� INCORPORER Word.Picture.6 ���

�

� INCORPORER Word.Picture.6 ���

SQUALE

Analysis of

Security, Safety, Quality Standards

and

Codes of Practice

ACTS95/AC097��

�

Project Number : AC097��Project Title : Security, Safety and Quality Evaluation for Dependable Systems��Deliverable Type (P/R/L/I)� : P��

CEC Deliverable Number : D6��Contractual Date of Delivery to the CEC : 01/09/1996��Actual Date of Delivery to the CEC : 30/10/1996��Title of Deliverable : Analysis of Security and Safety Standards and Codes of Practice��Workpackage contributing to the Deliverable : WP1-Life Cycle Model��Nature of the Deliverable (P/R/S/T/O)� : R��Authors : Jean-Paul Blanquart, Françoise Charousset, Pierre Corneillie, Yves Deswartes,�Maria Fischalek, Jean Gassinot, Alan Hawes, Herbert Jans, Mohamed Kaaniche, Helmut Kurth, �Jean Claude Laprie, Tim Manning, Sylvain Moreau, Angelika Steinacker, Patrick Touratier.��

Abstract :

This paper is the results of the analysis of a selected set of internationnal standards in the Security, Safety and Quality fields. It addresses railways, nuclear, aeraunotics and space domains.

The dependability concepts and the terminology used are partially based on the results of PDCS-2 project (Predictably Dependable Computing Systems, Esprit action n°6362).

Analysis of the documentation is made following a scheme which allows to identify the areas covered by each document and those which are not covered.

��Keyword list : Standards, Safety, Security, Quality, Dependability.��

�

Issued by :

Helmut KURTH and Sylvain MOREAU

Visas :

Approved by�Date�Name�Signature��Head of Department��M. Eric ALLODI���

Verified by�Date�Name�Signature��Quality Manager��M. Dominique RIVET���

�Diffusion :

Compagny��Department�Name��Copies��European Commission��DG XIII/B�Renaud Di Francesco��1��Conception et Réalisation d’Application Automatisées-Décision Internationnal (CR2A-DI)��Méthodes/Qualité/Sécurité�Pierre Corneillie��1��Industrieanlagen-Betriebsgesellschaft mbH (IABG)��CC33�Helmut Kurth��1��Admiral Management Services Limited (Admiral)���Alan Hawes��1��Commissariat à l’Energie Atomique (CEA)��DEIN/SLA/SL�Jean Gassinot��1��Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)��Dependable Computing and Fault Tolerance�Yves Deswarte��1��Matra Transport (MATRA)���Patrick Touratier��1���

CHange History

Configuration control

Title 	: Analysis of Security, Safety, Quality Standarts and Codes of Practice.

Doc. Ref. 	: SQUALE/ASSQS-V1.0.

Created by 	: Pierre CORNEILLIE.

Document history

Edition�Delivered�Saved as�Modifications��0.1��Analys1.doc�prelease.��0.2��Analysis.doc�draft 1, addings of analysis from IABG, Admiral, CEA, CR2A-DI.��1.0��Analysis.doc�harmonization of table formats, analysis of several additional documents added���������������������������

�

Table of Contents

� TM \o "1-2" �1. introduction	� BOUTONATTEINDRE _Toc369584218 � RENVOIPAGE _Toc369584218 �9��

1.1. Classification Framework	� BOUTONATTEINDRE _Toc369584219 � RENVOIPAGE _Toc369584219 �9��

2. Documentation list	� BOUTONATTEINDRE _Toc369584220 � RENVOIPAGE _Toc369584220 �13��

2.1. Security	� BOUTONATTEINDRE _Toc369584221 � RENVOIPAGE _Toc369584221 �13��

2.2. Quality	� BOUTONATTEINDRE _Toc369584222 � RENVOIPAGE _Toc369584222 �16��

2.3. Safety	� BOUTONATTEINDRE _Toc369584223 � RENVOIPAGE _Toc369584223 �19��

3. Documents analysis : Quality	� BOUTONATTEINDRE _Toc369584224 � RENVOIPAGE _Toc369584224 �24��

3.1. ISO 9001 & ISO 9000-3	� BOUTONATTEINDRE _Toc369584225 � RENVOIPAGE _Toc369584225 �24��

3.2. DOD-STD-2167A	� BOUTONATTEINDRE _Toc369584226 � RENVOIPAGE _Toc369584226 �28��

3.3. DOD-STD-498	� BOUTONATTEINDRE _Toc369584227 � RENVOIPAGE _Toc369584227 �33��

3.4. AQAP-13	� BOUTONATTEINDRE _Toc369584228 � RENVOIPAGE _Toc369584228 �36��

3.5. RG Aéro 00040	� BOUTONATTEINDRE _Toc369584229 � RENVOIPAGE _Toc369584229 �40��

3.6. ESA software engineering standards (ESA PSS-05)	� BOUTONATTEINDRE _Toc369584230 � RENVOIPAGE _Toc369584230 �44��

3.7. Key pracitices of the Capability Maturity Model	� BOUTONATTEINDRE _Toc369584231 � RENVOIPAGE _Toc369584231 �47��

3.8. Systems Engineering Capability Maturity Model	� BOUTONATTEINDRE _Toc369584232 � RENVOIPAGE _Toc369584232 �50��

3.9. SECMM	� BOUTONATTEINDRE _Toc369584233 � RENVOIPAGE _Toc369584233 �53��

4. Documents analysis : Safety	� BOUTONATTEINDRE _Toc369584234 � RENVOIPAGE _Toc369584234 �58��

4.1. DO-178B	� BOUTONATTEINDRE _Toc369584235 � RENVOIPAGE _Toc369584235 �58��

4.2. ARP 4754	� BOUTONATTEINDRE _Toc369584236 � RENVOIPAGE _Toc369584236 �63��

4.3. IEC 880	� BOUTONATTEINDRE _Toc369584237 � RENVOIPAGE _Toc369584237 �67��

5. Documents analysis : Security	� BOUTONATTEINDRE _Toc369584238 � RENVOIPAGE _Toc369584238 �75��

5.1. ITSEC	� BOUTONATTEINDRE _Toc369584239 � RENVOIPAGE _Toc369584239 �75��

5.2. Information Technology Security Evaluation Manual (ITSEM)	� BOUTONATTEINDRE _Toc369584240 � RENVOIPAGE _Toc369584240 �79��

5.3. Common Criteria	� BOUTONATTEINDRE _Toc369584241 � RENVOIPAGE _Toc369584241 �83��

5.4. INFOSEC '92: Task 12: Commercial Accreditation of IT Systems	� BOUTONATTEINDRE _Toc369584242 � RENVOIPAGE _Toc369584242 �88��

5.5. IT-Sicherheitshandbuch	� BOUTONATTEINDRE _Toc369584243 � RENVOIPAGE _Toc369584243 �92��

5.6. Navy Handbook for the Computer Security Certification of Trusted Systems	� BOUTONATTEINDRE _Toc369584244 � RENVOIPAGE _Toc369584244 �96��

5.7. A Guide to Security Risk Management for Information Technology Systems	� BOUTONATTEINDRE _Toc369584245 � RENVOIPAGE _Toc369584245 �100��

5.8. A Guide to Risk Assessment and Safeguard Selection for Information Technology Systems	� BOUTONATTEINDRE _Toc369584246 � RENVOIPAGE _Toc369584246 �103��

5.9. A Guide to Certification and Accreditation of Information Technology Systems	� BOUTONATTEINDRE _Toc369584247 � RENVOIPAGE _Toc369584247 �106��

5.10. An Introduction to Computer Security: The Nist Handbook (Special Pub 800-12, 06.02.1996)	� BOUTONATTEINDRE _Toc369584248 � RENVOIPAGE _Toc369584248 �109��

6. ANNEX A : Dependable Computing: Concepts, Limits, Challenges	� BOUTONATTEINDRE _Toc369584249 � RENVOIPAGE _Toc369584249 �113��

7. ANNEX B : Generic Headings for the Description of Documents	� BOUTONATTEINDRE _Toc369584250 � RENVOIPAGE _Toc369584250 �139��

7.1. Classification Scheme for Documents	� BOUTONATTEINDRE _Toc369584251 � RENVOIPAGE _Toc369584251 �139��

7.2. Summary	� BOUTONATTEINDRE _Toc369584252 � RENVOIPAGE _Toc369584252 �139��

7.3. Relevance for the Project	� BOUTONATTEINDRE _Toc369584253 � RENVOIPAGE _Toc369584253 �139��

7.4. Classification Scheme	� BOUTONATTEINDRE _Toc369584254 � RENVOIPAGE _Toc369584254 �140��

7.5. Remarks	� BOUTONATTEINDRE _Toc369584255 � RENVOIPAGE _Toc369584255 �142��

�

�

FIGURES

None.

TABLES

None.

�introduction

The development and operation of dependable computing systems calls for the combined use of a set of processes, methods and techniques during the different life cycle phases of the system in order to fulfil the dependability objectives of the project. Besides the traditional development processes which cover the classical development steps : Requirements elicitation and specification, Design, Realisation and Integration, additional processes are also defined in order to :

plan and co-ordinate the activities carried out within each life cycle process, and

ensure the correctness, the control and the confidence of the life cycle processes and their outputs.

Several international industry and government accepted practices and standards relating to dependability have been proposed over the past years and some others are under development. The corresponding documents address complementary and overlapping aspects. In order to identify the different areas covered by these documents and those which are not covered we have defined a classification scheme which is presented in the following section. The aim of this classification scheme is to identify the standards which are relevant for the SQUALE project in order to define the harmonised evaluation criteria covering all dependability aspects (in particular security and safety requirements).

The definitions of the dependability concepts and the terminology used in the following are given in the Annex A.

Classification Framework

The classification scheme is a matrix in which the columns correspond to the traditional life cycle phases and the rows identify the processes and the activities carried out during these life cycle phases and for which requirements are defined in the standards. Some columns corresponding to a life cycle phase are divided in two parts : one for ÒProcessÓ requirements and the other one for ÒProductÓ requirements (Annex B).

