
une problématique orthogonale à celles-ci. Dans cette sec-
tion, nous décrivons les objectifs du service de sauvegarde
coopérative pour dispositifs mobiles que nous baptisons
ColBack (Collaborative Backup). Ses objectifs peuvent eux-
mêmes être décomposés en un ensemble de fonctionnali-
tés (sous-section 2.1) et un ensemble de caractéristiques non
fonctionnelles que l’on peut attendre d’un tel service, telles
que des propriétés de sûreté de fonctionnement (sous-section
2.2).

Nous utiliserons par la suite la terminologie suivante : un
propriétaire de données est un dispositif mobile tenant le rôle
de client du service de sauvegarde coopérative; les contri-
buteurs sont les dispositifs participant à ce service, c’est-
à-dire les systèmes stockant des données pour des proprié-
taires. D’une manière générale, un participant est un dis-
positif mobile qui participe au service (contributeur) ou en
profite (propriétaire).

2.1. Fonctions du service
Nous présentons ici les principales fonctionnalités de

ColBack : la découverte et l’allocation de ressources effec-

tuées lors de la création de copies, puis le recouvrement des
données lors de la restauration.

2.1.1. Découverte et allocation de ressources
La première nécessité pour ColBack est de découvrir l’es-

pace de stockage à disposition dans son environnement, puis
d’obtenir l’allocation d’espace sur le support de stockage d’un
tiers pour y stocker tout ou partie des données à sauvegarder.
Compte-tenu des scénarios envisagés en termes de connectivi-
té du dispositif, allant d’un accès permanent à une infrastruc-
ture jusqu’à une communication uniquementen mode ad hoc,
plusieurs critères vont influencer le choix de la méthode de
découverte et d’allocation de ressources :

• le coût de la communication, qui correspond à la quan-
tité d’énergie requise et au nombre de sauts nécessaires
pour atteindre un nœud dans le cas d’un réseau ad hoc ;
lorsqu’un accès direct à Internet est disponible, ce coût
est indépendant de la distance séparant deux nœuds; de
même la quantité d’énergie requise pour la communica-
tion n’est pas un critère déterminant pour des dispositifs
branchés sur le secteur;

• la densité de l’environnement dans lequel évolue le dis-
positif mobile, c’est-à-dire le nombre de nœuds avec les-
quels peut communiquer un nœud influence la probabi-
lité de trouver de l’espace de stockage à proximité ;

• la volatilité des connexions (déconnexions fréquentes et
parfois permanentes dans le cas d’un réseau ad hoc, ou
au contraire connexions stables et quasi permanentes
entre deux nœuds communiquant directement via une
infrastructure) influence la granularité des fragments
à sauvegarder.

Ces critères permettront de définir différentes stratégies de
découverte et d’allocation de ressources suivant les scénarios
considérés.

2.1.2. Recouvrement des données
Comme nous l’avons vu en introduction, chaque proprié-

taire sauvegarde ses données par fragments, au gré des ren-
contres qu’il fait avec des contributeurs. De ce fait, la princi-
pale difficulté de ColBack est de pouvoir recouvrer les don-
nées sauvegardées.Nous faisons l’hypothèse que, dans la plu-
part des scénarios, chaque participant aura accès de manière
intermittente à Internet et qu’il pourra attendre ces moments
pour récupérer ses propres données si nécessaire (rôle du pro-
priétaire), ou en profiter pour mettre à disposition les don-
nées qu’il a lui-même stockées (rôle du contributeur). Une
autre possibilité est que les participants n’aient jamais accès
à Internet et n’établissent des connexions entre eux qu’au
travers d’un réseau ad hoc. Dans [15], nous envisageons deux
approches au recouvrement des données :

• l’approche pro-active (ou push), où le contributeur, dès
qu’il a accès à Internet, envoie les données à leur proprié-
taire dans une « boîte aux lettres » prédéterminée ;

• l’approche réactive (ou pull), où le propriétaire va in-
terroger le réseau de participants; cette recherche pour-
rait se faire par mots clef ou méta données tels que
« l’ensemble des données que j’ai sauvegardées jeu-
di matin ».

L’approche réactive paraît adaptée surtout à des réseaux
de petite échelle. Nous reviendrons dans la section 3 sur les

MoSAIC Progress Report 79/112

solutions permettant de mettre en œuvre la boîte aux lettres
dont il est question dans la première approche.

2.2. Sûreté de fonctionnement du service
ColBack a pour but d’améliorer la sûreté de fonctionne-

ment des services et données supportés par des dispositifsmo-
biles. Dans cette section, nous cherchons donc à définir les
propriétés de sûreté de fonctionnementque l’on peut attendre
de ce service.

2.2.1. Intégrité et cohérence des données
sauvegardées

Le service de sauvegarde doit fournir la garantie que les
données restaurées par un participant sont cohérentes et in-
tègres. Toute corruption de données sauvegardées, qu’elle
soit intentionnelle ou non (par exemple due à une faute logi-
cielle ou matérielle sur la machine stockant les données), doit
pouvoir être détectée par son propriétaire lors de la restau-
ration.

Les protocoles réseau et les supports de stockage utilisent
largement des codes détecteurs d’erreur ou correcteurs d’er-
reur pour tolérer les fautes matérielles ou logicielles. Pour
résister aux corruptions intentionnelles, il est cependant né-
cessaire de garantir également l’authenticité des données : le
ou les propriétaires des données doivent être sûrs qu’il s’agit
bien des données qu’ils ont sauvegardées. Nous présenterons
en section 3.3.1 des techniques permettant d’atteindre cet ob-
jectif.

2.2.2. Confidentialité des données
Comme nous l’avons vu, les participants au service de sau-

vegarde coopérative sont amenés à stocker leurs données sur
les machines d’autres participants en lesquels ils n’ont aucune
relation de confiance a priori. Les informations sauvegardées
peuvent être sensibles et, en tant que telles, ne doivent pas
pouvoir être exploitées par celui qui les stocke. La technique
de fragmentation, redondance, dissémination ou FRD [10]
permetprécisémentde garantir la confidentialitédes données.
Les données sont découpées en fragments puis dispersées
entre différents sites de stockage de telle sorte qu’aucun site
de stockage n’ait d’information sur l’origine des fragments
qu’il stocke. Les données, ou leurs fragments, peuvent être
chiffrés pour en améliorer la confidentialité. Bien entendu,
cette fragmentation complique le recouvrement des données
sauvegardées (section 2.1.2). Nous reviendrons en section 3
sur la mise en œuvre de telles techniques.

La technique de FRD a en outre l’avantage de convenir
à nos hypothèses de départ : compte-tenu des interactions
éphémères entre systèmes mobiles, les données doivent néces-
sairement être fragmentées ; de plus, la mobilité entraînera de
fait une dissémination des données.

2.2.3. Disponibilité des données
Il y a deux manières d’aborder la question de la disponibi-

lité des données sauvegardées. Du point de vue du contribu-
teur se pose la question du choix des données qu’il devra tôt
ou tard effacer pour libérer son espace de stockage. Du point
de vue du propriétaire, il s’agira d’avoir une assurance dans
sa capacité à restaurer ses données ultérieurement. Enfin, la
disponibilité des données ne doit pas être mise en danger par
des malveillances tel que des attaques en déni de service.

Choix des données à effacer. Malgré l’utilisation d’al-
gorithmes visant à optimiser l’utilisation de l’espace de sto-
ckage, il sera très vite nécessaire pour chaque participant
d’effacer certaines données. Le mécanisme qui permettra de
décider des données à effacer n’est cependant pas évident
compte tenu de la contradiction entre les deux hypothèses
suivantes :

1. celui le plus à même de savoir quelle version sauvegar-
dée peut être effacée est le propriétaire des données lui-
même;

2. les participants peuvent être déconnectés et il n’existe a
priori aucune relation de confiance entre eux.

La première hypothèse nous donne à penser que le proprié-
taire des données sauvegardées devrait choisir lui-même la
version de ses données à effacer : il peut s’agir simplement de
la plus vieille sauvegarde, ou bien d’une version plus récente
mais moins importante à ses yeux parce qu’elle ne représente
pas une étape importante de son travail [27]. Cependant,
d’après la deuxième hypothèse formulée, un contributeur (i)
ne peut pas compter sur le propriétaire des données pour le
prévenir de leur péremption et (ii)ne souhaitera pas dépenser
d’énergie pour essayer de reprendre contact avec les proprié-
taires des données qu’il stocke.

Par conséquent, les participants doivent prévoir la possi-
bilité d’une prise de décision unilatérale d’effacer des don-
nées si, par exemple, l’utilisateur des ressources n’a pas pris
contact avec le contributeur depuis un certain temps. Une
sémantique précise des obligations mutuelles devra donc
être définie et nous en verrons des exemples dans la sec-
tion 3.3.3.

Duplication.La fréquence à laquelle un propriétaire sou-
haitant restaurer ses données pourra entrer en relation avec
ses contributeurs a un impact direct sur la disponibilité de ses
données.Pour résoudre ce problème,une solution évidente est
de faire des sauvegardes redondantes, sur des participants in-
dépendants1, permettant ainsi de récupérer ses données mal-
gré la défaillance d’un ou plusieurs de ses contributeurs.

Résistance au déni de service. Plusieurs types d’at-
taques par déni de service peuvent être envisagés sur le ser-
vice de sauvegarde coopérative :

• attaque par égoïsme, où un participantprofite du service
tout en refusant d’y contribuer;

• attaque par inondation, où un propriétaire inonde de re-
quêtes de sauvegarde les autres participants, empêchant
de fait les autres propriétaires de bénéficier du service;

• attaque par rétention de données, où un contributeur
refuse de rendre les données qu’il stocke, intentionnelle-
ment ou pas (par exemple suite à une défaillance).

Nous reviendrons dans la section 3 sur des mécanismes
utilisés dans les systèmes pair-à-pair qui peuvent être mis en
œuvre pour tolérer ce genre de comportement.

3. SYSTÈMES DE SAUVEGARDE
PAIR-À-PAIR

Dans cette section, nous étudions dans quelle mesure l’état
de l’art en systèmes de sauvegarde pair-à-pair fournirait des

1Notons qu’il est par ailleurs nécessaire d’optimiser le volume
global des données sauvegardées.Nous y reviendrons dans la
section 3.2.2.

MoSAIC Progress Report 80/112

mécanismes aptes à faciliter la mise en œuvre d’un service de
sauvegarde coopérative de données pour dispositifs mobiles.
Nous donnons, dans un premier temps, une présentation ra-
pide des différents systèmes de sauvegarde pair-à-pair étu-
diés, puis nous évoquons leur apport dans différents domaines
par rapport à nos objectifs.

3.1. Systèmes étudiés
Plusieurs travaux récents traitent de la sauvegarde coopé-

rative. Ils s’inspirent des nombreux travaux portant sur le
stockage réparti de fichiers [9,17,25] et le partage de fichiers
[2,4]. Tous s’intéressent à la sauvegarde coopérative pour
des stations fixes, ayant un accès très régulier à Internet. Il
n’existe à notre connaissance, aucun projet qui prenne en
compte des systèmes mobiles ayant une connexion intermit-
tente à une infrastructure.

Les premiers travaux décrivant un système de sauvegarde
entre pairs sont ceux de Elnikety et al. [11]. Par rapport aux
fonctions d’un service de sauvegarde (localisation des res-
sources, création de copies des données, restauration des don-
nées), ce système est assez simple. Un serveur central est uti-
lisé pour trouver des partenaires.Aucun effort n’est fait pour
ne sauvegarder que des incréments afin de réduire le temps
nécessaire pour effectuer la sauvegarde; l’intégralité des don-
nées est envoyée aux partenaires de sauvegardes. Les auteurs
décrivent bon nombre d’attaques possibles dont certaines ont
été présentées en section 2.2. Nous reviendrons sur les autres
attaques, plus spécifiques, par la suite.

Le système Pastiche [8] et son extension Samsara [7], sont
beaucoup plus exhaustifs. Les mécanismes de découverte de
ressources,de stockage,et de localisation des données qui sont
proposés sont totalement décentralisés et autogérés. Chaque
nouvel entrant choisi un ensemble de partenaires en prenant
en compte différents critères dont la latence des communica-
tions, et traite ensuite directement avec eux. Des mécanismes
pour minimiser la quantité de données à échanger lors de sau-
vegardes successives sont égalementproposés.Enfin,Samsara
met en œuvre une solution qui résout les problèmes de juste
contribution au service et de résistance aux attaques par déni
de service.

D’autres travaux cherchent à résoudre certaines limita-
tions de Pastiche et Samsara, ou proposent de méthodes al-
ternatives, moins complexes. C’est le cas de Venti-DHash
[29], inspiré par le système d’archivage Venti [24] du système
d’exploitation Plan 9. Il propose un stockage totalement ré-
parti entre tous les participants, au lieu de sélectionner une
fois pour toute un ensemble de partenaires comme le propose
Pastiche. Une approche hybride à la localisation et au sto-
ckage de données est apportée par PeerStore [19] où chaque
participant traite en priorité avec un ensemble de partenaires
sélectionnés au départ (comme dans Pastiche) mais est ca-
pable de ne sauvegarder que les données n’ayant pas encore
été sauvegardées. Enfin, pStore [1] ainsi que ABS [5] s’ins-
pirent des systèmes de gestion des révisions pour proposer,
entre autres, une meilleure utilisation des ressources.

Le système de sauvegarde coopérative FlashBack [20] est
particulièrementproche de nos préoccupations puisqu’il cible
la sauvegarde au sein d’un réseau personnel (PAN). Cepen-
dant, de par les caractéristiques d’un tel réseau, ses objectifs
diffèrent sensiblement des nôtres. Au sein d’un PAN, tous
les dispositifs se font confiance puisqu’ils appartiennentà une
même personne. En outre, les auteurs admettent que l’en-
semble des dispositifs constitutifs d’un PAN est appelé à res-
ter relativement constant dans le temps puisqu’il s’agit des

dispositifs qu’un utilisateur transporte avec lui. Ces deux hy-
pothèses sont en contradiction avec celles que nous faisons :
d’une part, aucune relation de confiance préalable n’est re-
quise entre les participants et d’autre part, ceux-ci sont mo-
biles.Pour ces raisons, nous nous concentrons essentiellement
sur les systèmes de sauvegarde pair-à-pair évoqués précé-
demment.

Par la suite,nous évoquerons les architecturesadoptées par
les différents projets, puis nous présenterons les techniques
qu’ils mettent en œuvre pour atteindre certains des objectifs
évoqués au chapitre précédent.

3.2. Aspects fonctionnels
Nous abordons successivement deux aspects spécifiques à

ces systèmes de sauvegarde pair-à-pair, à savoir : les méca-
nismes de découverte et d’allocation de ressources, et les tech-
niques visant à réduire une duplication inutile des données.

3.2.1. Découverte et allocation de ressources
Parmi les systèmes étudiés, on retrouve deux princi-

pales approches à la répartition des blocs de données
à sauvegarder :

• stockage réparti au sein de groupes particuliers de
participants ou partenaires ;

• stockage réparti entre tous les participants au moyen
d’une table de hachage répartie (ou DHT) qui a pour
propriété de répartir de manière homogène toutes les
données sauvegardées.

Dans le premier cas, les relations entre partenaires sont as-
sez simples : chaque participant choisit, à son entrée, un en-
semble de partenaires puis leur envoie directement, à chaque
sauvegarde, ses données. Le système proposé par Elnikety et
al. se contente d’envoyer à intervalle régulier l’ensemble des
données à sauvegarder. Les autres systèmes, quant à eux,
choisissent les données à transmettre en fonction des versions
précédemment sauvegardées. Dans Pastiche, chaque parti-
cipant choisi également un ensemble de partenaires qui ne
changera pas ou peu par la suite. Enfin, les dispositifs parti-
cipant à FlashBack, au sein d’un PAN, choisissent en priori-
té pour partenaires les dispositifs qui sont le plus souvent à
proximité.

