MAFTIA's Dependability Concepts

Yves Deswarte & David Powell
LAAS-CNRS, Toulouse, France

OASIS PI Meeting, Santa Rosa, August 19-21, 2002

MAFTIA

IST Dependability Initiative
Cross Program Action 2
Dependability in services and technologies

Malicious- and Accidental-Fault Tolerance for Internet Applications

University of Newcastle (UK) Brian Randell, Robert Stroud
University of Lisbon (P) Paulo Verissimo
DSTL + QinetiQ (ex-DERA) (UK) Tom McCutcheon, Sadie Creese
University of Saarland (D) Birgit Pfitzmann
LAAS-CNRS, Toulouse (F) Yves Deswarte, David Powell
IBM Research, Zurich (CH) Marc Dacier, Michael Waidner

c. 55 man-years, EU funding c. 2.5M€
Objectives

- Architectural framework and conceptual model (WP1)
- **Mechanisms and protocols:**
 - dependable middleware (WP2)
 - large scale intrusion detection systems (WP3)
 - dependable trusted third parties (WP4)
 - distributed authorization mechanisms (WP5)
- Validation and assessment techniques (WP6)

Summary

- Causal chain of impairments
- Security policy and security failure
- Intrusion, attack and vulnerability
- Security methods
- Fault tolerance
- Intrusion detection
- Integrated intrusion detection/tolerance framework
Causal Chain of Impairments

- **Fault**: adjudged or hypothesized cause of an error
- **Error**: that part of system “state” which is different of what it would be w/o fault
- **Failure**: occurs when delivered service deviates from implementing the system function

Need to distinguish since detectable phenomenon (error) may have ≥ 1 cause

Need to distinguish since, otherwise, tolerance would be unattainable goal

Security Policy

- Security properties which are to be fulfilled by the system
- Rules according to which the system security state may evolve

- **Confidentiality**
- **Integrity**
- **Availability**
Security Failure

- Violation of a security property of intended security policy

Fault Model

- **attack** - malicious external activity aiming to intentionally violate one or more security properties; an *intrusion* attempt
- **vulnerability** - a malicious or non-malicious fault, in the requirements, the specification, the design or the configuration of the system, or in the way it is used, that could be exploited to create an *intrusion*
- **intrusion** - a malicious fault resulting from an *attack* that has been successful in exploiting a *vulnerability*
Fault Model: Recursion

Malicious Fault Model: Recursion?
Outsiders or Insiders: Privilege

- **Theft of privilege**: unauthorized increase in privilege
- **Abuse of privilege**: improper use of authorized operations
- **Outsider**: current privilege does not intersect considered domain
- **Insider**: current privilege intersects considered domain

Dependability Methods

PROVISION

- **Fault prevention** - how to prevent the occurrence or introduction of faults
- **Fault tolerance** - how to provide a service capable of or implementing the system function despite faults

ASSESSMENT

- **Fault removal** - how to reduce the presence (number, severity) of faults
- **Fault forecasting** - how to estimate the presence, creation and consequences of faults
Prevention, Tolerance and Removal

Security Methods

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Attack</th>
<th>Vulnerability</th>
<th>Intrusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>how to prevent the occurrence or introduction of...</td>
<td>deterrence, laws, social pressure, secret service...</td>
<td>security policy, semi-formal and formal specification, rigorous design and management...</td>
<td>firewalls, authentication, authorization... (+ attack prevention vulnerability prevention)</td>
</tr>
<tr>
<td>Tolerance</td>
<td>vulnerability prevention</td>
<td>vulnerability removal intrusion tolerance</td>
<td>= intrusion tolerance</td>
</tr>
<tr>
<td>how to provide a service capable of or implementing the system function despite...</td>
<td>= intrusion tolerance</td>
<td></td>
<td>confinement, detection/recovery, masking (e.g. FR5), + intrusion detection for fault treatment</td>
</tr>
<tr>
<td>Removal</td>
<td>not applicable</td>
<td>formal proof, model-checking, inspection, test...</td>
<td>not applicable</td>
</tr>
<tr>
<td>how to reduce the presence (number, severity) of...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecasting</td>
<td>intelligence gathering, threat assessment, attack warning...</td>
<td>assess presence of vulnerabilities, exploitation difficulty, potential consequences</td>
<td>vulnerability forecasting, attack forecasting</td>
</tr>
</tbody>
</table>
Fault Tolerance