The life cycle phases that are considered are the following :

Requirements and Definition of system level requirements ;

Design : definition of a system architecture satisfying the system level requirements ;

Realisation : implementation of hardware components and coding of software components ;

Integration : assembly of system components according to the architecture and system integration in its operational environment ;

Accreditation and Acceptance : final validation of the system before its release to operation ;

In use: systemÕs use in its operational environment ;

End of service: system disposal.

The supporting processes and related activities are grouped into categories according to the objectives of these processes. The categories identified and the scope of each one of them are listed hereafter.

Fault Prevention

Three main activities can be distinguished for the prevention of faults occurrence and introduction :

Definition of the formalisms and languages used to develop, verify, evaluate and control the systems processes and products ;

Project organisation: tasks assignment to the different teams involved in the project and co-ordination of their activities ;

Project planning and evaluation of related risks: selection of one or several life cycle models, planning and schedule of processes activities, assessment and management of the risks associated to these decisions, etc..

Fault Tolerance

Fault tolerance activities are aimed at the implementation of mechanisms allowing the accomplishment of the systemÕs functions despite the presence of faults. Three main activities can be distinguished :

Description of the system behaviour in presence of faults/errors/failures : definition of fault classes to be tolerated by the system, description of the system behaviour in presence of these faults, and definition of tolerable degraded operating modes. The faults/failure assumptions should be related to the dependability objectives to be ensured by the system ;

System partitioning into error and fault containment areas : definition of error propagation barriers (between components) and fault independence areas (components or sets of components whose faults are supposed to be non correlated). The purpose of these boundaries is to assure the independence of failure of individual subsystems ;

Definition of error and fault processing mechanisms : Error processing includes error detection, error diagnosis and error recovery. Fault processing includes fault diagnosis, fault passivation and system reconfiguration.

Fault Removal

Fault removal is composed of three steps : verification, diagnosis, correction. Verification is the process of checking whether the system accomplishes its expected functions and satisfies the expected properties ; if it does not, the other two steps have to be undertaken. Verification techniques can be classed into static or dynamic verification techniques according to whether or not they involve actual system execution. Static verification techniques are based on technical reviews, analyses and inspections. Dynamic verification generally corresponds to the testing of the system or its components. Different testing strategies may be used (functional, structural) considering inputs characterising the nominal behaviour of the system (normal conditions) and also abnormal conditions (robustness testing). Penetration testing used for the evaluation of the strength of the security enforcing mechanisms, and fault injection experiments used for the evaluation of fault tolerant mechanisms can be classified as robustness testing techniques.

Fault Forecasting

Fault forecasting activities aim to estimate the presence and the occurrence of faults in the system and their impacts on the system behaviour.

Three main activities can be distinguished :

Definition of dependability objectives : The first step consists in the definition of the dependability attributes that should be satisfied by the system. Objectives can be stated quantitatively (target values for the failure rates, availability, safety, etc.) or qualitatively (by specifying for instance criticality levels, called integrity levels in some standards) ;

Allocation of dependability objectives among subsystems : the assignment of probabilities or integrity levels to system components derived from the dependability objectives defined at higher decomposition levels. This allocation process is supported by evaluation techniques ; it is also based on some assumptions that have to be explicitly specified (these assumptions concern the faults classes considered, the independence between the stochastic processes involved, the probability distributions of these processes, etc.) ;

Evaluation : qualitative analyses and quantitative evaluations can be used to analyse the impact of faults/failures on the system behaviour and estimate the level of satisfaction of dependability objectives. This step includes the identification of the threats and the hazards that may occur in the system. Several techniques can be used to support the evaluations to be carried at the different development stages : Fault Tree Analysis, Failure Modes and Effects Analysis, Reliability Diagrams, Common Cause Analysis, Stochastic Modelling (Markov models and their extensions), Engineering Judgements, Simulations, Experimental validation, etc..

Risk Analysis and Risk Management

Risk is a combination of the likelihood of an undesirable event (hazard) and the severity of the potential consequences. Risk analysis involves the identification of the factors contributing to a given risk and the assessment of the associated risk level. Risk management involves the identification of countermeasures for the reduction of the risks to acceptable levels. Risk analysis and risk management activities are supported by data collected on previous products, and also the data collected during the development and the early execution of the system. Therefore, incident reporting and analysis is also a key activity. The feedback resulting from these analyses may lead to an update of risk analyses and risk management results.

Clearly risk analysis and risk management activities overlap with fault forecasting and fault tolerance activities. However, because the former terminology is commonly used in some standards (especially in security standards), we have chosen to include risk analysis and management activities explicitly in the classification scheme.

Functional Requirements

Many existing standards describe or even prescribe the use of specific functions, algorithms or mechanisms. Especially sector specific standards that focus on a particular dependability objective provide a list of functions and/or mechanisms that shall be used in the implementation. Other standards provide a list of useful functions as a guidance where system designers may select those functions which best fit their set of dependability objectives.

The analysis will identify, which of the standards provides guidance for functional requirements and for which phase of the system life cycle the guidance is given.