La deuxième approche repose sur une technique fondamen-
tale des réseaux de partage des données pair-à-pair, les « ré-
seaux virtuels » ou overlay networks, abondamment décrits
dans la littérature [26]. Une DHT [25] est un mécanisme de
stockage réparti de blocs de données basé sur un réseau vir-
tuel. Chaque nœud du réseau est responsable des blocs dont
l’identifiant est proche (numériquement) de son identifiant.
Les blocs sont donc répartis de manière homogène dans la
DHT si leurs identifiants sont bien répartis. Venti-DHash et
pStore suivent cette approche.

L’utilisation d’une DHT pour stocker les données sauve-
gardées a deux inconvénients :

• le coût de la migration des données lors de l’entrée ou
du départ d’un participant peut être élevé en termes
d’utilisation de la bande passante [19];

• une DHT répartit automatiquement les données de ma-
nière homogène entre tous les participants, indépendam-
ment de l’espace de stockage qu’il consomme; par consé-
quent, utiliser une DHT empêche d’assurer la justesse
des contributions de chacun.

MoSAIC Progress Report 81/112

Pour ces raisons, PeerStore propose une approche hybride
où les données sont échangées directement entre partenaires,
tandis que les méta-informations relatives aux blocs (en
l’occurrence, les associations entre les identifiants de bloc
et la liste des participants qui en stockent un exemplaire)
sont stockées dans une DHT. Comme nous le verrons par
la suite, cela procure en outre une plus grande flexibilité à
PeerStore.

3.2.2. Réduction de la duplication inutile de données
Alors qu’un certain niveau de redondance des données sau-

vegardées est nécessaire pour tolérer diverses fautes comme
nous l’avons vu en section 2.2.3, il est aussi nécessaire de ne
pas dupliquer inutilement des données entre partenaires ou
participants (dans l’espace)ni entre versions successives d’un
même fichier (dans le temps). Les différents systèmes étudiés
utilisent des mécanismes permettant de contrôler le nombre
d’instances d’un même bloc de données. On parle de support
de stockage à instance unique ou stockage convergent. Cette
propriété est obtenue en indexant les données en fonction de
leur contenu [24].

Cette approche peut s’avérer intéressante lorsque les parti-
cipants ont beaucoup de données en commun. Dans Pastiche
[8], par exemple, les auteurs font l’hypothèse que les partici-
pants vont vouloir sauvegarder toutes les données présentes
sur leur machine.Parmi ces données,une bonne partie du sys-
tème d’exploitation et des applications a des chances d’être
commune à de nombreux participants; des participants colla-
borant sur un même projet ont également beaucoup de don-
nées en commun. Dans cette optique, le stockage à instance
unique a donc un apport considérable.

Toutefois, dans le cadre du système de sauvegarde coopé-
rative que nous envisageons, seules les données critiques des
utilisateurs, le plus souvent des données personnelles, sont à
sauvegarder. On peut donc penser qu’il y aura peu ou pas de
duplication inutile des données entre dispositifs mobiles par-
ticipant. Le phénomène de duplication inutile dans le temps
peut néanmoins être observé égalementdans les scénarios que
nous considérons,par exemple lorsqu’un propriétaire est ame-
né à sauvegarder plusieurs versions successives d’un même
fichier auprès d’un même contributeur.

3.3. Sûreté de fonctionnement
Nous abordons ici les principales techniques décrites

dans la littérature pour garantir les propriétés de sûreté de
fonctionnement que nous avons identifiées en section 2.2.

3.3.1. Intégrité et cohérence
Ces propriétés de sûreté de fonctionnement sont prises en

charge par l’encodage des fichiers à sauvegarder, c’est-à-dire
par le choix des structures de données représentantun fichier.
Chacun des systèmes présentés, mis à part celui d’Elnikety
et al., fragmente systématiquement les fichiers à sauvegarder.
Cela est nécessaire pour réduire la duplication inutile des
données dans l’espace et dans le temps. C’est aussi nécessaire
pour assurer une répartition homogène des données sur une
DHT, et permettre l’établissement de contributions justes
comme nous le verrons par la suite.

pStore utilise des structures de données simples pour repré-
senter les fichiers sauvegardés.Les fichiers sont fragmentés en
blocs dont la taille peut varier. Dans pStore, les participants
sauvegardent en plus des blocs eux-mêmes une liste des blocs

D0 D1

R0

D2 D3

R1

D4

Figure 1. Encodage de plusieurs versions d’une sé-
quence d’octets (fichier) sous forme d’un arbre [24].
Ici, une i-node est partagée entre les deux versions
du fichier (dont les racines sont R0 et R1). Le bloc de
données D3 est également partagé.

qui contient, pour chaque version du fichier considérée, la
liste des identifiants des blocs qui le constituent.Cependant,
chaque liste de blocs est indexée par un condensé du che-
min du fichier qu’elle représente concaténé à la clef privée de
son propriétaire, créant ainsi des espaces de noms de fichiers
propres à chaque utilisateur. En pratique, pour restaurer un
fichier, il faut donc connaître son chemin et disposer de la clef
privée de son propriétaire. Sans cela, il est impossible d’ac-
céder à la liste des blocs du fichier, et donc à ses blocs. C’est
la même technique qui est utilisée par PeerStore et une tech-
nique similaire pour Pastiche.

Dans ABS, chaque fragment sauvegardé est accompagné
d’un bloc de méta-informations. Ces méta-informations sont
celles du fichier dont provient le fragment, ainsi que la po-
sition du fragment dans le fichier. La clef sous laquelle est
stocké l’ensemble est le condensé du contenu du fragment,
ce qui permet de maintenir la propriété d’instance unique de
chaque fragment. Les méta-informations sont chiffrées avec
la clef publique du propriétaire du fichier et l’ensemble (bloc
et méta-informations) est signé avec la clef privée du proprié-
taire. Cette signature garantit l’intégrité de l’ensemble bloc
et méta-informations.

Dans Venti-DHash, le codage des fichiers est assuré par
Venti. Comme dans un système de fichiers classique, les fi-
chiers sont représentés sous la forme d’un arbre dont les
feuilles sont les blocs de données issus de la fragmentation du
fichier (figure 1). Les nœuds intermédiaires sont des nœuds
d’indirection qui contiennent des pointeurs vers leurs blocs
fils. Ici, tous les blocs sont indexés de la même manière, c’est-
à-dire par leur condensé. De plus, tous les blocs ont la même
taille et le support de stockage sous-jacent ne connaît pas
leur sémantique. Pour restaurer une version d’un fichier, il
suffit de connaître l’identifiant de l’i-node racine pour cette
version.

Toutes ces techniques garantissent dans une certaine
mesure l’intégrité des données sauvegardées puisque la
manière d’adresser les blocs est dépendante de leur
contenu (utilisation d’un condensé). Lorsqu’un bloc est res-
tauré, on peut donc immédiatement vérifier qu’il s’agit bien
du bloc demandé. Cependant, seul Pastiche [8] aborde la
question de la cohérence des données perçue par l’utilisateur
telle que nous l’évoquions en section 2.2.1. Étant en partie
implémenté sous la forme d’un système de fichiers, Pastiche
a la possibilité de copier les blocs qui seront modifiés pendant
le processus de sauvegarde, garantissant ainsi la cohérence de
ce qui est sauvegardé.

MoSAIC Progress Report 82/112

3.3.2. Confidentialité des données
Concernant la confidentialité des données, la technique uti-

lisée par la plupart des systèmes de sauvegarde cités et éga-
lement par beaucoup de systèmes de partage de fichiers est
celle du chiffrement convergent. L’objectif est de disposer
d’un méthode de chiffrement qui ne dépende pas de celui qui
effectue le chiffrement.Le chiffrement convergent est donc un
chiffrement symétrique dont la clef est le condensé du bloc
à chiffrer. C’est ensuite ce bloc chiffré qui est stocké chez les
partenaires ou autres participants.Pour désigner puis déchif-
frer un bloc, il est donc nécessaire de connaître son identi-
fiant, c’est-à-dire le plus souvent le condensé du bloc chiffré,
et sa clef, c’est-à-dire le condensé du bloc en clair. Ce couple
est parfois appelé clef-condensé ou CHK (pour content hash
key [2]).

3.3.3. Disponibilité
Dans cette section, nous décrivons les techniques dé-

crites dans la littérature pour améliorer la disponibilité des
données : la duplication et le choix des données à effacer.

Duplication. Pour les systèmes de sauvegarde co-
opérative où chaque nœud choisit un ensemble de
partenaires (Pastiche, PeerStore), le mécanisme de dupli-
cation est relativement simple. Dans Pastiche, chaque nou-
veau participant recherche 5 autres participants ayant un
grand nombre de données en commun avec lui ; ces 5 partici-
pants deviennent alors ses partenaires de sauvegarde. Il peut
donc tolérer la défaillance de 4 de ces nœuds. Dans PeerS-
tore, le choix des partenaires s’effectue d’une manière diffé-
rente. Toutefois, les auteurs précisent qu’idéalement chaque
participant a autant de partenaires que d’exemplaires de
ses données, ce qui nous ramène au même schéma que pour
Pastiche.

Pour les systèmes basés sur une DHT, par hypothèse, l’en-
semble des données stockées dans la DHT est réparti de ma-
nière homogène entre les nœuds.Par conséquent,pour tolérer
le départ ou la défaillance de participants, les données sto-
ckées doivent être dupliquées pour ne pas être perdues. En
pratique, les blocs sont généralement dupliqués par le nœud
qui en est responsable sur un petit nombre de ses voisins dans
l’espace des identifiants, et gardés en cache par les nœuds se
trouvant sur le chemin permettant d’y accéder [9,25,26].

Enfin, il est aussi possible d’utiliser des blocs de parité
ajoutés aux fichiers à sauvegarder [5] ou des codes protégeant
contre la perte de données (erasure codes) qui permettent de
reconstruire un bloc simplement à partir d’un sous-ensemble
des fragments de ce bloc. Venti-DHash utilise cette seconde
possibilité en stockant des fragments de ce bloc sur les succes-
seurs du nœud qui en est responsable.La tolérance à la perte
de fragments peut être ajustée en trouvant un compromis
avec la taille de ces fragments.

ABS, où les données sont stockées dans une DHT, propose
une solution alternative : les propriétaires peuvent choisir la
clef sous laquelle stocker un bloc de données.En premier lieu,
lors de l’insertion d’un bloc dans la DHT, les participants
essayent de l’insérer en prenant pour clef son condensé. Si
cela échoue, par exemple parce que la machine responsable
de cette clef s’est retirée, il est possible de choisir pour nou-
velle clef un condensé de la clef précédente (on parle de reha-
shing), déplaçant de ce fait les données sur un autre nœud.

Choix des données à effacer. Pastiche, pStore et ABS
donnent la possibilité d’effacer des données sauvegardées.
Seuls les propriétaires des données peuvent le faire car les de-

mandes d’effacement doivent être signées avec la clef privée
du propriétaire. De plus, à chaque bloc est associée une liste
des propriétaires afin qu’un bloc ne soit effacé que lorsque
tous ses propriétaires l’ont demandé.

PeerStore, en revanche, ne permet pas d’effacer des don-
nées sauvegardées. L’inclusion d’une telle fonctionnalité est
compliquée par le fait que tous les blocs sauvegardés par
un participant n’ont pas fait l’objet d’un accord avec un
partenaire (section 3.2.2).

3.3.4. Résistance aux attaques en déni de service
La mise en œuvre de mécanismes permettant de résister

aux attaques par déni de service est un sujet à part entière
qui demanderait plus de place pour être traité en détail.Nous
n’aborderons donc ici que les principales solutions proposées
pour chacune des attaques que nous avons identifiées en
section 2.2.3.

Égoïsme et inondation. L’attaque par égoïsme est un
problème rencontré par tous les systèmes de partage de res-
sources, en particulier les systèmes de partage de fichiers. De
nombreuses solutions ont été proposées.Nous ne nous intéres-
sons ici qu’à celles dédiées aux systèmes de sauvegarde.

Il faut d’abord remarquer qu’il est pratiquement impos-
sible de garantir l’équité des contributions dans une DHT :
par hypothèse, toutes les données sont réparties de manière
homogène entre les nœuds, indépendamment des ressources
utilisées par le nœud. Par conséquent, les systèmes pStore et
Venti-DHash ne sont pas résistants à ce type d’attaque. Ils se
placent dans le schéma de la « tragédie des biens communs »
décrite par Hardin [13] : l’espace de stockage est un bien com-
mun, son coût d’utilisation est partagé entre tous et l’intérêt
de chaque participant est donc de profiter de cette ressource.
La technique de rehashing d’ABS (cf. section 3.3.3) peut ser-
vir à équilibrer la charge sur la DHT mais elle ne prend pas
en compte l’utilisation des ressources de chacun et est diffici-
lement contrôlable.

PeerStore propose une solution assez simple : tous les
échanges au sein d’un couple de partenaires doivent être sy-
métriques, c’est-à-dire que chacun doit offrir la même quan-
tité d’espace que ce qu’il consomme. Pour trouver des parte-
naires, chaque nouvel entrant diffuse une offre pour une cer-
taine quantité d’espace de stockage et reçoit par les intéressés
des propositions incluant une offre qui peut être différente.
C’est au demandeur de décider si l’échange lui convient.

Pastiche ne traite pas ce problème mais Samsara ap-
porte des solutions. Les auteurs y proposent l’établissement
d’échanges symétriques par l’obtention d’un droit au sto-
ckage représenté par une sorte de capacité lorsqu’un contri-
buteur s’engage à stocker des données. Les droits obtenus
par un contributeur peuvent être cédés, lorsqu’il prend le rôle
de propriétaire, à un autre participant. Enfin, il est possible
à chaque participant de vérifier que ses droits au stockage
sont respectés. La littérature des systèmes pair-à-pair de par-
tage de fichiers décrit des solutions plus élaborées basées sur
les notions de confiance, de réputation, ou de micro-écono-
mie [12,18].

Les propositions basées sur des rapports symétriques [7,19]
ont l’avantage d’être résistantes aux attaques par inondation,
où un nœud cherche à utiliser toutes les ressources du réseau.
Au contraire, les DHT ne sont pas résistantes aux attaques
par inondation de par la répartition homogène des données
qu’elles font.

Rétention de données. Elnikety et al. insistent sur la
nécessité de pouvoir tolérer la rétention non intentionnelle,

MoSAIC Progress Report 83/112

par exemple lorsqu’elle est due à des déconnexions, tout en
étant en mesure de « punir » les abus.

Les solutions qu’ils proposent sont d’une part de vérifier
que les partenaires stockent bel et bien les données qu’ils sont
censés stocker, et d’autre part d’introduire des règles pour la
tolérance aux fautes temporaires.La vérification des données
sauvegardées se fait par défis réguliers, c’est-à-dire par l’envoi
de demandes de lecture d’un bloc choisi au hasard au contri-
buteur. La tolérance aux fautes temporaires (déconnexions)
se fait par l’établissement d’une période de grâce pendant la-
quelle un participant peut être indisponible sans pour autant
que ses données soient effacées. Cependant, ce mécanisme
pourrait être utilisé pour profiter des ressources disponibles
sans y contribuer. Par conséquent, les auteurs proposent en
outre de définir une période d’essai, plus longue que la pé-
riode de grâce, pendant laquelle les sauvegardes et défis sont
autorisés mais pas les restaurations.

