Dependability Benchmarking of Operating Systems

Karama KANOUN
LAAS-CNRS
(karama.kanoun@laas.fr)

PhD seminars - University of Roma, Italy
September 13 - 17, 2004

Benchmarking Context

Selection Criteria: cost, performance, Dependability
Benchmarking Context

- Integrator of a system including an operating system (OS)
 - Select the most appropriate OS / system characteristics
 - Information on OS dependability
 - Publishable results

- Limited knowledge about the OS
 - Functional description of the OS
 - Accessibility and observability

Benchmark Components

- System Under Benchmark (SUB)
 - Workload
 - API
 - Operating system
 - Device drivers
 - Hardware

- Faultload
- Benchmark controller
Benchmark Measures

Workload level

OS level

OS Outcomes
- SEr: Error code
- SXp: Exception
- SPc: Panic
- SHg: Hang
- SNS: No signaling

Basic Measures
- POS: OS Robustness (outcome distribution)
- Texec: OS reaction time in the presence of faults
 (τ_{exec}: in absence of fault)
- Tres: OS Restart time in the presence of faults
 (τ_{res}: in absence of fault)
Execution Profile

- **Workload**
 - TPC-C Client

- **Faultload**
 - Selection of system calls to be corrupted
 - Ideally: all system calls with parameters
 - In practice: most critical OS functional components
 - Processes and threads
 - File Input/output
 - Memory management
 - Configuration management
 - 28 system calls, 75 parameters, 552 corrupted values
 - Interception of the selected system calls
 - Parameter corruption technique: selective substitution

Faultload

Parameter corruption technique

- Systematic Bit Flip
- Selective substitution

- Out-of-range Data
- Incorrect Data
- Incorrect Address

Software Reliability Evaluation (Dependability Benchmarking) - Karama KANOUN - LAAS-CNRS
Experimental Set-up

Experiments with Workload completion

Measurements
Measurements

Experiments without Workload completion

Timeout >> Workload completion duration

OS Reaction time

System Call to intercept

Experiment End

Restart time

Experiment Start
(n)

Workload End

Experiment Start
(n+1)

OS Robustness

POS

28 system calls intercepted, 552 experiments
OS Reaction Time

<table>
<thead>
<tr>
<th></th>
<th>τ_{exec}</th>
<th>Texec (Std dev.)</th>
<th>Texec Error code</th>
<th>Texec Exception</th>
<th>Texec No-signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows NT</td>
<td>344 μs</td>
<td>128 μs (230 μs)</td>
<td>17 μs (18 μs)</td>
<td>86 μs (138 μs)</td>
<td>203 μs (281)</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>1782 μs</td>
<td>1241 μs (3359 μs)</td>
<td>22 μs (28 μs)</td>
<td>973 μs (2978 μs)</td>
<td>2013 μs (4147)</td>
</tr>
<tr>
<td>Windows XP</td>
<td>111 μs</td>
<td>114 μs (176 μs)</td>
<td>23 μs (17 μs)</td>
<td>108 μs (162 μs)</td>
<td>165 μs (204 μs)</td>
</tr>
</tbody>
</table>

OS Restart Time

<table>
<thead>
<tr>
<th></th>
<th>τ_{res}</th>
<th>Tres</th>
<th>Std Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows NT</td>
<td>92 s</td>
<td>96 s</td>
<td>4 s</td>
</tr>
<tr>
<td>Windows 2000</td>
<td>105 s</td>
<td>109 s</td>
<td>8 s</td>
</tr>
<tr>
<td>Windows XP</td>
<td>74 s</td>
<td>80 s</td>
<td>8 s</td>
</tr>
</tbody>
</table>
Benchmark Validation

- Results in conformance with Microsoft claims
- Benchmark properties
 - Repeatability
 - Reproducibility
 - Portability
 - Cost effectiveness
- Sensitivity analysis wrt to Faultload

<table>
<thead>
<tr>
<th></th>
<th>Incorrect data</th>
<th>Incorrect address</th>
<th>Out-of-range data</th>
<th>Systematic Bit-Flip</th>
<th># System calls</th>
<th># experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>28</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>FL1</td>
<td>x</td>
<td>x</td>
<td></td>
<td>28</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>FL2</td>
<td></td>
<td>x</td>
<td></td>
<td>28</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>FL3</td>
<td></td>
<td></td>
<td></td>
<td>All (132)</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>FL4</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>2400</td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity Analyses wrt Faultload

Software Reliability Evaluation (Dependability Benchmarking) - Karama KANOUN - LAAS-CNRS
Conclusions

- OS robustness benchmark wrt application erroneous behavior
- Dependability benchmark prototype for Windows family
- Characteristics
 - Structured set of measures
 - Realistic Workload: TPC-C Client
 - Standard experimental procedures and rules
 - Validation of the benchmark properties
- Lesson learned
 - Workload state difficult to identify → workload selection

Future Work

- Other workloads: Postmark, Java Virtual Machine
- Other OS family: Linux (Postmark, Java Virtual Machine)
- Other measure: error propagation
- Other faultload:
 - Hardware faults
 - Erroneous behaviour of device drivers