Documentation

The objective of this process is to produce and maintain the documentation required for system life cycle activities as defined in the system planning process. This documentation includes for instance specification, design and realisation documents, system operatorÕs manual, users manuals, system administration manual, etc..

Quality Assurance

The aim of the quality assurance process is to provide confidence that the system development and supporting processes are appropriate, applied, maintained and comply with the approved plans and standards. Quality assurance activities include technical conformity reviews, audits, informal meetings, etc..

Configuration Management

The key objective of the configuration management process is to provide a defined and controlled configuration of the system during its life cycle, to ensure full visibility of systems products and to control the modifications of the system configuration. Problem reporting, tracking and resolution are also included in the configuration management activities.

Certification

System certification has to be planned at the beginning of the development process. The objective of the certification process is to establish communication and understanding with the certification authority throughout the system life cycle. The certification process activities include the definition of the data to be provided in order to prove the compliance of the system to the certification requirements, and the schedule of the certification activities to be carried out during the system life cycle.

�Documentation list

This paragraph lists the documents identified by the project as potentially relevant for the definition of harmonised dependability criteria. It states for each document :

partners that possess a copy of the document

the partner responsible for the detailed analysis of the document ;

a first overall assessment of the relevance of the document for this project (high, medium or low).

Mainly for those documents considered as highly relevant for the project a detailed analysis according to the analysis scheme as defined in Appendix B was performed. The other documents listed have been considered during the work, but no detailed analysis according to the scheme defined in this document has been performed.

Each document is sorted into one of the following three subjects:

Security

Quality Assurance

Safety

The consortium is aware that several documents cover aspects from two or all three of the above mentioned subjects. In this case the document is sorted into the main subject it addresses.

Security

Dokument ID�Document Title �available at�review by�relevance��CC�Common Criteria for Information Technology Security Evaluation, Version 1.0, 1996 �IABG, CR2A-DI, ADMIRAL�IABG�high��CRAMM�CCTA Risk Analysis and Management Methodology (CRAMM), CCTA, 1988�IABG, ADMIRAL��medium��CSE-95-1�A Guide to Security Risk Management for Information Technology Systems�Communications Security Establishment, Government of Canada�Interim Version 1.0, August 1995�IABG�IABG�high��CSE-95-2�A Guide to Risk Assessment and Safeguard Selection for Information Technology Systems�Communications Security Establishment, Government of Canada�Interim Version 1.0, August 1995�IABG�IABG�high��CSE-95-3�A Guide to Certification and Accreditation of Information Technology Systems�Communications Security Establishment, Government of Canada�Interim Version 1.0, August 1995

These are three draft documents from the Canadian Government describing their approach to risk assessment, risk management and systems security certification�IABG�IABG�high��HAND-92�IT-Sicherheitshandbuch, Handbuch fŸr die sichere Anwendung der Informationstechnik, Bundeamt fŸr Sicherheit in der Informationstechnik, 1992�IABG�IABG�medium��IEC 9796�IEC 9796 Information technology - Security techniques - Digital signature scheme giving message recovery�IABG��low��IEC 9797�IEC 9797 Data cryptographic techniques - Data integrity mechanisms using a cryptographic check function employing a block cipher algorithm�IABG��low��IEC 9798-1�IEC 9798-1 Information technology - Security techniques - Entity authentication mechanisms- Part 1 General model�IABG��low��IEC 9798-3�IEC 9798-3 Information technology - Security techniques - Entity authentication mechanisms- Part 3 Entity authentication using a public key algorithm�IABG��low��INFO-92�INFOSEC 92, Task S2012 - Commercial Accreditation of IT-systems, Final Report, 1993�IABG, CR2A-DI�IABG�high��INFO-93�INFOSEC 93, Task S2114 - ITSEC Extensions, Final Report, 1994�IABG, CR2A-DI�IABG�high��ISO 9160�ISO 9160 Information processing - Data encipherment - Physical layer interoperability requirements�IABG��low��ITSEC�Information Technology Security Evaluation Criteria (ITSEC), 1991�IABG, ADMIRAL, CR2A-DI�IABG�high��ITSEM�Information Technology Security Evaluation Manual (ITSEM), 1993�IABG, ADMIRAL, CR2A-DI�IABG�high��NF Z 74-200�NF Z 74-200 Information technology - Protection of sensitive information not related to secret defense - Recommendations for computer workstation���low��NIST-94�Draft NIST Security Handbook, National Institute for Standards and Technology, 1994�IABG�IABG�medium��NRL-96�Handbook for the Computer Security Certification of Trusted Systems�Naval Research Laboratory, Code 5540, Washington, D.C.