Cette technique des défis est reprise par l’ensemble des
autres systèmes de sauvegarde coopérative étudiés. En re-
vanche, au lieu de demander la lecture d’un seul bloc par
défi, les autres systèmes envoient typiquement une liste de
blocs ; en réponse, ils reçoivent une simple signature de l’en-
semble de ces blocs, ce qui limite l’utilisation de la bande pas-
sante [7,19].

En revanche, d’autres systèmes proposent des méthodes de
tolérance aux déconnexions et de punition associée. Samsara
[7] en particulier propose une punition progressive pour les
participants ne répondant pas, plutôt que l’approche « tout
ou rien » de la période de grâce. Dans Samsara, lorsqu’un
nœud n’arrive pas à joindre un de ses partenaires, il détruit
un bloc choisi au hasard. La probabilité d’effacement d’un
bloc donné est choisie telle que, compte tenu du nombre de
copies des données du nœud déconnecté, la probabilité qu’un
bloc ait été effacé de chaque copie ne devient significative
qu’après un nombre important de non-réponses auprès de ses
partenaires. Là encore, PeerStore utilise la même approche.

4. CONCLUSIONS ET FUTURES
DIRECTIONS

Les systèmes de sauvegarde coopérative que nous venons
de présenter sont une source d’inspiration importante pour
ColBack. Toutefois, certaines solutions proposées par ceux-
ci ne correspondent pas à nos objectifs et un certain nombre
de questions restent ouvertes pour prendre en compte le fait
que les dispositifs mobiles seront peu, voire jamais, connectés
à Internet.Nous présentons ici les pistes de recherche envisa-
gées pour chacun de ces problèmes.

Points communs et différences entre pair-à-pair et
ad hoc. Les réseaux ad hoc de dispositifs mobiles peuvent
être vus comme une forme de réseau pair-à-pair puisque les
dispositifs interagissent d’égal à égal, de manière décentrali-
sée. Cependant, ce parallèle a ses limites dont certaines sont
décrites dans la littérature [16]. La qualité et la bande pas-
sante des connexions sont évidemment moins bonnes dans
un réseau ad hoc qu’elles ne peuvent l’être sur Internet. Les
chemins à plusieurs sauts connectant deux dispositifs sont
particulièrement instables. De plus, l’ensemble des disposi-
tifs présents dans l’entourage d’un dispositif est en constante
évolution. Beaucoup de réseaux pair-à-pair font au contraire
l’hypothèse de connexions relativement stables et d’un taux
de renouvellementdes participantsassez faible.Cela est parti-
culièrement le cas pour les réseaux virtuels dits « structurés »
tels que ceux sur lesquels reposent les DHT2. Par ailleurs, les

réseaux virtuels font généralement l’hypothèse d’un méca-
nisme de désignation fixe (IP ou autre) qui n’est pas forcé-
ment disponible sur un réseau ad hoc.

La consommation énergétique est une préoccupation cru-
ciale dans le cadre de systèmes mobiles, alors qu’elle est
ignorée des travaux portant sur les systèmes pair-à-pair clas-
siques. Il nous faudra tenir compte de cet aspect dans la
conception de ColBack et de ses protocoles, en nous inspi-
rant d’autres systèmes ayant des buts et des contraintes simi-
laires [20,21].

Découverte et allocation de ressources en mode ad

hoc. La découverte de ressources sur les réseaux pair-à-pair
diffère également grandement de ce qui peut se faire sur un
réseau ad hoc. Pour participer à un réseau virtuel, il est géné-
ralement nécessaire et suffisant de connaître un participant,
par exemple par son adresse IP, laquelle peut être obtenue au-
près d’un serveur central de listes de participants, ou encore
par diffusion de requêtes de découverte dans un réseau local
[26]. Dans un réseau ad hoc, la découverte de dispositifs mo-
biles dans son environnement physique est fournie par le pro-
tocole réseau [16]. La découverte de ressources est cependant
plus complexe du fait de l’instabilité du réseau et fait l’objet
de nombreux travaux dont nous pourrons nous inspirer [14].

Bien entendu, à cause du caractère dynamique des réseaux
ad hoc, les algorithmes d’allocation de ressources des réseaux
pair-à-pair (DHT, ou au sein d’un groupe de partenaires) ne
sont pas adaptés à un contexte ad hoc. Pour la sauvegarde et
le recouvrement de données en mode ad hoc, nous pourrons
tirer profit d’un grand nombre de travaux relatifs à la dissé-
mination de données au sein d’une communauté de systèmes
mobiles communiquants [3,21,22].

Adaptation aux moyens de communication dispo-
nibles. Dans la majorité des scénarios que nous considérons,
les dispositifs participant auront un accès intermittent à In-
ternet, ou seront de temps en temps connectés à une station
elle-même connectée. Ces instants devront donc être mis à
profit pour améliorer la qualité du service de sauvegarde.Un
scénario possible est que le système mobile envoie dans la
« boîte aux lettres » de leur propriétaire (cf. section 2.1.2)
les données qu’il a sauvegardées. Dans cette situation, les
travaux présentés sur la sauvegarde et le stockage répartis
pair-à-pair pourraient constituer une source d’inspiration im-
portante dans la mise en œuvre du mécanisme de boîte aux
lettres. Cependant, le système mobile lui-même ne pourrait
pas contribuer à ce service de stockage réparti compte-tenu
du fait qu’il ne sera que rarement connecté à Internet.

Modèle de confiance. Les modèles d’échange présentés
dans la section précédente (mécanisme d’offre et de demande,
échanges symétriques [19], établissementde liens symétriques
[7], mécanisme de défis) font tous l’hypothèse que les par-
ticipants sont le plus souvent connectés entre eux. Pour les
scénarios que nous envisageons (forte mobilité, renouvelle-
ment constant du voisinage des dispositifs, établissement de
connexions éphémères entre participants), ces mécanismes
ne sont pas applicables. Des solutions pour dispositifs mo-
biles, inspirées des modèles utilisés dans les réseaux pair-à-
pair, existent : dans [28], les auteurs proposent que des infor-
mations de réputation soient échangées entre participants,
au gré des rencontres. Dans [15], nous proposons que cha-
cun porte sa propre information de réputation, et que celle-

2 Il existe aussi des réseaux virtuels pair-à-pair dits « non
structurés », c’est-à-dire ne reposant pas sur l’utilisation
d’algorithmes de routage déterministes [4].

MoSAIC Progress Report 84/112

ci puisse être vérifiée par les autres participants.La définition
d’un tel mécanisme de réputation auto-portée est encore un
problème ouvert.

L’utilisation du mécanisme de boîte aux lettres sur Inter-
net engendre des défis supplémentaires quant à la conception
d’un modèle de confiance. Lorsqu’un dispositif propriétaire
recouvre ses données via Internet, il doit ainsi être capable
de récompenser (i) les machines de bureau ayant contribué
au service de boîte aux lettres sur Internet et (ii) le dispositif
mobile contributeur qui a porté ses données jusqu’à Internet.
Il s’agit là aussi d’un problème ouvert.

Architecture. En termes d’architecture logicielle, l’inté-
gration du service de sauvegarde au système d’exploitation
nous semble être une voie à explorer. La sauvegarde et l’ar-
chivage ont beaucoup en commun avec la gestion des ver-
sions. La littérature en matière de systèmes de fichiers gé-
rant les versions [6,8,23,27] a montré combien cette approche
offrait d’une part un meilleur contrôle sur les données (par
exemple la possibilité de faire de l’« archivage exhaustif »
des versions), et d’autre part des opportunités pour optimiser
la sauvegarde de versions successives d’un fichier, en termes
d’espace disque consommé et de performance.

BIBLIOGRAPHIE
[1] C. BATTEN, K. BARR, A. SARAF, S. TREPTIN. pStore : A

secure peer-to-peer backup system. MIT-LCS-TM-632,
MIT Laboratory for Computer Science, December
2001.

[2] K. BENNETT, C. GROTHOFF, T. HOROZOV, J. T. LINDGREN.
An Encoding for Censorship-Resistant Sharing. 2003.

[3] M. BOULKENAFED, V. ISSARNY. AdHocFS : Sharing Files
in WLANs. Proc. of the 2nd Int. Symp. on Network
Computing and Applications, 2003.

[4] Y. CHAWATHE, S. RATNASAMY, L. BRESLAU, S. SHENKER.
Making Gnutella-like P2P Systems Scalable. Proc. of
ACM SIGCOMM 2003, pages 407–418, 2003.

[5] J. COOLEY, C. TAYLOR, A. PEACOCK. ABS : The
Apportioned Backup System. MIT Laboratory for
Computer Science, 2004.

[6] B. CORNELL, P. DINDA, F. BUSTAMANTE. Wayback : A
User-level Versioning File System for Linux. Proc. of
the USENIX Annual Technical Conference, FREENIX
Track, pages 19–28, 2004.

[7] L. P. COX, B. D. NOBLE. Samsara :Honor Among Thieves
in Peer-to-Peer Storage. Proc. 19th ACM SOSP, pages
120–132, 2003.

[8] L. P. COX, B. D. NOBLE. Pastiche : Making backup cheap
and easy. 5th USENIX OSDI , pages 285–298, 2002.

[9] F. DABEK, M. F. KAASHOEK, D. KARGER, R. MORRIS, I.
STOICA. Wide-area cooperative storage with CFS. Proc.
18th ACM SOSP, pages 202–215, 2001.

[10] Y. DESWARTE, L. BLAIN, J-C. FABRE. Intrusion Tolerance
in Distributed Computing Systems. Proc. of the IEEE
Symp. on Research in Security and Privacy, pages
110–121, 1991.

[11] S. ELNIKETY, M. LILLIBRIDGE, M. BURROWS. Peer-to-peer
Cooperative Backup System. Proc. of USENIX FAST
2002, 2002.

[12] C. GROTHOFF. An Excess-Based Economic Model
for Resource Allocation in Peer-to-Peer Networks.
Wirtschaftsinformatik, 3-2003, June 2003.

[13] G. HARDIN. The Tragedy of the Commons.
Science, (162), 1968.

[14] A. HELMY. Efficient Resource Discovery in Wireless
AdHoc Networks :Contacts Do Help. Kluwer Academic
Publishers, May 2004.

[15] M-O. KILLIJIAN, D. POWELL, M. BANÂTRE, P. COUDERC,
Y. ROUDIER. Collaborative Backup for Dependable
Mobile Applications. Proc. of 2nd Int. Workshop
on Middleware for Pervasive and Ad-Hoc
Computing (Middleware 2004), pages 146–149, 2004.

[16] G. KORTUEM, J. SCHNEIDER, D. PREUITT, T. G. C.
THOMPSON, S. FICKAS, Z. SEGALL. When Peer-to-Peer
comes Face-to-Face : Collaborative Peer-to-Peer
Computing in Mobile Ad-hoc Networks. Proc. of P2P,
2001.

[17] J. KUBIATOWICZ, D. BINDEL, Y. CHEN, S. CZERWINSKI,
P. EATON, D. GEELS, R. GUMMADI, S. RHEA, H.
WEATHERSPOON, W. WEIMER, C. WELLS, B. ZHAO.
OceanStore : An Architecture for Global-Scale
Persistent Storage. Proc. of the 9th ASPLOS, pages
190–201, 2000.

[18] K. LAI, M. FELDMAN, J. CHUANG, I. STOICA. Incentives for
Cooperation in Peer-to-Peer Networks. Workshop on
Economics of Peer-to-Peer Systems, 2003.

[19] M. LANDERS, H. ZHANG, K-L. TAN. PeerStore : Better
Performance by Relaxing in Peer-to-Peer Backup. Proc.
of the 4th P2P, pages 72–79, 2004.

[20] B. T. LOO, A. LAMARCA, G. BORRIELLO. Peer-To-Peer
Backup for Personal Area Networks. IRS-TR-02-015,
UC Berkeley; Intel Seattle Research (USA), May 2003.

[21] E. B. NIGHTINGALE, J. FLINN. Energy-Efficiency and
Storage Flexibility in the Blue File System. Proc. of the
6th OSDI , 2004.

[22] M. PAPADOPOULI, H. SCHULZRINNE.
Seven Degrees of Separation in Mobile
Ad Hoc Networks. IEEE Conference on Global
Communications (GLOBECOM), 2000.

[23] Z. PETERSON, R. BURNS. Ext3cow : The Design,
Implementation, and Analysis of Metadata for a
Time-Shifting File System. HSSL-2003-03, Hopkins
Storage Systems Lab, Department of Computer Science,
Johns Hopkins University, USA, 2003.

[24] S. QUINLAN, S. DORWARD. Venti : A new approach to
archival storage. Proc. of the 1st USENIX FAST, pages
89–101, 2002.

[25] S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP, S.
SHENKER. A Scalable Content-Addressable Network.
Proc. of ACM SIGCOMM 2001, 2001.

[26] A.ROWSTRON, P.DRUSCHEL. Pastry :Scalable,distributed
object location and routing for large-scale peer-to-peer
systems. Proc. of the 18th IFIP/ACM Int. Conference
on Distributed Systems Platforms (Middleware 2001),
pages 329–350, 2001.

[27] D. S. SANTRY, M. J. FEELEY, N. C. HUTCHINSON, A. C.
VEITCH, R. W. CARTON, J. OFIR. Deciding when to forget
in the Elephant file system. Proc. 17th ACM SOSP,
pages 110–123, 1999.

[28] J. SCHNEIDER, G. KORTUEM, J. JAGER, S. FICKAS, Z.
SEGALL. Disseminating Trust Information in Wearable
Communities. 2nd Int. Symp. on Handheld and
Ubiquitous Computing (HUC2K), 2000.

[29] E. SIT, J. CATES, R. COX. A DHT-based Backup System.
MIT Laboratory for Computer Science, August 2003.

MoSAIC Progress Report 85/112

MoSAIC Progress Report 86/112

Storage Tradeoffs in a Collaborative Backup Service
for Mobile Devices

Ludovic Courtès Marc-Olivier Killijian David Powell

first-name.last-name@laas.fr
LAAS-CNRS

7 Avenue du Colonel Roche
31077 Toulouse cedex 4

France

ABSTRACT
Mobile devicesare increasingly relied on but are used in

contexts that put them at risk of physical damage, loss or
theft. Yet, due to physical constraints and usage patterns,
fault tolerance mechanisms are rarely available for such
devices. We consider that this gap can be filled by exploit-
ing spontaneous interactions to implement a collaborative
backup service. We define the constraints implied by the
mobile environment and analyze how they translate into
the storage layer of such a backup system. The design op-
tions of the envisaged storage mechanisms are examined
based on input from recent work on peer-to-peer systems,
distributed file systems, and archival and versioning soft-
ware. We present our prototype implementation of the
storage layer and evaluate the impact of several compres-
sion methods. We conclude that whereas some design pat-
terns and techniques used in prior work map well to the
requirementsof a collaborative backup service for mobile
devices, several new issues are raised, e.g., regarding the
need for dynamic replica scheduling and dissemination,
and tradeoffsbetween confidentiality,and availability and
freshness.

Keywords: Mobile computing,nomadic computing,data
back-up, peer-to-peer, fault-tolerance, dependability.

1. INTRODUCTION
Embedded computers are becoming widely available,

in variousportable devices: personal information systems
(PDAs, “smart phones”),digital cameras,portable storage
units (e.g., music players), laptops. Most of these devices
are now able to communicate using wireless network
technologies such as IEEE 802.11, Bluetooth, or Zigbee.
Users use such devices to capture more and more data and
are becoming increasingly dependent on them. Backing
up the data stored on these devices is often done in anad
hocfashion: each protocol and/or application has its own
synchronization facilitieswhich one can use when a sister
device, usually a desktop computer, is reachable. Howev-

er, newly created data may be held on the mobile device
for a long time before it can be copied. This may be a
serious issue since the contexts in which mobile devices
are used increase the risks of them being lost, stolen or
broken.

