MAFTIA

Yves Deswarte
LAAS-CNRS

DSN-2001 Special Track on the European Dependability Initiative
Göteborg, July 2, 2001
Motivation

- Large network infrastructures, such as the Internet, are vital for citizens to benefit from the Information Society.
- Development depends on how much the users will ‘trust’ the services.
- Such services must be made dependable, in particular w.r.t. malicious attacks by external hackers or by corrupt insiders.
MAFTIA: Malicious- and Accidental-Fault Tolerance for Internet Applications

- Systematic investigation of the 'tolerance paradigm' for constructing large-scale dependable distributed applications.
- Comprehensive approach for tolerating both accidental faults and malicious intrusions in such systems, including intrusions by external hackers and by corrupt insiders.
Contract Details

- Project Start Date: 1st Jan 2000
- Duration: 3 years
-Requested Funding: 2.5 M€
-No. of person years: 55
Partners

- Newcastle University (GB) (coordinator)
 Brian Randell, Robert Stroud

- DERA, Malvern (GB)
 Sadie Crees, Tom McCutcheon

- IBM, Zurich (CH)
 Christian Cachin, Marc Dacier, Michael Waidner

- LAAS-CNRS, Toulouse (F)
 Yves Deswarte, David Powell

- Universität des Saarlandes (D)
 André Adeslbach, Birgit Pfitzmann

- Universidade de Lisboa (P)
 Nuno Neves, Paulo Veríssimo
Industrial Advisory Board

- Andrew Izon (North Durham NHS Trust, GB)
- Jean-Claude Lebraud (Rockwell-Collins, F)
- Derek Long (CISA Ltd., GB)
- Joachim Posegga (SAP Systems, D)
- Carlos Quintas (Easyphone, P)
- Gilles Trouessin (Ernst & Young Audit, F)
- Gritta Wolf (Credit Suisse, CH)
Objectives

- Architectural framework and conceptual model (WP1)
- Mechanisms and protocols:
 - dependable middleware (WP2)
 - large scale intrusion detection systems (WP3)
 - dependable trusted third parties (WP4)
 - distributed authorization mechanisms (WP5)
- Validation and assessment techniques (WP6)
The Dependability Tree

- Attributes:
 - Availability
 - Reliability
 - Safety
 - Confidentiality
 - Integrity
 - Maintainability

- Impairments:
 - Fault
 - Error
 - Failure

- Methods:
 - Fault Prevention
 - Fault Tolerance
 - Fault Removal
 - Fault Forecasting
The Dependability Tree

- Dependability
 - Impairments
 - Fault
 - Error
 - Failure
 - Methods
 - Fault Prevention
 - Fault Tolerance
 - Fault Removal
 - Fault Forecasting
 - Attributes
 - Availability
 - Reliability
 - Safety
 - Confidentiality
 - Integrity
 - Maintainability
 - Security
The Dependability Tree

- Attributes
 - Availability
 - Reliability
 - Safety
 - Confidentiality
 - Integrity
 - Maintainability

- Impairments
 - Fault
 - Error
 - Failure

- Methods
 - Fault Prevention
 - Fault Tolerance
 - Fault Removal
 - Fault Forecasting

- Security
The Dependability Tree

Dependability

- Attributes
 - Availability
 - Reliability
 - Safety
 - Confidentiality
 - Integrity
 - Maintainability

- Impairments
 - Fault
 - Error
 - Failure

- Methods
 - Fault Prevention
 - Fault Tolerance
 - Fault Removal
 - Fault Forecasting

Security
Fault, Error & Failure

Error

that part of system state which may lead to a failure

Failure
occurs when delivered service deviates from implementing the system function

Intrusion
adjuged or hypothesized cause of an error
Example: Single Event Latchup

SELs (reversible stuck-at faults) may occur because of radiation (e.g., cosmic ray, high energy ions)

Lack of shielding

Vulnerability

Internal, active fault

SEL

Internal, externally-induced fault

External fault

Cosmic Ray
Intrusions result from (at least partially) successful attacks:

- **Internal, dormant fault Intrusions**
- **Internal, active fault Intrusions**
- **External fault**
- **Vulnerability**
 - account with default password
- **Intrusion**
 - Internal, externally-induced fault

Computing System
Fault, Error & Failure

- **Failure**: occurs when delivered service deviates from implementing the system function, violation of properties of security policy.
- **Error**: that part of system state which may lead to a failure, violation of rules of security policy.
- **Fault**: not explicitly defined in the diagram.
- **Attack**, **Intrusion**, **Bug**, **H/W fault**: causes of failure.
- **False positives in intrusion detection**: explains false positives in intrusion detection.
- **Adjuged or hypothesized cause of an error**: allows tolerance to be envisaged.
The Dependability Tree

Dependability

- Impairments
 - Fault
 - Error
 - Failure

- Attributes
 - Availability
 - Reliability
 - Safety
 - Confidentiality
 - Integrity
 - Maintainability

- Methods
 - Fault Prevention
 - Fault Tolerance
 - Fault Removal
 - Fault Forecasting

Security
Fault Tolerance

Fault Treatment
- Diagnosis
- Isolation
- Reconfiguration

Error Processing
- Damage assessment
- Detection & Recovery
Error Processing

Backward recovery

Forward recovery

Compensation-based recovery (fault masking)
Error Processing (wrt intrusions)

- Error (security policy violation) detection
 - + Backward recovery (availability, integrity)
 - + Forward recovery (availability, confidentiality)

- Intrusion masking
 - Fragmentation (confidentiality)
 - Redundancy (availability, integrity)
 - Scattering
Fault Tolerance

Failure

Error Processing
- Damage assessment
- Detection & Recovery

Fault Treatment
- Diagnosis
- Isolation
- Reconfiguration

Fault

Error
Fault Treatment

- **Diagnosis**
 - determine cause of error, i.e., the fault(s)
 - localization
 - nature

- **Isolation**
 - prevent new activation

- **Reconfiguration**
 - so that fault-free components can provide an adequate, although degraded, service
Fault Treatment (wrt intrusions)

❖ Diagnosis
 o Non-malicious or malicious (intrusion)
 o Attack (to allow retaliation)
 o Vulnerability (to allow removal)

❖ Isolation
 o Intrusion (to prevent further penetration)
 o Vulnerability (to prevent further intrusion)

❖ Reconfiguration
 o Contingency plan to degrade/restore service
 ▪ inc. attack retaliation, vulnerability removal
Intrusion-tolerance Structuring

Security administration (sub-)system

Component or (sub-)system

Error processing

Standalone sensors

Error detection

Error detection

A posteriori error detection

Error reports

Masking (FRS)

detection/recovery

Intrusion, attack and vulnerability isolation

System reconfiguration

Fault treatment

Security administration (sub-)system

Service user

Service

Insecurity signal

Intruder alert

System security officer (SSO)

Insecurity signal

Service

(from possible lower level)