This handbook is currently available only in draft form with some chapters still missing. The following table of content lists the intended chapters and marks those that are present in the current draft version

Chapter 1: Overview (not available)

Chapter 2: Development Plan (not available)

Chapter 3: Security Policy Model (available)

Chapter 4: Descriptive Top Level Specification (not available)

Chapter 5: Design (not available)

Chapter 6: Assurance Mappings (available)

Chapter 7: Implementation (available)

Chapter 8: Covert Channel Analysis (available)

Chapter 9: Security Features Testing (not available)

Chapter 10: Penetration Testing (available)�IABG�IABG�high��PRACT-93�A Code of Practice for Information Security Management, British Standards Institute, 1993�IABG ��medium��SSE-CMM-94-1�Security Engineering Capability Maturity Model�Development Workbook - Strawman, DoD, Nov. 1994�IABG�IABG�high��SSE-CMM-95-1�Security Engineering Capability Maturity Model�Proceedings of the 1st Public Workshop, DoD, Jan. 1995�IABG��medium��SSE-CMM-95-2�Systems Security Engineering Capability Maturity Model�SSE-CMM Model & Application Report, Oct. 1995�IABG�IABG�high��WITAT-95�Proceedings of the Second Invitational Workshop on IT Assurance and Trustworthiness (WITAT 95)�- Draft, Aug. 1995

These Proceedings are available in draft form only �IABG��medium��

�Quality

Dokument ID�Document Title �available at�review by�relevance��AFSCP 800-14�AFSCP 800-14. Air Force Systems Command Software Quality Indicators, January 20. 1987���medium��DOD 2168�DoD 2168. Defense System Software Quality Program, August 1979�IABG, CR2A-DI��high��FAA 016A�Quality control system requirements, September 1987���medium��FAA 013B�Quality control program requirements, September 1989���medium��FAA 018A�Computer software quality program requirements, September 1987���medium��AQAP-13�AQAP-13 Ždition Aožt 1981 : Exigences OTAN relatives ˆ un syst�me de ma”trise de la qualitŽ de logiciels�IABG, CR2A-DI�CR2A-DI�high��AQAP-150�AQAP-150 - Edition 2 octobre 1993: Exigences relatives au management de la qualitŽ dans le dŽveloppement de logiciel�IABG, CR2A-DI�CR2A-DI�high��CMM-PP-96�Garzia, S., Principles of CMMs, Position Paper, April 1996 �IABG��medium��CMM-TR-24�Capability Maturity Model for Software, Version 1.1�CMU/SEI-93-TR-24, ESC-TR-93-177�IABG�IABG�high��CMM-TR-25�Key Practices of the Capability Maturity Model�CMU/SEI-93-TR-25�IABG�IABG�high��CNES 91�CNES : Guide d'Žvaluation des risques qualitŽs liŽs ˆ l'utilisation des logiciels sur Žtag�re (Sept 91)���medium��DOD-STD-2167A�DOD-STD-2167A 29 Feb. 88 : Military standard - Defense System, Software Development�IABG, CR2A-DI�CR2A-DI�high��DOD-STD-498�DOD-STD-498 5 Dec. 1994 : Military standard - Software development and documentation�IABG, CR2A-DI�CR2A-DI�high��ESA/SCC-77�ESA/SCC Basic Specification N¡ 20300 Issue 2 - July 1977 : Requirements on a manufacturer for the qualification of components suitable for space application���medium��GMD-746�Guides to Software Evaluation�Arbeitspapiere der GMD 746, April 1993

This document was developed as part of the SCOPE project within the ESPRIT programme of the EU.�IABG ��medium��IEE P1220� IEEE. Standard for Application and Management of the Systems Engineering Process, IEEE P1220 (Draft), 1994.�IABG, LAAS��medium��IEEE 830�IEEE Guide to Software Requirement Specifications, ANSI/IEEE Std 830, 1984�IABG��medium��ISO 8402�ISO 8402 Quality management and quality assurance - Vocabulary�IABG, CR2A-DI��low��ISO 9000-3�ISO 9000-3: Edition 1 01/06/1991 - Quality management and quality assurance standard Ñ part 3 : Guidelines for the application of ISO 9001 to the development, supply and maintenance of software�IABG, ADMIRAL, CR2A-DI�ADMIRAL�high��ISO 9001�Quality Systems-Model for Quality Assurance in Design, Development, Production, Installation and Servicing, ISO 9001, 1994�IABG, ADMIRAL, CR2A-DI�ADMIRAL�high��ISO/IEC DIS 9126�ISO/IEC DIS 9126 du 05/01/1991 : Information technology - Software product evaluation - Quality characteristics and guidelines for their use�IABG��high��MIL STD-499B�DoD. Military Standard-Systems Engineering (Draft), MIL-STD 499 B, Department of Defense, USA, 1994. Superseding MIL-STD-499A�LAAS, CR2A-DI��low��NF X 06-001� NF X 06-001 Statistiques et qualitŽ. Equivalence de termes anglais et fran�ais���low��NF X 50-127�NF X 50-127 Quality management - Recommendations for obtaining and ensuring design quality���low��PSS-05-0�ESA Software Engineering Standards, ESA PSS -05-0 Issue 2, European Space Agency, 1991�LAAS, CR2A-DI�LAAS�high��PSS-01-21�ESA PSS-01-21 issue 2 April 1991 : Software product assurance requirements for ESA space system���high��RG.AŽro 00040�RG.AŽro 00040; General recommendation for the project management specification, June 1991�CR2A-DI�CR2A-DI�medium��SCOPE-93�Specification of Software Evaluation and Certification - Formal Model�SCOPE SC.93/019/GMD.hlh.dw/T2.1/RP/02, Dec. 1993