Our goal is to leverage the ubiquity of communicating
mobile devices to implement acollaborativebackup ser-
vice. In such a system,devices participating in the service
would be able to use other devices’ storage to back up
their own data. Of course, each device would have to con-
tribute some of its own storage resources for others to be
able to benefit from the service.

Wired peer-to-peer systems (i.e., on the Internet) paved
the way for such services. They showed that excess re-
sources, such as storage, available at the peer hosts could
be leveraged to support wide-scale resource sharing. Al-
though the amount of resources available on a mobile
device is significantly smaller than that of a desktop ma-
chine, we believe that this is not a barrier to the creation
of mobile peer-to-peer services. They have also shown
that wide-scale services could be created without relying
on any infrastructure (other than the Internet itself), in a de-
centralized,self-administered way. A great benefit of this
is that users can participate without having to go through
an explicit registration phase. Additionally, from a fault-
tolerance viewpoint, peer-to-peer systems provide a high
diversity of nodes with independent failure modes [17].

In a mobile context, we believe there are additional rea-
sons to use a collaborative service. For instance, access
to a cell phone communication infrastructure (GPRS,
UMTS, etc.) may be costly (especially for non-produc-
tive data transmission “just” for the sake of backup)
while proximity communications are not (using 802.11,
Bluetooth, etc.). Similarly, short-distance communication
technologies are often more efficient than long-distance
ones: they offer a higher throughput (e.g., 54 Mbps with
802.11g) and often require less energy. In some scenarios,
infrastructure-based networks are not available but neigh-

MoSAIC Progress Report 87/112

boring devices might be accessible usingad hocrouting
or even single-hop communications.

Our target application-layer service raises a number of
interesting issues, in particular relating to trust manage-
ment, resource accounting and cooperation incentives.
While considerable work has been devoted to these top-
ics, in particular with respect to peer-to-peer file sharing
systems, we believe that the mobile context raises novel
issues due to, for instance, mostly disconnected operation
and the consequent difficulty of resorting to centralized or
on-line solutions. A preliminary analysis of these issues
may be found in [8,18]. In this paper, the focus is on the
mechanisms employed at the storage layer of such a ser-
vice. We investigate the various design options at this lay-
er and discuss potential trade-offs.

In Section 2, we will give an overview of a tentative
design for the cooperative backup service and detail the
requirements of this service on the underlying storage lay-
er. Section 3 presents several design options for this lay-
er based on the current literature and the particular needs
that arise from the kind of devices we target. In Section
4, using a flexible prototype of this storage layer, we will
evaluatesome storage layer algorithmsand discussthe nec-
essary tradeoffs. Finally, we will conclude on our current
work and sketch future research directions.

2. COLLABORATIVE BACKUP FOR
MOBILE DEVICES

This section gives an overview of the service envisaged
and related works. Then we describe the requirementswe
have identified for the storage layer of the service.

2.1. Design Overview and Related Work
Our goal is to design and implement a collaborative

backup system for communicatingmobile devices. In this
model, mobile devices can play the role of acontributor,
i.e., a device that offers its storage resources to store data
on behalf of other nodes, and adata owner, i.e., a mobile
device asking a contributor to store some of its data on
its behalf. Practically, nodes are expected to contribute
as much as they benefit from the system; therefore, they
should play both roles at the same time.

For the service to effectively leverage the availability of
neighboring communicating devices, the service has to be
functional even in the presence ofmutually suspicious de-
vice users. We want users with no prior trust relationships
to be able to use the service and to contribute to it harm-
lessly. This is in contrast with traditional habits where
users usually back up their mobile devices’ data only on
machines they trust, such as their workstation.

This goal also contrasts with previous work on collab-
orative backup for a personal area network (PAN), such
as FlashBack [23], where participating devices are all

trustworthy since they belong to the same user. However,
censorship-resistant peer-to-peer file sharingsystemssuch
as GNUnet [2] have a similar approach to security in the
presence of adversaries.

Recently, a large amount of research has gone into the
design and implementation of Internet-based peer-to-peer
backup systems that do not assume prior trust relation-
ships among participants [1,9,11,20]. There is, however,
a significant difference between those Internet-based sys-
tems and what we envision:connectivity. Although these
Internet-based collaborative backup system are designed
to tolerate disconnections, they do assume a high-level of
connectivity. Disconnections are assumed to be mostly
transient, whether they be non-malicious (a peer goes off-
line for a few days or crashes) or malicious (a peer pur-
posefully disconnects in order to try to benefit from the
system without actually contributing to it).

In the context of mobile devices interacting sponta-
neously, connections are by definition short-lived, unpre-
dictable, and very variable in bandwidth and reliability.
Worse than that, a pair of peers may spontaneously en-
counter and start exchanging data at one point in time and
then never meet again.

To tackle this issue, we envision scenarios where each
mobile device canintermittentlyaccess the Internet. The
backup software running in those mobile devices is expect-
ed to take advantage of such an opportunity by re-estab-
lishing contacts with mobile devices encountered earlier.
For instance, a contributor may wish to send data stored
on behalf of another node to some sort ofrepositoryasso-
ciated with the owner of the data. Contributors can thus
asynchronouslypushdata back to their owners. The repos-
itory itself can be implemented in various ways: an email
mailbox, an FTP server, a fixed peer-to-peer storage sys-
tem, etc. Likewise, data owners may sometimes need to
query their repository as soon as they can access the Inter-
net in order topull (i.e., restore) their data back.

In the remainder of this paper, we will focus on the
design of the storage layer of this service on both the data
owner and contributor sides. The next section will detail
requirements for the design of that layer that arise from
the constraints we have just identified.

2.2. Requirements of the Storage Layer
We now identify several requirements to be fulfilled by

the mechanisms employed at the storage layer.
Storage efficiency.Backing up data should be as ef-

ficient as possible. Data owners should neither ask con-
tributors to store more data than necessary nor send exces-
sive data over the wireless interface. Failing to do so will
waste energy and result in inefficient utilization of the
storage resources available in the node’s vicinity. The im-
pact of inefficient storage on energy consumption may be

MoSAIC Progress Report 88/112

important since (i) storage cost will translate into transmis-
sion costs and (ii) we can reasonably assume that energy
consumption on mobile devices is dominated by wireless
communication costs [31]. As a consequence,compres-
sion techniqueswill be a key point of the design and im-
plementation of the storage layer on the data owner side.

Small data blocks. Both the occurrence of encounters
of a peer within radio range and the lifetime of the re-
sulting connections are unpredictable. Consequently, the
backup application running on a data owner’s device must
be able to conveniently split the data to be backed up into
small pieces to ensure that it can actually be transferred
to contributors. Ideally, data blocks should be able to fit
within the underlying network layer’s maximum transmis-
sion unit or MTU (2304 octets for IEEE 802.11 [4]); larg-
er payloads get fragmented into several packets, which
introduces overhead at the MAC layer, and possibly at the
transport layer too.

Backup atomicity. Unpredictability and the potential-
ly short lifetime of connections, compounded with the
possible use of differential compression to save storage
resources, mean that it is unlikely to be practical to store
a set of files, or even one complete file, on a single peer.
Indeed, it may even be undesirable to do so in order to pro-
tect data confidentiality [10]. Furthermore, it may be the
case that files are modified before their previous version
has been completely backed up.

The dissemination of data chunks as well as the coex-
istence of several versions of a file must not have a neg-
ative impact on backup consistency as perceived by the
end-user: a file should be either retrievableandcorrect or
unavailable. This corresponds to theatomicityproperty,
one of the four ACID properties1commonly referred to in
transactional database management systems. Theconsis-
tencyproperty (i.e., the fact that the distributed store, con-
sisting of various contributors, remains in a “legal” state
after new data are backed up onto it) is also obviously de-
sirable.

Error detection. Accidental modifications of the data
are assumed to be handled by the various lower-level soft-
ware and hardware components involved, such as the
communication protocol stack, the storage devices them-
selves, the operating system’s file system implementation,
etc. However, given that data owners are to hand their
data to untrusted peers, the storage layer must provide all
the mechanisms necessary to ensure thatmaliciousmod-
ifications to their data are detected with a high probabil-
ity. Consequently, error-detection codes such as CRCs,
which are designed to handle random errors,are not appro-
priate.

Encryption. Similarly, due to the lack of trust in con-
tributors, data owners may wish to encrypt their data in

1ACID: atomicity, consistency, isolation, durability.

order to enforce their privacy. While there exist scenarios
where there is sufficient trust among the participants such
that encryption is not compulsory (e.g., several people in
the same working group), encryption is a requirement in
the general case.

Beside encryption, data fragmentation and dissemina-
tion amongst multiple devices also contribute to improv-
ing data confidentiality [10].

Backup redundancy. Redundancy is theraison d’être
of any data backup system, but when the system is based
on cooperation, the backups themselves must be made
redundant. First, the cooperative backup software must
account for the fact that contributors may crash accident-
ly and lose the data stored on behalf of various data own-
ers. Second, contributor availability is unpredictable in a
mobile environment without continuous Internet access.
Third, contributors are not fully trusted and may behave
maliciously. The literature on Internet-based peer-to-peer
backup systems describes a range of attacks against data
availability, ranging from data retention (i.e.,a contributor
purposefully refuses to allow a data owner to retrieve its
data) to selfishness (i.e., a participant refuses to spend en-
ergy and storage resources storing data on behalf of oth-
er nodes) [9,11]. All these uncertainties make redundancy
even more critical in a cooperative backup service for mo-
bile devices.

3. DESIGN OPTIONS FOR THE
STORAGE LAYER

In this section, we present design options able to satisfy
each of the requirements we have identified for the stor-
age layer of our cooperative backup service,namely: stor-
age efficiency, small data blocks, backup atomicity, error
detection, encryption and backup redundancy.

3.1. Storage Efficiency
In wired distributed cooperative services, storage effi-

ciency is often addressed by ensuring that a given content
is only stored once. This property is known assingle-
instance storage[5]. It can be thought of as a form of
compression among several datum units. In a file sys-
tem, where the “datum unit” is the file, this means that
a given content stored under different file names will be
stored only once. On Unix-like systems, revision control
and backup tools implement this property by using hard
links: files unchanged across revisions/snapshots are
hard-linked instead of being duplicated [24,29]. Thus, the
compression provided by single-instance storage can be
considered as compression in space (i.e., acrossfile bound-
aries and potentially across peer boundaries) and in time
(i.e., across subsequent versions of a file).

The single instance property may also be provided at a
sub-file granularity, instead of at a whole file level. This

MoSAIC Progress Report 89/112

allows reduction of unnecessary duplication with a finer-
grain. Archival systems [27,38], peer-to-peer file sharing
systems [2], peer-to-peer backup systems [9,20], network
file systems [26], and remote synchronization tools [34]
have been demonstrated to benefit from single-instance
storage, either by improving storage efficiency or reduc-
ing bandwidth.

Compression based on resemblance detection, that is,
differential compression, or delta encoding, has been ex-
tensively studied [16]. Proposals have been made to com-
bine it with other compression techniques such as single-
instance storage, even in situations that do not strictly re-
late to versioning [19,38]. For each file to be stored, an
exhaustive search over all stored files is performed to find
the most similar file so that only the difference between
these two files is stored. However, this technique is unsuit-
able for our environment since (i) it requires access to all
the files already stored, (ii) it is CPU- and memory-inten-
sive, and (iii) the resultingdelta chainsweaken data avail-
ability [38].

Traditional lossless compression (i.e.,zip variants), al-
lows the elimination of duplicationwithinsingle files. As
such, it naturally complements inter-file and inter-version
compression techniques [38]. Section 4 contains a discus-
sion of the combination of both techniques in the frame-
work of our proposed backup service.

Since files are typically smaller than 8 KiB [12] while
lossless compressors usually operate on larger input
buffers (for instance,zlib uses a 64 KiB buffer for the
input data), compressing a bunch of files (e.g., by com-
bining tar andgzip) rather than individual files usually
yieldsbetter compression ratios [19].However,we did not
consider this approach suitable for mobile device backup
since it may be more efficient to backup only those files
(or part of files) that have changed.

There exist a number of application-specificlossless
compression algorithms, such as those used by the Free
Lossless Audio Codec (FLAC) and by the Portable Net-
work Graphics format (PNG). Application-specific dif-
ferential algorithms have also been developed, e.g., for
XML trees [6] and for executable files [14]. There is also
a plethora oflossycompression algorithms for audio sam-
ples, bitmap images, videos, etc.

While using such type-specific algorithmsmight be ben-
eficial in some cases, in particular, for mobile devices that
are capable of digital acquisition (e.g., digital cameras,
sound recorders,etc.),we have focused instead on generic
lossless compression (e.g., as implemented, bygzipand
the underlyingzlib library)which we expect to be valuable
with most data types.

3.2. Small Data Blocks
We now consider the options available to (1) chop input

streams into small blocks, and (2) create appropriate meta-
data describing how those data blocks should be reassem-
bled to produce the original stream.

3.2.1. Chopping Algorithms

As stated in Section 2.2, the size of blocks that are to
be handed to contributors of the backup service has to be
bounded, and preferably small, in order to match the na-
ture of peer interactions in a mobile environment. There
are several ways to cut input streams into bounded blocks.
Which algorithm is chosen has an impact on the improve-
ment yielded by single-instance storage.

Splitting input streams into fixed-size blocks is a natural
solution. When used in conjunctionwith a single-instance
storage mechanism, it has been shown to improve the
amount of unnecessary duplication that can be eliminated
across files or across file versions [27]. On the other hand,
Manber proposed a content-based stream chopping algo-
rithm [25] that yields better duplication detection across
files. The algorithm determines block boundaries by com-
puting Rabin fingerprints on a sliding window of the in-
put streams. This technique is sometimes referred to as
content-defined blocks[19]. Various applications such as
archival systems [38], network file systems [26] and back-
up systems [9] benefit from this algorithm. Manber’s al-
gorithm only allows the specification of an average block
size (assuming random input); “pathological” input may
yield very small or, conversely, very large blocks. There-
fore, lower and upper boundarieson the acceptable size of
blocks yielded by this algorithm need to be defined [26].
Section 4 provides a comparison of both algorithms.

3.2.2. Stream Meta-Data
Placement of stream meta-data.Stream meta-data

is information that describes which blocks comprise the
stream and how they should be reassembled to produce
the original stream. Such meta-data can either be em-
bedded along with each data block or stored separately.
The main evaluation criteria of a meta-data structure are
read efficiency (e.g., algorithmic complexity of stream re-
trieval, number of accesses needed) and its size (e.g., how
the amount of meta-data grows compared to data).

In Hydra [37], the author proposes a solution where
each block (actually each share) contains information as
to where it belongs: the path of the file it belongs to, the
file permission, the location of other shares, etc.

In our opinion, such an approach is inflexible. We sug-
gest instead that stream meta-data (i.e., which blocks com-
prise a stream) should be separated both from file meta-
data (i.e., file name, permissions,etc.) and the file content.
This has several advantages:

MoSAIC Progress Report 90/112

D0 D1

R0

D2 D3

R1

D4

Figure 1. A tree structure for stream meta-data.
Leaves represent data blocks while higher blocks are
meta-data blocks.

• It allows a data block to be referenced multiple times
and hence, allows for single-instance storage at the
block level.

• It promotesseparation of concerns. For instance,
file-level meta-data (e.g., file path, modification
time, permissions) may change without having to
modify the underlying data blocks, which is impor-
tant in scenarios where propagating such updates
would be next to impossible. Separating meta-data
and data also leaves the possibility of applying the
same “filters” (e.g., compression, encryption), or
to use similar redundancy techniques for both data
and meta-data blocks. This will be illustrated in Sec-
tion 4.