Error Processing
- Error detection
- Damage assessment
- Error recovery

Fault Treatment
- Fault diagnosis
- Fault isolation
- Reconfiguration

Error Detection

Could be, e.g., activity according to rules specified in security policy

normal activity reference

observed activity

abnormal activity reference

anomaly detection

misuse detection

error report
Anomaly vs Misuse Detection

![Diagram showing Anomaly and Misuse Detection](image)

Preemptive Error Detection

[Avizienis, Laprie & Randell 2001]
(as opposed to concurrent error detection)

- Core concepts: AKA “built-in test”
 -> e.g., Memory scrubbing

- Interpretation wrt malicious faults
 - Vulnerability scanning
 - Configuration checking
(Damage assessment)

- Core concepts: aims to evaluate extent of error propagation before initiating recovery
 - How many checkpoints to rollback?
 - How many processes affected before detection?

- Interpretation?
 - How many files have been corrupted by an intruder, and thus need to be restored before use?

Error Recovery

Backward recovery

Forward recovery

Compensation-based recovery (fault masking)
Error Recovery

- Backward recovery
 - Software rejuvenation
 - Operating system re-installation
 - TCP/IP connection resets
 - System reboots and process re-initialisation
 - Software downgrades

- Forward recovery
 - Automated re-keying procedures ("proactive security")
 - Switching to diminished "safe" mode.
 - Software upgrades

- Masking
 - Voting mechanisms
 - Fragmentation-Redundancy-Scattering
 - ID Sensor correlation

Fault Tolerance

- Error detection
- Damage assessment
- Error recovery

- Fault diagnosis
- Fault isolation
- Reconfiguration
Fault Diagnosis

- Core concepts: identification and locations of faults; prerequisite to isolation & reconfiguration
- Intrusion diagnosis, i.e., trying to assess the degree of success of the intruder in terms of system penetration
- Vulnerability diagnosis, i.e., trying to understand the channels through which the intrusion took place so that corrective maintenance can be carried out
 (diagnosis immediate if errors signaled by vulnerability scanner or configuration checker)
- Attack diagnosis, i.e., finding out who or what organisation is responsible for the attack in order that appropriate litigation or retaliation may be initiated

Fault Isolation

- Core concepts: needed to prevent further errors
- Interpretation wrt. intrusions
 - Blocking traffic from an intrusion containment domain that is diagnosed as corrupt, by, for example, changing the settings of firewalls or routers
 - Removing a corrupted file from the system
- Interpretation wrt. root causes (vulnerability/attack)
 - Taking off line software versions with newly-found vulnerabilities
 - Arresting the attacker
System Reconfiguration

- **Core concepts:** redeployment of fault-free resources + corrective maintenance
- **Interpretation wrt. intrusions**
 - Change a voting threshold, e.g., $3/5 \Rightarrow 2/3$ after 2 corruptions
 - Deployment of countermeasures, inc. probes and traps
- **Corrective maintenance actions**
 - Vulnerability removal
 - software revision and upgrade
 - security patches
 - Attacker rehabilitation

Diagram:

- **API**
- **service user**
- **service**
- **insecurity signal**
- **intruder alert**
- **error and event reports**
- **event analysis**
- **system security officer (SSO)**
- **external sensor**
- **internal sensor**
- **error detection**
- **recognition**
- **recovery**
- **masking intrusion-tolerance**
- **detection/recognition intrusion-tolerance**
- **component or (sub-)system**
- **Error processing**
- **Fault treatment**
- **security administration (sub-)system**
- **system reconfiguration**
- **fault isolation (inc. intrusions, attacks and vulnerabilities)**
- **fault diagnosis (inc. intrusions, attacks and vulnerabilities)**
- **error detection**
- **a posterior error detection**
- **from possible lower level**
A (very) Simple Example

http://www.research.ec.org/maftia/