This document was developed as part of the SCOPE project within the ESPRIT programme of the EU.�IABG��low��SE-CMM 1994� SECMM. SE-CMM Model Description , Release 2.03, Draft SECMM-94-04, Systems Engineering Capability Maturity Model Project, SEI, CMU, USA, 1994.�IABG, LAAS��medium��SE-CMM-95�A Systems Engineering Capability Maturity Model, Version 1.1�SECMM-95-01, CMU/SEI-95-MM-003, November 1995�IABG �IABG�medium��VORGEHENSMODEL�V-MODELE (VORGEHENSMODEL) : prŽsentation de la mŽthodologie de dŽveloppement de logiciel de la Bundeswehr�IABG��high��IEEE 982.1�Standard dictionary measures to produce reliable software, 1988���medium��IEEE 982.2�Guide for the use of IEEE standart dictionnary measures to produce reliable software, 1988���medium���Safety

Dokument ID�Document Title �available at�review by�relevance��AFNOR F 71-011�AFNOR F 71-011 - dŽcembre 1989 - Avant projet : Installations fixes ferroviaires - Informatique ferroviaire - SdF des logiciels - GŽnŽralitŽs�MATRA��high��AFNOR F 71-012�AFNOR F 71-012 - dŽcembre 1989 - Avant projet : Installations fixes ferroviaires - Informatique ferroviaire - SdF des logiciels - Contraintes sur le logiciel �MATRA��high��AFNOR F 71-013�AFNOR F 71-013 - dŽcembre 1989 - Avant projet : Installations fixes ferroviaires - Informatique ferroviaire - SdF des logiciels - MŽthodes appropriŽes aux analyses de sŽcuritŽ des logiciels�MATRA��high��AIAA R-013-92�Recommended Practice for Software Reliability, ANSI/AIAA R-013-1992���medium��ARP 4754�Guideline for certification of highly integrated or complex aircraft system. Aerospace Recommended Practices�LAAS, CR2A-DI�LAAS�high��ARP 4754�SAE. Certification Considerations for Highly-Integrated or Complex Aircraft Systems. Doc. ARP 4754, Systems Integration Requirements Task Group AS-1C, ASD. 1995.�LAAS, CR2A-DI�LAAS�high��ARP 4761�SAE. Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment. Doc. ARP 4761, S-18 Committee. 1994.�LAAS�LAAS�high��Bowen-92�J. Bowen, V. Stavridou�Safety Critical Systems, Formal Methods and Standards�Software Engineering Journal, 1992

This publications contains an extensive bibliography on Standards for Safety Critical Systems and on Formal Methods.�IABG��medium��BS 5760/0-6�Reliability of Constructed or Manufactured Products, Systems, Equipment and Components,

Part 0: Introductory Guide to Reliability, BS 5760, British Standard Institute, 1986

Part 1: Guide to Reliability and Maintainability Programme Management, BS 5760, British Standard Institute, 1985

Part 4: Guide to Specification Clauses Related to the Achievement and Development of Reliability in New and Existing Items, BS 5760, British Standard Institute, 1986

Part 6: Guide to Programmes for Reliability Growth, BS 5760, British Standard Institute, 1991���?��DIN V VDE 0801�Principles for Computers in Safety-Related Systems, DIN V VDE 0801, Beuth Verlag, Berlin, Germany, 1990�IABG��high��DO-178 B �RTCA Software Considerations in Airborne Systems and Equipment Certification , Document DO-178 B (RTCA) / ED-12B (EUROCAE), December 1992�IABG, ADMIRAL, CR2A-DI, LAAS�LAAS�high��EN 40 128�EN 40 128 issue 1 - Feb. 1994 : Railway applications : Software for railway control and protection systems�ADMIRAL��high��EN 50126-2�EN 50126-2 : Railway applications - Dependability for guided transports systems - Part 2 : Safety���?��EN 50129�EN 50129 : Railway applications - Safety-related electronic railway control and protection systems�ADMIRAL��?��HAZOP�HAZOP & HAZAN : Notes on the identification and assessment of hazards by Trevor A. KLETZ - The Institution of Chemical Engineer���?��IEC 65A (Secretariat) 122�IEC. Software for Computers in the Application of Industrial Safety-Related Systems, IEC 65A (Secretariat) 122, International Electrotechnical Commission (IEC), 1991.�IABG, ADMIRAL�ADMIRAL�high��IEC 65A (Secretariat) 123�IEC. Functional Safety of Electrical, Electronic, Programmable Systems: Generic Aspects, Part 1, General Requirements, IEC 65A (Secretariat) 123, International Electrotechnical Commission (IEC), 1992.�IABG, ADMIRAL, LAAS�ADMIRAL�high��IEC 65A/179-185�IEC. Functional Safety: Safety-Related Systems.