It is worth noting that this principle has been followed
by on-disk file systems. This made it easy, for instance,
to augment regular file systems with versioning facili-
ties [30].

Indexing individual blocks. The separation of data
and meta-data means that there must be a way for meta-
data blocks to refer to data blocks: data blocks must be
indexed ornamed1. The block naming scheme must ful-
fill several requirements. First, it must not be based on
non-backed-up user state which would be lost during a
crash. Most importantly, the block naming scheme must
guarantee thatname clashesamong the blocks of a data
owner cannot occur. In particular, block IDs must remain
valid in time so that a given block ID is not wrongfully re-
used when a device restarts the backup software after a
crash. Given that data blocks will be disseminated among
several peers and will ultimately migrate to their owner’s
repository, blocks IDs should remain valid in space, that
is, they should be independent of contributor names. This
property also allows forpre-computationof block IDsand
meta-data blocks: stream chopping and indexing do not
need to be done upon a contributor encounter, but can be
performeda priori, once for all. As a result, it saves CPU

1In the sequel we use the terms “block ID”, “name”, and
“key” interchangeably.

time and energy, and allows data owners to immediately
take advantage of a backup opportunity. A practical nam-
ing scheme widely used in the literature will be discussed
in Section 3.4.

Indexing sequences of blocks.Byte streams (file con-
tents) can be thought of as sequences of blocks. Meta-
data describing the list of blocks comprising a byte stream
need to be produced and stored. In their simplest form,
such meta-data are a vector of block IDs, or in other
words, a byte stream. This means that this byte stream
can in turn be indexed, recursively, until a meta-data byte
stream is produced that fits the block size constraints.
This approach yields the meta-data structure shown in
Figure 1 which is comparable to that used by Venti and
GNUnet [2,27]. The data structure is a tree whose leaves
are data blocks (i.e., fragments of the input stream) and
whose intermediate blocks are meta-data blocks contain-
ing block IDs. R0 andR1 are the “root blocks” of two suc-
cessive versions of an input stream; as such, some of the
blocks they point to are shared. Again, this is similar to
the data structures used by on-disk file systems.

Contributor interface. With such a design, contribu-
tors need not have knowledge about the actual implemen-
tation of block and stream indexing used by their clients,
nor do they need to be aware of the data/meta-data dis-
tinction. All they need to do is to provide primitives of a
keyed block storage:

• put (key, data) inserts the data blockdata and
associates it withkey, a block ID chosen by the data
owner according to some naming scheme;

• get (key) returns the data associated withkey.

This simple interface suffices to implement, on the data
owner side, byte stream indexing and retrieval. Also, it
is suitable to an environment in which service providers
and users are mutually suspicious because it places as lit-
tle burden as possible on the contributor side. The same
approach was adopted by Venti [27] and by many peer-to-
peer systems [2,9].

3.3. Backup Atomicity
Distributed and mobile file systems such as Coda [21]

that support concurrent write access to the data and do
not have built-in support for revision control differ sig-
nificantly from backup systems. Namely, they are con-
cerned about update propagation and reconciliation in the
presence of concurrent updates. Not surprisingly, this ap-
proach does not adapt well to the loosely connected sce-
narios we are targeting: data owners are not guaranteed
to meeteverycontributor storing data on their behalf in
a timely fashion, which makes update propagation almost
impossible. Additionally, it does not offer the desired
atomicity requirement discussed in Section 2.2.

MoSAIC Progress Report 91/112

The write onceor append onlysemantics adopted by
archival [13,27], backup [9,29] and versioning systems
[24,30]solve these problems. Data is always appended to
the storage system, and never modified in place. This is
achieved by assigning each piece of data an identifier that
uniquely identifies it. Therefore, insertion of content (i.e.,
data blocks) into the storage mechanism (be it a peer ma-
chine, a local file system or data repository) is atomic. Be-
cause data is only added, never modified, the consistency
guarantee is also met: insertion of a block cannot result in
an inconsistent state of the storage mechanism.

A potential concern with this approach is its cost in
terms of storage resources. It has been argued, however,
that the cost of storing subsequent revisions of whole
sets of files can be very low provided inter-version com-
pression techniques like those described earlier are used
[12,27,30]. In our case,once a contributor has finally trans-
ferred data to their owner’s repository, it may reclaim all
their storage resources, which further limits the cost of
this approach.

From an end-user viewpoint, being able to restore an
old copy of a file is more valuable than being unable to re-
store the file at all. All these reasons make the write-only
approach suitable to the storage layer of our cooperative
backup service.

3.4. Error Detection
As stated in Section 2.2, the storage mechanismswe are

designing need to include error detection codes. Error-de-
tecting codes can be computed either at the level of whole
input streams or at the level of data blocks. They must
then be part of, respectively, the stream meta-data, or the
block meta-data. Here we argue the case of cryptographic
hash functions as a means of providing the required error
detection and as a block-level indexing scheme.

Cryptographic hash functions. The error-detecting
code we use must be able to detectmaliciousmodifica-
tions. This makes error-detecting codes designed to tol-
erate random, accidental faults inappropriate for our pur-
poses. We must instead usecollision-resistant hash func-
tions,which were explicitly designed to tolerate malicious
modifications. Thepreimage-resistanceproperty of such
functions is particularly important: given a hash valueY,
it must be “hard” to find a messageX such that the hash
value ofX is equal toY [7].

Content-based indexing.Collision-resistanthash func-
tions have been assumed to meet the requirements of a
data block naming scheme as defined in Section 3.2.2,
and to be a tool allowing for efficient implementations of
single-instance storage [9,20,26,27,32,34,38]. In practice,
these implementations assume that whenever two data
blocks yield the same cryptographic hash value, their con-
tentsareidentical. Given thisassumption,the implementa-
tion of a single-instance store is straightforward: a block

only needs to be stored if its hash value was not found in
the locally maintained block hash table.

In [15], Henson argues that this assumption is not
“risk-free”. In particular, he argues that accidental colli-
sions, although extremely rare, do have a slight negative
impact on software reliability and yield silent errors. Giv-
en ann-bit hash output produced by one of the functions
listed above, the expected workload to generate a collision
out of tworandominputs is of the order of 2n/2 [7], which
indeed makes the risk of an accidental collision extremely
low. More precisely, if we are to store, say, 8 GiB of data
in the form of 1 KiB blocks, we end up with 243 blocks,
whereas SHA-1, for instance, would require 280 blocks to
be generated on average before an accidental collision oc-
curs. In the framework of our fault-tolerance service, we
consider this to be a reasonable guarantee since it does
not impede the tolerance of faults in any significant way.
Also, Henson’s fear ofmaliciouscollisions does not hold
given the preimage-resistance property provided by the
commonly-used hash functions2.

Content-addressable storage (CAS) thus seems a viable
option for our software layer as it fulfills both the error-
detection and data block naming requirements. CAS as-
sumes a global block ID space shared across all users
of the CAS provider. In [32], the authors conjecture that
CAS providers could eventually become sufficiently ubiq-
uitous that applications such as file systems could use
themopportunisticallywithout being dependent on any
particular provider. In our scenario, CAS providers are
contributors implementing the interface sketched in Sec-
tion 3.2.2 and they do not trust their clients (data owners).
Therefore, contributors need to enforce the block naming
scheme, that is, make sure that the ID of each block is in-
deed the hash value of its content.

3.5. Encryption
Data encryption may be performed either at the level

of individual blocks, or at the level of input streams.
Encrypting the input streambeforeit is split into smaller
blocks breaks the single-instance storage property at the
level of individual blocks. This is because the encrypted
output of two similar input streams will not be correlated
since it may not be desirable.

Leaving input streams unencrypted and encrypting in-
dividual blocks yielded by the chopping algorithm does
not have this disadvantage. More precisely, it preserves
single-instance storage at the level of blocks at leastlocal-
ly, i.e., on the client side. If asymmetric ciphering algo-
rithms are used, it does break the single-instance storage
propertyacrosspeers, because each peer encrypts data

2 We are aware of the recent attacks found on SHA-
1 by Wang et al. [36]. However, they do not affect the
preimage-resistance of this function.

MoSAIC Progress Report 92/112

with its own private key. Solutions to this problem exist,
notablyconvergent encryption[9]. However, we do not
consider this a major drawback for the majority of scenar-
ios considered where little or no data are common to sev-
eral participants.

3.6. Backup Redundancy
Replication strategies. Redundancy management in

the context of our collaborative backup service for mobile
devices introduces a number of new challenges. Peer-to-
peer file sharing systems are not a good source of inspi-
ration given that they rely on redundancy primarily as a
means of reducing access time to popular content [28].

For the purposes of fault-tolerance, statically defined
redundancy strategies have been used in Internet-based
scenarios where the set of servers responsible for hold-
ing replicas is knowna priori, and where servers are usu-
ally assumed to be reachable “most of the time” [10,37].
Internet-based peer-to-peer backup systems [9,11,20]
have relaxed these assumptions. However, although they
take into account the fact that contributorsmay become un-
reachable, strong connectivity assumptions are still made:
the inability to reach a contributor is assumed to be the ex-
ception, rather than the rule. As a consequence, unavail-
ability of a contributor is quickly interpreted as the symp-
tom of a malicious behavior [9,11].

The connectivity assumption does not hold in our case.
Additionally, unlike with Internet-based systems, the very
encounter of a contributor is unpredictable. This has a
strong impact on the possible replication strategies, as
well as on the techniques used to implement redundancy.
In particular,erasure codeshave been used as a means to
tolerate failures of storage sites while being more storage-
efficient than simple replication [37]. Usually, (n,k) era-
sure codes are defined as follows [22,37]:

• an (n,k) code maps ak-symbol block to ann-symbol
codeword;

• k + ε symbols suffice to recover the exact original
data; the code isoptimalwhenε = 0;

• optimal (n,k) schemes allow the loss of (n - k) sym-
bols to be tolerated,and have an effective storage use
of k/n.

In our attempt to improve storage efficiency while still
maximizing data availability, such an approach seems
very attractive.

However, as argued in [3,22,35], an (n,k) scheme with
k > 1 can hinder data availability because it requiresk
peers to be available for data to be retrieved, instead of
just 1when mirroring (i.e., an (n,1) scheme) is used. Also,
given theunpredictabilityof contributor encounters,using
a scheme withk > 1 is risky since a data owner may fail
to storek symbols on different contributors. On the other

hand, from a confidentiality viewpoint, increasing dissem-
ination and purposefully placing less thank symbols on
any given untrusted contributor may be a good strategy
[10]. Intermediate solutions can also be imagined, for in-
stance, mirroring blocks that have never been replicated
and choosing a value ofk > 1 for blocks already mirrored
at least once. This use of differentlevels of dispersalwas
also mentioned by the authors of InterMemory [13] as a
way to accommodate contradictory requirements. Finally,
a dynamicallyadaptive behavior of erasurecoding may be
considered as [3] suggests.

Replica scheduling and dissemination.As stated in
Section 2.2, it is plausible that a file will be only partly
backed up when a newer version of this file enters the
backup creation pipeline. On one hand, one could argue
that the replica scheduler should finish distributing the
data blocks from the old version before distributing those
of the new version. This policy would guarantee, at least,
availability of the old version of the file. On the other
hand, in certain scenarios, users might want to favor fresh-
ness over availability. That is, they could request that new-
er blocks are scheduled first for replication.

This clearly illustrates that a wide range ofreplica
schedulingand disseminationpolicies and corresponding
algorithmscan be defended depending on the scenario
considered. At the core of a given replica scheduling and
dissemination algorithm is adispersal functionthat de-
cides on a level of dispersal for any given data block. The
algorithm must evolvedynamicallyto account for several
changing factors. In FlashBack [23], the authors identify
a number of important factors that they use to define a
device utility function. Those factors includelocality (i.e.,
the likelihood of encountering a given device again later)
as well aspower and storage resourcesof the device.

In addition to those factors, our backup software needs
to account for the current level of trust in the contributor
at hand. If a data owner fully trusts a contributor, for
instance because it has proven to be well-behaved over a
given period of time, the data owner may choose to store
complete replicas (i.e., mirrors) on this contributor.

4. PRELIMINARY EVALUATION
This section presents our prototype implementation of

the storage layer of the envisaged backup system, as well
as a preliminary evaluation of key aspects.

4.1. Implementation Overview
We have implemented a prototype of the storage layer

discussed above. As this layer is performance-critical,we
implemented it in C. The resulting library,libchop, con-
sists of 7 k of physical source lines of code. The library
was designed in order to be flexible enough so that dif-
ferent techniques could be combined and evaluated. As

MoSAIC Progress Report 93/112

zlib filter block indexer zlib filter

stream chopper stream indexer block store

Figure 2. Data flow in the libchop backup creation
pipeline.

such, the library itself consists of a few well-defined inter-
faces as shown in Figure 2. It comes with several imple-
mentations of each interface that were used in the experi-
mentsdescribed below. The library itself isnot concerned
with the backup of file system-related meta-data such as
file paths, permissions, etc. Implementing this is left to
higher-level layers.

Implementations of thechopper interface chop input
streams into small blocks, according to Manber’s algo-
rithm [25] or in fixed-sized blocks. Block indexers name
blocks and store them in a keyed block stores (e.g., an
on-disk database). Finally, thestream_indexer interface
provides a method that iterates over the blocks yielded by
the given chopper, indexes them, produces corresponding
meta-data blocks, and stores them into a block store. In
the proposed cooperative backup service,chopping and in-
dexing are to be performed on the data owner side, while
the block store itself will be realized by contributors.

libchop also providesfilters, such aszlib compression
and decompression filters, which may be conveniently
reused in different places, for instance between a file-
based input stream and a chopper, or between a stream in-
dexer and a block store.

In the following experiments, the only stream indexer
used is a “tree indexer” as shown in Figure 1. We used
an on-disk block store that uses TDB as the underlying
database [33]. For each file set, we started with a new,
empty database.

4.2. Evaluation of Compression Techniques
Our implementation has allowed us to evaluate more

precisely some of the tradeoffs outlined in Section 3. Af-
ter describing the methodology and workloads that were
used, we will comment the results obtained.

4.2.1. Methodology and Workloads

Methodology. The purpose of our evaluation is to com-
pare the various compression techniques described ear-
lier in order to better understand the tradeoffs that must
be made. We measured both the storage efficiency and
performance characteristics of each method. The mea-
sures were performed on a 500 MHz G4 Macintosh run-
ning GNU/Linux.

Name Size Files Avg. Size

Lout (versions 3.20 to 3.29) 76 MiB 5853 13 KiB

Ogg Vorbis files 69 MiB 17 4 MiB

mbox-formatted mailbox 7 MiB 1 7 MiB

Figure 3. File sets.

We chose several workloads and compared the results
obtained using different configurations. These file sets,
shown in Figure 3, qualify assemi-syntheticworkloads
because they were not computer-generated but were not
taken from an actual mobile device. The motivation for
this choice was to purposefully target specific filetypes.
The idea is that the results should remain valid for any file
of these classes.

File sets. In Figure 3, the first file set contains 10 suc-
cessive versions of the source code of the Lout document
formatting system1, i.e., low-density, textual input (C and
Lout code). This workload is close to a set of active files
as found on a Unix machine where the majority of files is
smaller than 8 KiB and most file increases and modifica-
tions are of the order of 1KiB [12]. Of course, it would be
interesting to have file activity statisticson mobile devices
such as a PDA or cell phone. Nevertheless, the results ob-
tained on this workload are expected to be similar to those
found with other textual data, such as XML. XML is cur-
rently used in an large number of desktop applications,
and chances are that mobile applications may resort to
XML as well.

The second file set shown in Figure 3consistsof 17Ogg
Vorbis2 audio files, a high-density binary format. This is
typical of the kind of data that may be found on devices
equipped with sampling peripherals (e.g., microphone or
camera whose output are lossy-compressed, be it in Ogg
Vorbis, MP3, JPEG, etc.). The third file set consists of a
single file: a mailbox in the Unix mbox format, that is,
an append-only textual format. Such data are likely to be
found in a similar form on communicating devices.

Configurations. Figure 4 shows the storage configura-
tions we have used in our experiments. For each config-
uration, it indicates whether single-instance storage was
provided, which chopping algorithm was used and what
the expected block size was, as well as whether the input
stream or output blocks were compressed using a loss-
less stream compression algorithm (zlib in our case). Con-
figurationsC0 andC0’ serve as baselines for the compar-
isons. For the other configurations, we chose small block
sizes that fit our requirements: 1KiB of payload (on aver-

1Seehttp://lout.sf.net/.
2Ogg Vorbis is a lossy audio compression format. See
http://xiph.org/.

MoSAIC Progress Report 94/112

http://lout.sf.net/
http://xiph.org/

Config. Single
Instance?

Chopping
Algo.

Expected
Block Size

Input
Zipped?

Blocks
Zipped?

C0 no — — yes —

C0’ yes — — yes —

C1 yes Manber’s 1024 B no no

C2 yes Manber’s 1024 B no yes

C3 yes fixed-size 1024 B no yes

C4 yes fixed-size 1024 B yes no

Figure 4. Description of the configurations experi-
mented.

age), along with TCP/IP headers and RPC additional data
should yield packets slightly smaller than IEEE 802.11’s
MTU. Our implementation of Manber’s algorithm uses
a sliding window of 48 B which was reported to provide
good results [26].

All configurations butC0 used single-instance storage,
realized using thelibchop “hash” block indexer that
producesan index handle based on the cryptographichash
of the block being indexed. For the experiments,20-octet
SHA-1 hashes were used. ForC0, a block indexer based
on libuuid that systematically provides unique IDs (per
RFC 4122 specifications) was chosen.

Our choice of configurations and file sets is quite sim-
ilar to those described in [19,38], except that, as as ex-
plained in Section 3.1, we do not evaluate the storage effi-
ciency of the delta encoding technique proposed therein.
In addition, we propose an evaluation of computational
costs, a critical criterion for our application.

4.2.2. Results
Figure 5shows the compression ratiosobtained for each

configuration and each file set. The bars show the ratio
of the size of the resulting blocks,includingmeta-data (se-
quencesof SHA-1hashes), to the size of the input data, for
each configuration and each data set. The lines represent
the corresponding throughputs.

Impact of the data type. Not suprisingly, the set of
Ogg Vorbis files defeats all the compression techniques.
Most configurations even incur a slight storage overhead
due to the amount of meta-data generated. However,
the two other data types are sensitive to the compression
techniques being used.

Impact of single-instance storage.Comparing the re-
sults obtained forC0 andC0’ shows benefits only in the
case of the successive source code distributions of Lout,
where it halves the amount of data stored (13 % vs. 26 %).
This is due to the fact that successive versions of the soft-
ware have a lot of files in common.

Inter-version compression.Considering the Lout file
set, efficiency withC1 is slightly better than that ofC0
(25%vs. 26 %), but less efficient than the combination of

Lout Ogg Vorbis mbox

re
su

lt
in

g
si
ze

(%
)

C0 C0’ C1 C2 C3 C4
0

20

40

60

80

100

120

configuration

0

4

8

12

16

20

24

28

th
ro

u
gh

p
u
t
(K

iB
/s

)

Figure 5. Storage efficiency and computational cost of
several configurations.

zlib-based compression and per-file single-instance stor-
age used inC0’. As expected,C2 (where the output blocks
are compressed individually usingzlib) provides the best
compression ratio in the versioning case (the Lout file
set). However, it is comparable toC4 (11% vs. 13 %) and
even slightly worse for the two other file sets, although
C4 precludes single-instance storage at a sub-file level.
One reason to this is that lossless compression algorithms
yield better results when applied to larger input buffers,
which compensates for the loss of sub-file single-instance
storage.

The results in [38] are slightly more optimistic regard-
ing the storage efficiency of a configuration similar toC2.
An explanation to this may be that the authors use a small-
er block size,namely 512 B,and a larger file set. Addition-
ally, it is unclear whether these measures include the size
of meta-data.

Computational cost. A comparison betweenC0 and
C0’ shows that implementing single-instance storage us-
ing cryptographic hashes (SHA-1) incurs no significant
overhead. The cost ofzlib-based compression appears to
be reasonable, particularly when performed on the input
stream rather than on individual blocks, as evidenced, e.g.,
by C3 andC4.

ComparingC2 and C3 (where individual blocks are
zlib-compressed) reveals that Manber’s algorithm yields
non-negligible computational overhead (throughput low-
ered by 33 %). While our implementation of Manber’s
algorithm could certainly be optimized, we believe that
most of this overhead is intrinsic to Manber’s algorithm
which involves many fingerprint computations.

It is worth noting that the input data type has a notice-
able impact on the computationalcost. In particular,apply-
ing lossless compression techniques to the already-com-
pressed Vorbis files is very costly computationally, while
applying it to low-entropy data types proves to be much

MoSAIC Progress Report 95/112

less costly. Therefore, it would be worth to disablezlib
compression for compressed data types.

The configuration that offers the best tradeoff between
computational cost and storage efficiency for low-entropy
data isC4, almost regardless of the type of input data.

5. CONCLUSION AND FUTURE WORK
In this paper, we have considered the viability of col-

laboration between peer mobile devices to implement a
cooperative back-up service for mostly-disconnected op-
eration. We have identified six essential requirements for
the storage layer of such a service, namely: (i) storage
efficiency; (ii) small data blocks; (iii) backup atomicity;
(iv) error detection; (v) encryption; (vi) backup redundan-
cy. The various design options for meeting these require-
ments have been reviewed and a preliminary evaluation
carried out using a prototype implementation of the stor-
age layer.

From a performance viewpoint, the execution overhead
of implementingsingle-instance storage is negligible com-
pared to that induced by the need to chop data into small
blocks. Consequently, there is no compelling reason not
to implement single-instance storage. This technique is
likely to be beneficial in detecting intra-peer data common-
ality (e.g., versioning, duplicates); in more specific scenar-
ios such as cooperative work, it could help detect inter-
peer data commonality as well. We also conclude that, for
the file sets considered, single-instance storage at a sub-
file level yields little storage efficiency improvement com-
pared to traditional lossless compression.

With respect to chopping into small blocks, Manber’s
algorithm, especially combined with block compression,
providesa noticeablebenefit in termsof storageefficiency
in the case of subsequent versionsof a set of files. Howev-
er, it does not provide any significant improvement of stor-
age efficiency when applied to a set of unrelated write-
once files,and it incursnon-negligible computationalover-
head compared to simple fixed-size chopping. Therefore,
we found that fixed-size chopping, combined with tradi-
tional lossless compression, may be preferable in the gen-
eral case. Compressed media streams need to be treated
specially, that is, lossless compression techniques should
not be applied to them.

Future work on the optimization of the storage layer for
the cooperative backup service concerns several aspects.
First, the energy costs of the various design options need
to be assessed,especially those related to the wirelesstrans-
mission of backup data between nodes. Second, the per-
formance and dependability impacts of various replica
schedulingand disseminationstrategiesneed to be evaluat-
ed as a function, for example, of the expected frequencies
of data updates, cooperative backup opportunities and in-
frastructure connections. Third, it seems likely that no sin-

gle configuration of the backupservicewill be appropriate
for all situations, so dynamic adaptation of the service to
suit different contexts needs to be investigated.

Finally, the issues relating to trust management, re-
source accounting and cooperation incentives need to be
addressed, especially insomuch as the envisaged mode
of mostly-disconnected operation imposes additional con-
straints on the more static wired peer-to-peer context. Cur-
rent research in this direction, in collaboration with our
partners in the MoSAIC project1, is directed at evaluating
mechanismssuch asmicroeconomicand reputation-based
incentives.

REFERENCES
[1] C. BATTEN, K. BARR, A. SARAF, S. TREPTIN. pStore: A

secure peer-to-peer backup system. MIT-LCS-TM-
632, MIT Laboratory for Computer Science, Decem-
ber 2001.

[2] K. BENNETT, C. GROTHOFF, T. HOROZOV, I. PATRASCU.
Efficient Sharing of Encrypted Data.Proc. of the
7th Australasian Conference on Information Securi-
ty and Privacy (ACISP 2002), (2384)pages 107–120,
2002.

[3] R. BHAGWAN, K. TATI, Y-C. CHENG, S. SAVAGE, G.
M. VOELKER. Total Recall: System Support for Au-
tomated Availability Management.Proc. of the
ACM/USENIX Symp. on Networked Systems Design
and Implementation, 2004.

[4] IEEE-SA S. BOARD. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifica-
tions. 1999,http://standards.ieee.org/.

[5] W. J. BOLOSKY, J. R. DOUCEUR, D. ELY, M. THEIMER.
Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs.Proc.
of the Int. Conference on Measurement and Model-
ing of Computer Systems, pages 34–43, 2000.

[6] G. COBENA, S. ABITEBOUL, A. MARIAN. Detecting
Changes in XML Documents.Proc. of the 18th
ICDE, pages 41–52, 2002.

[7] NESSIE CONSORTIUM. NESSIE Security Report.
NES/DOC/ENS/WP5/D20/2, February 2003.

[8] L. COURTÈS, M-O. KILLIJIAN , D. POWELL, M. ROY.
Sauvegarde coopérative entre pairs pour disposi-
tifs mobiles.Actes des deuxièmes journées fran-
cophones Mobilité et Ubiquité (UbiMob), pages
97–104, 2005.

1MoSAIC (Mobile System Availability Integrity and Con-
fidentiality) is a prospective research project financed by
the French national program for Security and Informat-
ics (ACI S&I). Our partners are IRISA (Rennes) and
Eurécom (Sophia Antipolis).

MoSAIC Progress Report 96/112

http://standards.ieee.org/

[9] L. P. COX, B. D. NOBLE. Pastiche: Making back-
up cheap and easy.Fifth USENIX OSDI, pages
285–298, 2002.

[10] Y. DESWARTE, L. BLAIN , J-C. FABRE. Intrusion Toler-
ance in Distributed Computing Systems.Proc. of
the IEEE Symp. on Research in Security and Priva-
cy, pages 110–121, 1991.

[11] S. ELNIKETY , M. LILLIBRIDGE, M. BURROWS. Peer-to-
peer Cooperative Backup System.The USENIX
FAST, 2002.

[12] T. J. GIBSON, E. L. MILLER. Long-Term File Activity
Patterns in a UNIX Workstation Environment.Proc.
of the Fifteenth IEEE Symp. on Mass Storage Sys-
tems, pages 355–372, 1998.

[13] A. V. GOLDBERG, P. N. YIANILOS. Towards an Archival
Intermemory.Proc. IEEE Int. Forum on Research
and Technology Advances in Digital Libraries
(ADL’98), pages 147–156, 1998.

[14] J. G. HANSEN. The EDelta Binary Diff Algorithm. ,
http://www.diku.dk/~jacobg/edelta/.

[15] V. HENSON. An Analysis of Compare-by-hash.Proc.
of HotOS IX: The 9th HotOS, pages 13–18, 2003.

[16] J. J. HUNT, K-P. VO, W. F. TICHY. An Empirical Study
of Delta Algorithms.Software configuration man-
agement: ICSE 96 SCM-6 Workshop, pages 49–66,
1996.

[17] F. JUNQUEIRA, R. BHAGWAN, K. MARZULLO, S. SAVAGE,
G. M. VOELKER. The Phoenix Recovery System: Re-
building from the Ashes of an Internet Catastrophe.
Ninth HotOS, 2003.

[18] M-O. KILLIJIAN , D. POWELL, M. BANÂTRE, P. COUDERC,
Y. ROUDIER. Collaborative Backup for Dependable
MobileApplications.Proc. of 2nd Int. Workshopon
Middleware for Pervasive and Ad-Hoc Computing
(Middleware 2004), pages 146–149, 2004.

[19] P. KULKARNI , F. DOUGLIS, J. LAVOIE, J. M. TRACEY.
Redundancy Elimination Within Large Collections
of Files. Proc. of the USENIX Annual Technical
Conference, 2004.

[20] M. LANDERS, H. ZHANG, K-L. TAN. PeerStore: Better
Performance by Relaxing in Peer-to-Peer Backup.
Proc. of the Fourth P2P, pages 72–79, 2004.

[21] Y-W. LEE, K-S. LEUNG, M. SATYANARAYANAN .
Operation-based Update Propagation in a Mobile
FileSystem.Proc. of theUSENIX Annual Technical
Conference, pages 43–56, 1999.

[22] W. K. LIN, D. M. CHIU, Y. B. LEE. Erasure Code Repli-
cation Revisited.Proc. of the Fourth P2P, pages
90–97, 2004.

[23] B. T. LOO, A. LAMARCA, G. BORRIELLO. Peer-To-
Peer Backup for Personal Area Networks. IRS-TR-
02-015, UC Berkeley; Intel Seattle Research (USA),
May 2003.

[24] T. LORD. The GNU Arch
Distributed Revision Control System. 2005,
http://www.gnu.org/software/gnu-arch/.

[25] U. MANBER. Finding Similar Files in a Large File Sys-
tem. Proc. of the USENIX Winter 1994 Conference,
pages 1–10, 1994.

[26] A. MUTHITACHAROEN, B. CHEN, D. MAZIÈRES. A low-
bandwidth network file system.Proc. of the 18th
ACM SOSP, pages 174–187, 2001.

[27] S. QUINLAN , S. DORWARD. Venti: A new approach to
archival storage.Proc. of the First USENIX FAST,
pages 89–101, 2002.

[28] K. RANGANATHAN , A. IAMNITCHI , I. FOSTER. Improving
Data Availability Through Dynamic Model-Driv-
en Replication in Large Peer-to-Peer Communities.
Proc. of the Workshop on Global and Peer-to-Peer
Computing on Large Scale Distributed Systems,
pages 376–381, 2002.

[29] M. RUBEL. Rsnapshot: A Remote Filesystem Snap-
shot Utility Based on Rsync. 2005,http://rsnap-
shot.org/.

[30] D. S. SANTRY, M. J. FEELEY, N. C. HUTCHINSON, A.
C. VEITCH, R. W. CARTON, J. OFIR. Deciding when to
forget in the Elephant file system.Proc. of the 17th
ACM SOSP, pages 110–123, 1999.

[31] M. STEMM, P. GAUTHIER, D. HARADA, R. H. KATZ.
Reducing Power Consumption of Network Inter-
faces in Hand-Held Devices.IEEE Transactions
on Communications, E80-B(8), August 1997, pages
1125–1131.

[32] N. TOLIA, M. KOZUCH, M. SATYANARAYANAN , B. KARP,
T. BRESSOUD, A. PERRIG. Opportunistic Use of Con-
tent Addressable Storage for Distributed File Sys-
tems.Proc. of the USENIX Annual Technical Con-
ference, pages 127–140, 2003.

[33] A. TRIDGELL, P. RUSSEL, J. ALLISON. The Trivial
Database. 1999,http://samba.org/.

[34] A. TRIDGELL, P. MACKERRAS. The Rsync Algorithm.
TR-CS-96-05, Department of Computer Science,
Australian National University Canberra, Australia.