Part 1: General Requirements, ref. 65A/179/CDV;

Part 2: Requirements for Electrical/Electronic/ Programmable Electronic Systems,�ref. 65A/180/CDV;

Part 3: Software Requirements ref. 65A/181/CDV;

Part 4: Definitions and Abbreviations of Terms, ref. 65A/182/CDV;

Part 5: Guidelines on the Application of Part 1, ref. 65A/183/CDV;

Part 6: Guidelines on the Application of Part 2 and 3, ref. 65A/184/CDV;

Part 7: Bibliography of Techniques and Measures, ref. 65A/185/CDV; 1995. �ADMIRAL, LAAS�ADMIRAL�high��IEC 94�IEC (Aug. 89) Draft - Software for computers in the application of industrial safety related systems - Document TC65 (sec) 94���high��IEC 96�IEC (Oct. 89) Draft - Functional Safety of programmable electronic systems : Generic aspects, Part 1 : General requirements - Document TC65(sec) 96���high��IEC 138�IEC (1988) Analysis techniques for system reliability - General consideration for reliability/ availability analysis methodology - Document TC56(co) 138���high��IEC 300-1�IEC 300-1 (1993) Part 1: Dependability programme management���high��IEC 300-3-1�IEC 300-3-1 (1991) Part 3 Application guide : Analysis techniques for dependability; Guide on methodology���high��IEC 409�IEC 409 (1981) Guide for inclusion of reliability clauses into specification for composants (or parts) for electronic components (or parts)���high��IEC 706 (1-4)�IEC 706 (1-4) Guide on maintainability of equipment���?��IEC 812�IEC 812 (1985) Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA)���high��IEC 863�IEC 863 (1986) Presentation of reliability, maintainability and availability predictions���high��IEC 880�IEC. Software for Computers in the Safety Systems of Nuclear Power Stations, IEC 880 International Electrotechnical Commission (IEC), 1986.�CEA, LAAS�CEA�high��IEC 880-2�Draft supplement to publication IEC 880�CEA, LAAS�CEA�?��IEC 1014�IEC 1014 (1989) Programmes for reliability growth���?��IEC 1025�IEC 1025 (1990) Fault Tree Analysis (FTA)���high��IEC 1070�IEC 1070 (1991) Compliance test procedures for steady-state availability���?��IEC 1078�IEC 1078 (1991 Analysis techniques for dependability - Reliability block diagram method���?��IEC 1123�IEC 1123 (1991) Reliability testing - Compliance test plans for success ratio���?��IEC 1160�IEC 1160 (1992) Formal design review + amendment 1 (1994)���?��IEC 1165�IEC 1165 (1995) Application of Markov techniques���?��IEC 1508�IEC 1508 Functional safety : safety related systems Ñ Part 3 Software requirements�ADMIRAL, CR2A-DI�ADMIRAL�high��IEEE-93�IEEE Standards Dictionary of Measures to Produce Reliable Software, in IEEE Standard Glossary of Software Engineering Terminology, ed. IEEE, New York, USA, 1993���?��ISA-dS84.01�Electrical/Electronic/Programmable Electronic Systems (PES) for Use in Safety Critical Applications, ISA-dS84.01 (Draft 14), Instrument Society of America, NC, USA, 1993�LAAS�LAAS�?��ISO-SC7�System and Software Integrity Levels�SC7 N1287, Working Draft, April 1995�IABG�IABG�high��MIL STD 882C�System Safety Program Requirements� MIL-STD-882C, Department of Defense, Washington D.C., Jan. 1993. This document superseeds MIL-STD-882B.�IABG, ADMIRAL��high��MIL-STD 1629-A�MIL-STD 1629-A : Procedures for performing a Failure Modes and Effects Analysis, notice 1, 7 June 1983.�ADMIRAL��?��MoD 00-55�MoD. The Procurement of Safety Critical Software in Defense Equipment-Parts 1 & 2, Interim Defense Standard 00-55, UK Ministry of Defense, 1991b.�IABG, ADMIRAL��medium��MoD 00-56�Hazard Analysis and Safety Classifications of the Computer and Programmable Electronic System Elements of Defense Equipment, Interim Defense Standard 00-56, UK Ministry of Defense, 1991�IABG, ADMIRAL��high��NASA-1740.13�NASA Software Safety Standard, NSS 1740.13�NASA Software Assurance Technology Centre, Feb. 1996

This is a new standard based on DoD 882C and some other NASA standards �IABG �IABG�high��NASA-2201-93�Software Assurance Standard�NASA-STD-2201-93, Nov. 1992