[35] A. VERNOIS, G. UTARD. Data Durability in Peer to
Peer Storage Systems.Proc. of the 4th Workshop on
Global and Peer to Peer Computing, pages 90–97,
2004.

[36] X. WANG, Y. YIN, H. YU. Finding Collisions in the
Full SHA-1.Proc. of the CRYPTO Conference,
pages 17–36, 2005.

[37] L. XU. Hydra: A Platform for Survivable and Se-
cure Data Storage Systems.Proc. of the ACM Work-
shop on Storage Security and Survivability, pages
108–114, 2005.

[38] L. L. YOU, K. T. POLLACK, AND D. D. E. LONG. Deep
Store: An Archival Storage System Architecture.
Proc. of the 21st ICDE, pages 804–815, 2005.

MoSAIC Progress Report 97/112

http://www.diku.dk/~jacobg/edelta/
http://www.gnu.org/software/gnu-arch/
http://rsnapshot.org/
http://samba.org/

MoSAIC Progress Report 98/112

SAUVEGARDE COOPÉRATIVE

POUR DISPOSITIFS MOBILES

Ludovic Courtès*

Directeur de thèse : David Powell
Co-directeur de thèse : Marc-Olivier Killijian

Laboratoire d’accueil :
Laboratoire d’Analyse et d’Architecture du CNRS
7, avenue du Colonel Roche
31077 Toulouse CEDEX 4

Établissement d’inscription :
Institut National Polytechnique de Toulouse
6 allée Émile Monso - ZAC du Palays
BP 34038
31029 Toulouse CEDEX 4

Résumé

Nous présentons les fonctionnalités d’un système de sauvegarde coopérative pour dispositifs mobiles.
Ce système repose sur la collaboration entre dispositifs pour assurer la sauvegarde et le recouvrement
des données de chaque dispositif. Nous identifions les défis qui devront être relevés, en particulier dans
le domaine du stockage réparti. Nous proposons une analyse de différents algorithmes de dissémination
de données. Enfin, nous concluons sur nos premiers résultats et les axes de recherche à explorer.

Mots-clés

tolérance aux fautes, sauvegarde, mobilité, réseaux ad hoc, pair-à-pair

1 INTRODUCTION

Nous abordons la problématique liée à la conception d’un outil fournissant des mécanismes
de sûreté de fonctionnement à des dispositifs mobiles dotés de moyens de communication
sans fil. Nous considérons des dispositifs mobiles (ordinateurs portables, assistants personnels,
etc.) n’ayant accès à une infrastructure fixe de communication (un réseau local ou Internet)
que par intermittence. Ces dispositifs mobiles doivent être capables de communiquer entre
eux, lorsqu’ils sont à proximité physique, en utilisant des moyens de communication sans fil.
Cependant, nous souhaitons que l’outil développé, MoSAIC1 soit utile à une large palette de
systèmes, allant aussi bien de dispositifs très mobiles n’ayant que rarement accès à Internet,
à l’autre extrême représenté par des machines connectées en permanence à Internet et peu ou
pas mobiles. En outre, nous faisons l’hypothèse que les participants au service n’ont aucune
relation de confiance au préalable.

MoSAIC a pour objectif de permettre aux dispositifs sur lesquels il s’exécute de tolérer les
fautes logicielles ou matérielles pouvant entraîner la perte de données. Ces fautes sont le plus
souvent permanentes : perte ou vol du dispositif mobile, effacement accidentel de données par
l’utilisateur.À l’heure actuelle, les utilisateurs de systèmes mobiles effectuent le plus souvent la
sauvegarde de leurs données uniquement lorsqu’ils ont accès à leur machine de bureau. Entre
temps, il serait théoriquement possible d’utiliser l’accès à une infrastructure (par exemple
UMTS ou GPRS) pour ce faire mais cette solution est très rarement utilisée, pour des raisons
pratiques ou de coût.

*<ludovic.courtes@laas.fr>
1Mobile System Availability, Integrity and Confidentiality, http://www.laas.fr/mosaic/.

MoSAIC Progress Report 99/112

http://www.laas.fr/mosaic/

En revanche, nous pensons que l’avènement de dispositifs mobiles équipés de moyens de
communication sans fil de courte portée offre des possibilités d’interactions entre pairs dont
pourrait profiter un système de sauvegarde coopératif . En effet, l’utilisation répandue de
systèmes mobiles communicant va permettre des interactions fréquentes mais de courte durée.
Avec MoSAIC nous souhaitons tirer profit de ces interactions : à chaque rencontre de deux
systèmes mobiles, le système de sauvegarde va automatiquement initier une demande de
sauvegarde pour une partie de ses données, de manière transparente.

Nous présentons dans la section suivante les objectifs que devra atteindre MoSAIC, notam-
ment en termes de sûreté de fonctionnement, en fonction des problèmes nouveaux qu’il pose.
La section 3 présente nos travaux actuels portant sur l’évaluation analytique de la disponibilité
des données obtenue grâce au service de sauvegarde. Enfin, dans la section 4, nous résumons
nos résultats et présentons nos perspectives de recherche.

2 OBJECTIFS ET PROBLÉMATIQUES

Dans cette section, nous présentons les problèmes que nous souhaitons résoudre avec notre
service de sauvegarde coopérative, en termes de sûreté de fonctionnement des dispositifs
mobiles. Nous décrivons alors les fonctions fournies par le service. Enfin, nous montrons les
nouveaux défis de sûreté de fonctionnement que doit résoudre ce service coopératif .

2.1 TOLÉRANCE AUX FAUTES DES DISPOSITIFS MOBILES
Les dispositifs mobiles, de par leur utilisation, sont sujets à des fautes permanentes (perte,

vol, casse) et à des fautes transitoires (effacement accidentel, corruption). L’occurrence de ces
fautes peut entraîner une perte des données stockées sur le dispositif. Or de tels dispositifs sont
de plus en plus utilisés pour la saisie ou la capture de données nouvelles, dans un contexte où
il est difficile voire impossible de réaliser des sauvegardes avec une fréquence raisonnable. Ce
sont donc ces fautes que nous souhaitons pouvoir tolérer par le développement d’un service
de sauvegarde.

L’objectif premier du service est donc d’améliorer la disponibilité des données stockées sur
ces dispositifs mobiles. Chaque dispositif mobile peut sauvegarder ses données sur les disposi-
tifs qui l’entourent, grâce à des moyens de communication sans fil, et de manière opportuniste
(rôle d’utilisateur, propriétaire de données). En contrepartie, chaque dispositif doit également
dédier un certain nombre de ses ressources de stockage au service pour que d’autres puissent
en profiter de la même manière (rôle de contributeur). Nous faisons l’hypothèse que, dès qu’un
contributeur a accès à Internet (c’est-à-dire dans une situation ou cet accès lui est peu coûteux),
il transmet les données qu’il a acquises à leurs propriétaires. Ces derniers pourront alors les
restaurer le cas échéant [3].

Il s’agit donc d’une approche semblable à celle des réseaux de partage de données pair-à-pair
largement utilisés aujourd’hui sur Internet. Nous allons voir que cette approche, en particulier
dans l’environnement mobile, lance des défis en termes de sûreté de fonctionnement.

2.2 DÉFIS
Nous faisons l’hypothèse que les participants à un tel service de sauvegarde n’ont a priori

aucune relation de confiance entre eux. Par conséquent, nous devons prendre en compte
la possibilité que des participants soient malveillants et cherchent à causer du tort à des
participants individuels voire au service dans son ensemble. Par conséquent, un tel service doit
pouvoir garantir la confidentialité et l’intégrité des données des utilisateurs, et doit aussi se
prémunir contre les attaques en déni de services pouvant porter atteinte à son fonctionnement
(rétention de données, inondation, égoïsme, etc.).

MoSAIC Progress Report 100/112

D’autres défis touchent au stockage et à la restauration des données : la dissémination des
données sur des contributeurs multiples ainsi que le fait que les rencontres de contributeurs
soient imprévisibles et éphémères. Enfin, le fait que les contributeurs soient potentiellement
difficiles d’accès (par connexion directe ou via Internet) et suspects implique, de la part
des propriétaires, de stocker les données avec un niveau de redondance approprié. Toutefois,
compte-tenu du coût énergétique des communications sur de tels dispositifs, il est nécessaire
de limiter autant que possible la quantité de données à échanger.

Dans cet article, nous nous focalisons sur les aspects ayant trait au stockage en nous
intéressant à la conception d’un algorithme de dissémination des données.

2.3 SOLUTIONS
Le fait que les rencontres entre participants soient imprévisibles et potentiellement éphémères

rend nécessaire la fragmentation des données à sauvegarder. En outre, ces fragments de don-
nées seront nécessairement disséminés, comme nous l’avons vu, avant, finalement, d’être ren-
dus accessibles à leur propriétaire via Internet [3]. La dissémination peut par ailleurs être vue
comme bénéfique du point de vue de la confidentialité des données [4].

Le niveau de redondance souhaité peut s’obtenir en stockant chaque fragment sur un certain
nombre de contributeurs différents. En stockant n fois un fragment donné, il est alors possible
de tolérer la défaillance (ou malveillance) de n − 1contributeurs. Cependant, pour un nombre
de défaillances tolérées donné, il est possible de réduire la quantité de stockage nécessaire grâce
à l’utilisation de codes d’effacement [11]. Schématiquement, il s’agit d’algorithmes qui, à partir
d’une donnée d’entrée de taille k produisent n > k fragments parmi lesquels n’importe quels
k fragments suffisent pour reconstituer la donnée d’origine1. On tolère alors n − k défaillances
pour un coût de stockage de n

k
. La réplication de fragments entiers peut donc être vue comme

un cas particulier où k = 1. En pratique, les valeurs de k et n seront dépendantes de l’algorithme
choisi (voir annexe).

Il faut cependant noter que le bénéfice en termes de disponibilité apporté par les codes d’effa-
cement, pour un nombre de défaillances tolérées données, est fortement dépendant de la dispo-
nibilité des nœuds constituant le support de stockage [7].En deçà d’une certaine disponibilité, il
est préférable de faire appel à de la simple duplication.Par conséquent, il pourra être nécessaire
de procéder à une adaptation dynamique du codage des copies en fonction de la disponibilité
des contributeurs [1].

Plusieurs choix sont donc possibles pour paramétrer la fragmentation des données et
plusieurs algorithmes de dissémination sont envisageables. Dans la section suivante, nous
présentons différentes politiques possibles et proposons une méthode pour évaluer l’impact de
ces algorithmes sur la disponibilité des données.

3 ÉVALUATION D’ALGORITHMES DE
DISSÉMINATION DES DONNÉES

La section précédente a montré différents paramètres pouvant être pris en compte pour la
dissémination et la redondance des données à sauvegarder. Dans cette section, nous présentons
l’évaluation que nous souhaitons faire des algorithmes de dissémination envisageables ainsi que
la méthodologie que nous souhaitons employer.

3.1 OBJECTIFS
S’agissant d’un service de sauvegarde, le principal critère d’évaluation sera bien entendu

l’impact de l’algorithme sur la disponibilité des données à sauvegarder. Un modèle général du
processus de sauvegarde doit donc être défini. Afin de simplifier ce modèle, on supposera que

1Cette description s’applique aux codes d’effacement optimaux.

MoSAIC Progress Report 101/112

dès lors que l’un des intervenants (propriétaire ou contributeur) a accès à Internet, alors les
données sont « mises en sécurité ». En outre, nous considérons que dès lors qu’un propriétaire
rencontre un contributeur il peut lui demander de stocker ses données. Ce modèle est composé
de trois processus stochastiques Poissoniens à taux constants :

• le processus de rencontre d’un contributeur par le propriétaire de données, permettant à
ce dernier de stocker une partie de ses données ; ce processus a pour taux α ;

• le processus de connexion à Internet de chaque participant, de taux β ;

• le processus de défaillance des participants, de taux λ ; dans un premier temps, on fait
donc abstraction des malveillances en les assimilant à des défaillances aléatoires.

À ce modèle nous ajoutons l’hypothèse suivante : un propriétaire de données n’est pas notifié
de la défaillance de contributeurs disposant de ses données. C’est le cas le plus vraisemblable
compte-tenu de la connectivité observée en environnement mobile. Par conséquent, nous
considérons qu’un propriétaire de données ne pourra pas adapter sa politique de réplication
et dissémination en fonction de la défaillance de ses contributeurs.

Ce modèle pourra bien sûr être raffiné par la suite. Pour chaque algorithme de dissémination
donné, il pourra nous servir à évaluer analytiquement, en fonction de ces paramètres, les
informations suivantes :

• la probabilité asymptotique que les données soient mises en sécurité (c’est-à-dire qu’elles
atteignent Internet);

• le temps nécessaire aux données pour être rendues sûres (c’est-à-dire pour atteindre
Internet);

• la disponibilité des données créées sur un dispositif mobile participant en fonction
du temps.

Nous envisageons également d’utiliser ce modèle pour comparer différents algorithmes de
dissémination en fonction de ces critères.

3.2 MÉTHODOLOGIE
Le processus de sauvegarde des données, dans le cadre du modèle simplificateur que nous

venons d’évoquer, peut être modélisé sous la forme d’un graphe de Markov, c’est-à-dire un
automate à états finis dont les branches sont étiquetées par les paramètres α, β et λ.

Supposons un algorithme de dissémination simple donnant une copie complète des données
à chaque contributeur rencontré et se donnant pour objectif d’en distribuer N . La figure 1
représente les différents scénarios possibles dans l’exécution de cet algorithme, pour N = 2. On
remarque deux états puits correspondant à la perte définitive des données (tous les dispositifs
en disposant ont défailli) et à la « mise en lieu sûr » des données (un des dispositifs a accédé
à Internet). Dans l’état initial noté 1/2, un seul exemplaire des données est disponibles (celui
du propriétaire) et 2 copies restent donc à faire.

Dans l’état 3/0, trois exemplaires sont disponibles (dont celui du propriétaire) et il ne reste
plus aucune copie à faire. À partir de l’état 2/1, il suffit qu’un dispositif parmi les 2 disposant
des données accède à Internet pour passer dans l’état « sûr » (d’où le taux 2 × β); si le proprié-
taire défaille, alors on passe dans l’état 1/0 signifiant qu’un exemplaire est toujours disponible
mais qu’aucune nouvelle copie ne sera faite à l’avenir; enfin, si le contributeur défaille, alors le
propriétaire n’augmentera pas pour autant son nombre de copies souhaité, d’où le passage dans
l’état 1/1.

Il s’agit là d’un modèle stochastique que nous pouvons généraliser à d’autres nombres de
copies, à d’autres politiques, mais aussi à l’utilisation de codes d’effacement. La reformulation
de ce modèle sous forme d’un réseau de Petri stochastique doit permettre de généraliser la
modélisation à différentes politiques et paramètres pour le protocole de sauvegarde [2].

MoSAIC Progress Report 102/112

données sûres

1/2 2/1 3/0

1/1 2/0

1/0

données définitivement perdues
α

α

α

α

α

α

λ

λ

λ

λ

3

3 × λ

λ

λ

λ

λ

λ

λ

2

2 × λ

β

β

2

2 × β

3

3 × β

β

β

2

2 × β

β

β

a/b

a nb. d’exemplaires disponibles
b nb. de copies à faire

Fig. 1. Algorithme de dissémination réalisant 2 copies complètes des données originales.

4 CONCLUSION

Nous avons présenté le cadre dans lequel s’inscrit notre thèse, la sauvegarde coopérative pour
dispositifs mobiles, ainsi que les défis nouveaux à relever dans ce contexte.Nous avons présenté,
en particulier, le contour architectural du service que nous envisageons.

Nos travaux actuels portent sur l’évaluation analytique de la disponibilité des données
offerte par un tel service de sauvegarde. Notre objectif est d’évaluer, pour des taux donnés de
rencontre entre participants, d’accès à Internet, et de défaillance, la disponibilité atteinte en
fonction du temps.Cette évaluation devrait nous permettre de considérer différentes politiques
de dissémination des données.

RÉFÉRENCES

[1] R. BHAGWAN, K. TATI, Y-C. CHENG, S. SAVAGE, G. M. VOELKER. Total Recall : System
Support for Automated Availability Management. Proc. of the ACM/USENIX Symp. on
Networked Systems Design and Implementation, 2004.

[2] C. BÉOUNES, M. AGUÉRA, J. ARLAT, K. KANOUN, J-C. LAPRIE, S. METGE, S. BACHMANN, C.
BOURDEAU., J-E. DOUCET, D. POWELL, P. SPIESSER. SURF-2 : A Program for Dependability
Evaluation of Complex Hardware and Software Systems. Proc. of the Twenty-Third
IEEE Annual Int. Symp. on Fault-Tolerant Computing, pages 668–673, 1993.

[3] L. COURTÈS, M-O. KILLIJIAN, D. POWELL, M. ROY. Sauvegarde coopérative entre pairs pour
dispositifs mobiles. Actes des deuxièmes journées francophones Mobilité et Ubiquité
(UbiMob), pages 97–104, 2005.

[4] Y. DESWARTE, L. BLAIN, J-C. FABRE. Intrusion Tolerance in Distributed Computing
Systems. Proc. of the IEEE Symp. on Research in Security and Privacy, pages 110–121,
1991.

[5] C. HUANG, L. XU. STAR : An Efficient Coding Scheme for Correcting Triple Storage Node
Failures. Proc. of the Fourth USENIX FAST , pages 197–210, 2005.

[6] R. KATTI, X. RUAN. S-Code : New Distance-3 MDS Array Codes. IEEE Int. Symp. on
Circuits and Systems, 2005.

[7] W. K. LIN, D. M. CHIU, Y. B. LEE. Erasure Code Replication Revisited. Proc. of the Fourth
P2P, pages 90–97, 2004.

MoSAIC Progress Report 103/112

[8] M. G. LUBY, M. MITZENMACHER, M. A. SHOKROLLAHI, D. A. SPIELMAN. Efficient Erasure
Correcting Codes. IEEE Transactions on Information Theory, 47(2), February 2001,
pages 569–584.

[9] P. MAYMOUNKOV. Online Codes. TR2002-833, Secure Computer Systems Group, New York
University, NY, USA, November 2002.

[10] M. MITZENMACHER. Digital Fountains : A Survey and Look Forward. Proc. of the IEEE
Information Theory Workshop, pages 271–276, 2004.

[11] L. XU. Hydra : A Platform for Survivable and Secure Data Storage Systems. Proc. of the
ACM Workshop on Storage Security and Survivability, pages 108–114, 2005.

[12] L. XU, V. BOHOSSIAN, J. BRUCK, D. G. WAGNER. Low Density MDS Codes and Factors of
Complete Graphs. IEEE Transactions on Information Theory, 45(1), November 1999,
pages 1817–1826.

MoSAIC Progress Report 104/112

ANNEXE : ALGORITHMES DE CODES D’EFFACEMENT

On utilise la notation (n,k) pour désigner un code d’effacement qui, à partir d’une donnée
partitionnée en k fragments, produit n fragments, avec n > k. Un code d’effacement est dit
optimal si le nombre de fragments nécessaire pour recouvrer la donnée d’origine est égal à k ; on
dit qu’il est quasi-optimal si il suffit de k + ε fragments, où ε est petit par rapport à k [12]. On
appelle taux d’un code le rapport entre le nombre de fragments nécessaires pour reconstituer
la donnée initiale et le nombre n de fragments produits. On appelle distance d’un code la
différence entre le nombre de fragments produits n et le nombre de fragments nécessaires, plus
1. Par exemple, dans le cas d’un code optimal, la distance est d = n − k + 1 [5].

En pratique, un certain nombre de codes d’effacement sont prévus pour un taux fixe. On
notera par exemple les codes optimaux suivants :

Nom Distance Taux

B-Code [12] 3 k
k + 2

STAR [5] 4 k
k + 3

S-Code [6] 3 k
k + 2

Tornado [8] au choix, choisi a priori

Comme on le voit, les codes Tornado définissent tout une famille de codes dont le taux doit
être choisi avant utilisation. Par ailleurs, il existe des codes dits « sans taux » capables de
produire potentiellement une infinité de fragments codés parmi lesquels seuls k + ε suffisent
pour restaurer la donnée d’origine [9,10].

MoSAIC Progress Report 105/112

MoSAIC Progress Report 106/112

Increasing Data Resilience of Mobile Devices with a Collaborative Backup
Service

Damien Martin-Guillerez
IRISA/ENS-Cachan

Campus de Beaulieu, 35 042 Rennes Cedex, FRANCE
dmartin@irisa.fr

Abstract

Whoever has had his cell phone stolen knows how frus-
trating it is to be unable to get his contact list back. To
avoid data loss when losing or destroying a mobile device
like a PDA or a cell phone, data is usually backed-up to a
fixed station. However, in the time between the last backup
and the failure, important data can have been produced and
then lost.

To handle this issue, we propose a transparent collabora-
tive backup system. Indeed, by saving data on other mobile
devices between two connections to a global infrastructure,
we can resist to such scenarios.

In this paper, after a general description of such a sys-
tem, we present a way to replicate data on mobile devices
to attain a prerequired resilience for the backup.

1. Introduction

The production of sensible data on mobile devices, such
as PDAs or mobile phones, has increased with the use of
such devices. The loss of those data can have painful conse-
quences for the user (e.g. loss of phone numbers or meeting
notes).

To reduce data loss, many devices have a synchroniza-
tion mechanism. The main issue in synchronization is the
necessary proximity of the user and his computer and thus,
there is a time period during which device failure means ir-
reversible data loss. For example, if you take a note on your
PDA during a meeting and this PDA gets lost on your way
home then the note is definitely lost. However, more and
more mobile devices come with wireless connectivity like
IEEE 802.11. Thus, using neighbor devices to save data
right after its production can decrease data loss. Data can
be restored either from a global-scale network like the In-
ternet or directly from the backup device.

We aim at creating a transparent collaborative backup

service for mobile devices [5]. Such a service needs to meet
specific requirements outlined in section 2. Then, we ana-
lyze several specific issues of mobile device data and repli-
cation in section 3. Afterwards, we present a way to order
replicas in that system in section 4. After presenting ex-
isting systems in section 5, we outline works that are still
pending and conclude in section 6.

2. Design overview

Our main aim is to design a transparent backup system
that can handle high mobility. Thus, it needs to handle two
scenarios: (i) when connected to a global network like the
Internet, the system must use the opportunity to save data on
a resilient server and (ii) when disconnected from the global
network, it must use neighbor terminals to backup selected
data.

Depending on data production (e.g. production rate, data
importance), the system should adapt the level of replica-
tion. Moreover, the system needs to be protected against
egoistic participants that backup but do not provide resources
to others. Of course, we want the system to be as transparent
for the user as possible. That means that very few actions
are required from the user during the backup or the restore
and that neither prior trust relationship with other peers nor
extra hardware is required.

We consider only following backup scenarios: a client
terminal can either backup its data to another terminal or to
an Internet server. Later, the backup peer can save the data
on the Internet server. If a failure occurs, the client terminal
can restore the data from the peer or from the server. We do
not consider propagating backup through peers because:

- Propagating backups costs energy and others resources
that will not be available for further backups.

- Only a full replica can be issued in such situations,
contrary to considered backup dispersion schemes.

- Only the client terminal can know when it’s neces-
sary to issue a replication. A replication issued by a

MoSAIC Progress Report 107/112

backup terminal has a good chance to be useless.

3. Data issues

Mobile device data. We will now look at data produced
on classical mobile devices and at their attributes to outline
related issues. The size mainly depends on data type (from
less than 200 bytes for SMS to hundred of megabytes for
movies). The second attribute is data importance, high for
notes taken during a meeting to very low for holiday pic-
tures for instance. Dependencies are also important: a SMS
may be useless without all preceding SMS in a discussion
thread. When a data item depends on preceding data, we
call it a temporal dependency. On the contrary, when a data
item is interdepent with others data, we call it a spacial de-
pendency. So, mobile device data are categorized by size,
dependencies and importance.

The size affects the backup system in means of (i) re-
sisting to mobility or network problems during a transmis-
sion and (ii) avoiding monopolizing one terminal memory.
Dependencies affect backup integrity and thus the system
needs some version tracking. Finally, we assign a priority
for each data item relatively to its importance and try to save
data items with highest priority first.
Dispersion of replicas. File fragmentation is imposed by
potentially high sized data. Moreover, the risk of a ter-
minal not correctly restoring a replica creates a need for a
flexible replication scheme. Courtes et al. [4] have already
defined the redundancy and compression methods we use.
We consider that all data items with spatial dependencies
are agglomerated into one (the priority of the new item is
the highest of the agglomerated items). Then, we consider
the

���������
replication scheme that fragments the data item

into
�

pieces where only
�

are required for reconstruction.
We also consider delta-compression which saves only the
changes between two versions of the same file. Replication
when delta-compressing is made on generated delta.

So, we consider that every data item to save follow this
format:

�
fragments and only

�
needed to reconstruct the

data item, possible temporal dependencies (the priority of
old data should be increased if it is lower than the priority
of the new data).
Version tracking. Given those propagation and dissemi-
nation schemes, some issues can appear regarding arrival of
new version of a data item to backup. First, the old version
of a data should be kept until all dependencies of the new
version have been backed-up to the resilient server. More-
over, conflicts may appear in our system. When you backup
the data of a mobile device on a fixed station, no conflict
appears since all new versions of a data item are created on
this device. But, with our propagation scheme, a conflict
may appear (cf. figure 1) when a data item is backed-up on

another mobile device and an old version of this data item is
located on the Internet server. If a failure occurs in this case,
the client may restore the old version from the server and
work on it, generating a conflict with the version backed-up
on the mobile device. In such a situation, our system must
use conflict resolution mechanisms like in Bayou [9].

4. Maximizing backup reliability

We will start studying the
�	���
���

replication scheme. Let�
�
be the probability of getting back the replica � and

����
the

probability of being able to get back � replicas between the
first � ones. Then we have (cf. figure 2):� � ��� ����� ��� ��� � � �	����� ��� � � � ����	��� (1)

So, when backing-up an additional replica, we can esti-
mate the impact on the probability of getting back the entire
data item. That is right, of course, only if each replica is
saved on a different terminal. We can handle the case of
two replicas being backed-up on the same terminal by as-
suming that they have the same probability

� �
. Thus, if we

save � replicas onto the same terminal at the same time, we
have: � � �! �" � �#��� � �!
� ��� � � � � � �!
� � � � �$"� (2)

We assume that a further save of a replica on an already
used terminal is an independent event. Finally we must take
into account the temporal dependencies. The probability of
restoring correctly a new data item that depends on old ones
is the probability of restoring the new data item multiplied
by the probability of restoring the old data.

We said in section 3 that each data item is associated
with a priority given as a desired backup resilience (e.g. a
probability). A prior mechanism should have established
this priority. Hence we can order data items to be backed-up
using a queue ordered by the priority minus the computed
probability of successful backup.

Thus, we get a general algorithm to order data packets
to save. First, we try to save while the peer is reachable.
The first data item that may be saved on this peer is pulled
off the queue. We try to save the next packet of this item
and recompute the probability of a successful backup. If
the probability is too low, the data item is inserted back into
the queue. We use (1) and (2) to recompute the probability.

5. Related works

Usually, data resilience is increased using hardware repli-
cation. In network file systems, replication of data uses sev-
eral data servers [8]. Peer-to-peer file systems have used
replication to increase data availability [3] and have paved
the way for collaborative backups [1].

MoSAIC Progress Report 108/112

Figure 1. Conflict during a restoration. Figure 2. Graphical proof of equation (1).

In a mobile context, Roam [7] uses peers to replicate
data for high availability but can hardly handle high mo-
bility due to the clusterization of the peers. Data replication
between clusters is needed when a peer switches clusters. In
fact, Roam is not designed for backup recovery but for high
availability and data sharing. Moreover, Roam does not ex-
ploit opportunistic replication on random mobile peer. Ad-
HocFS [2], another file system focused on high availability
and data sharing by transposing peer-to-peer file systems’
paradigms to ad hoc networks, does not give support for
high mobility. FlashBack [6], a backup system for Per-
sonal Area Network (PAN), can efficiently handle data loss.
FlashBack is designed for people that wear several wireless
mobile devices. Thus, FlashBack suffers from the same lim-
itations as AdHocFS and Roam.

6. Conclusion

We have presented a general design for a backup sys-
tem that can handle high mobility and that do not rely on
pre-established relationships. Issues regarding incentives,
confidentiality, high mobility and resource management are
still to be resolved.

Indeed, several requirements have been outlined in sec-
tion 2: the system must be transparent, should not rely on
prior relationships nor on specific hardware. The system
must automatically assign the priority to the data, should
use incentives and confidentiality techniques. The network
layer should use classical wireless interface without inter-
ference with their classical uses.

A main pending issue is the probability estimation of one
packet to be correctly restored (

���
). The main parameter is

the reliability of the device itself eventually given by in-
centives. Other parameters can be battery lifetime, termi-
nal context and memory availability. Resource management
implies deletion of replicas to free memory on backup ter-
minals. We need to know which replicas to delete and the
impact on the system efficiency. Our future works will con-
centrate on those issues related to resource management.

References

[1] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore: A Se-
cure Peer-to-peer Backup System. Technical Report MIT-
LCS-TM-632, MIT Laboratory for Computer Science, Dec.
2001.

[2] M. Boulkenafed and V. Issarny. AdHocFS: Sharing Files in
WLANS. In The Second IEEE International Symposium on
Network Computing and Applications (NCA’03), Apr. 2003.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A Distributed Anonymous Information Storage and Retrieval
System. In The Workshop on Design Issues in Anonymity and
Unobservability, pages 46–66, July 2000.

[4] L. Courtès, M.-O. Killijian, and D. Powell. Storage Tradeoffs
in a Collaborative Backup Service for Mobile Devices. To
appear, 2006.

[5] M.-O. Kilijian, D. Powell, M. Banâtre, P. Couderc, and
Y. Roudier. Collaborative Backup for Dependable Mobile
Applications. In The 2nd International Workshop on Mid-
dleware for Pervasive and Ad-Hoc Computing (Middleware).
ACM, Oct. 2004.

[6] B. T. Loo, A. LaMarca, and G. Borriello. Peer-To-Peer
Backup for Personnal Area Networks. Technical Report IRS-
TR-02-015, Intel Research Seattle - University of California
at Berkeley, May 2003.

[7] D. Ratner, P. Reiher, and G. J. Pope1. Roam: A Scalable
Replication System for Mobile Computing. In The Work-
shop on Mobile Databases and Distributed Systems (MDDS),
pages 96–104, Sept. 1999.

[8] M. Satyanarayanan. Scalable, Secure and Highly Available
Distributed File Access. IEEE Computer, 23(5):9–21, May
1990.

[9] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
The 15th ACM Symposium on Operating Systems Principles
(SOSP’95), Dec. 1995.

MoSAIC Progress Report 109/112

	1- Factual Data
	2- Progress Report
	3- Surveys
	Communication paradigms for wireless mobile appliances
	Cooperative backup mechanisms
	Cooperation incentive schemes

	Published Papers
	MPAC
	Ubimob
	EDCC
	EDSYS
	DSN Student Forum