This standard specifies the verification, validation and quality assurance requirements for NASA developed software.�IABG (e)��medium��NF M 62-200�NF M 62-200 Limiting Enclosures - Classification of enclosures according to their tightness���?��NF X 50-150�NF X 50-150. Value analysis, Functional analysis Ñ Vocabulary, 1990.�CR2A-DI��?��NF X 50-151�NF X 50-151. Value analysis, Functional analysis Ñ Functional expression of need and tender specifications, 1991.�CR2A-DI��?��NF X 50-152�NF X 50-152. Value analysis, Functional analysis Ñ "Fundamental characteristics"�CR2A-DI��?��NF X 50-153�NF X 50-153. Value analysis, Functional analysis Ñ "Recommendations"�CR2A-DI��?��NF X 60-010�NF X 60-010 Maintenance - Concepts and definition of maintenance activities�CR2A-DI��?��NF X 60-300�NF X 60-300 Maintainability : set of criteria for maintainability of durables�CR2A-DI��?��NF X 60-301�NF X 60-301 Guide for taking into account criteria for maintainability of durables for industrial and professional use�CR2A-DI��?��NF X 60-503�NF X 60-503 Initiation into availability���?��UTE C 20-313�UTE C 20-313 Guide for the collection of reliability availability, and maintainability data from field performance of electronic items���?��IEEE 279�Criteria for protection systems for nulear power generating stations, 1971���?��IEEE 352�Guide for general principles of reliability analysis of nuclear power generating station safety systems, 1987.���?��IEEE 577�Requirements for reliability analysis in the design and operation of safety systems for nuclear power generating stations, 1986.���?��Documents analysis : Quality

IEEE P1228�Standart for software safety plans, draft 1992.���?��

ISO 9001 & ISO 9000-3

Quality systems - Model for quality assurance in design/development, production, installation and servicing.

Summary

ISO 9001 is a standard concerning Quality Management Systems used within organisations. The standard covers organisational and procedural requirements which an organisation must adhere to.

ISO9000-3 is an interpretation of ISO9001 specifically for organisations involved in the development, supply and maintenance of software. For this reason, the following analysis covers both ISO9001 and ISO9000-3 since SQUALE is concerned predominantly with the supply of software systems.

The standard covers the following issues :

Quality Policy

Quality Organisation

Quality System Documentation

Internal Quality Audits

Life-cycle activities :

Contract Review

Requirements Specification

Development Planning

Development Methods

Progress Reviews

Input to Development Phases

Outputs from Development Phases

Verification

Quality Planning

Design and Implementation

Reviews

Testing and Validation

Acceptance

Replication and Installation

Maintenance

Configuration Management

Change Control

Document Control

Measurement and Metrics

Purchasing

Training

The intent of the standard is not to define precisely how an organisation should achieve quality but to identify areas which an organisation must adequately address in its quality practices. An auditor will then ensure that the quality system addresses the areas identified in the standard appropriately and that the quality practices are actually being used.

The assurance that ISO9001 gives is related to the organisation that is using it and does not guarantee that a particular product is of a high quality.

Relevance for the Project

ISO9001 contains some fundamental principles relating to the development of any product which are essential for developing safety or security related systems. However, it is not intended for the assurance of safety or security and does not cover processes which are used in the development of such systems. IEC 1508 requires compliance with ISO9001 or an equivalent standard as a minimum pre-requisite for the development of safety-related system.

Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages�������������Fault prevention process�Project organisation�QA��QA��QA��QA�������Project planning�Quality + Dev’mnt��Quality + Dev’mnt��Quality Dev’nt��Quality + Dev’mnt�������verification�Yes��Yes��Yes��Yes��Yes����Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitio-ning��������������Error & fault handling mecha-nisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing�Yes��Yes��Yes��Yes�������Penetration Testing��������������Risk Assess-ment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�Yes��Yes��Yes��Yes������Quality Assurance

�Yes��Yes��Yes��Yes������Configuration Management

�������������Certification

�������������

Remarks

ISO9001 gives confidence in the development process within an organisation and not for specific products. It is not in itself sufficient to give adequate confidence in a safety or security related product.

�DOD-STD-2167A

Military Standard -Defense System, Software development.

Summary

The Military Standard Defense System Software Development DOS-STD-2167A is a methodology for the development of software embedded in military systems. The standard lists sets of requirements to be applied during the software development for the United States Department Of Defense. The defined software life cycle is included in the whole system life cycle showing links with the hardware development phases. The type of the life cycle is a phase-review one.

This standard is frequently used with :

the standard DOD-STD-2168 relative to the requirements for software quality assurance,

the documents « Data Items Description -DID » describing the contents of the documents elaborated during the life cycle,

other documents not software specific describing aspects, such as, configuration management, audits and review, engineering management, engineering changes deviations and waivers, etc..

This set of documentation can be called the American Standard System.

The DOD-STD-2167A standard (and DOD-STD-2168) must be adjusted to the real need, and the result of this work added to the contract. A good knowledge of the user needs to select the really necessary requirements. This adjustment lists in the documents the selected paragraphs for the project, with, if necessary text additions or changes. This is an indispensable process, because the standard specifies that a requirement is applicable only if it is mentioned in the contract.

The document does not recommend any particular method when goals are reached.

Relevance for the Project

As the DOD-STD-2167A a set of standards and documentation describing a whole quality system, relevance for the project is considered as high.

�Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages��§5.1 & 5.2

SRSs, IRS��§5.3 & 5.4

SDDs��§5.5

Source code��§5.6 & 5.7

Updated source code�����Fault prevention process�Project organisation���������������Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��§5.1 & 5.2

SRSs, IRS��§5.3 & 5.4

SDDs��§5.5

Source code

CSUs tests results��§5.6 & 5.7

Updated source code

CSCs integration tests results������Evaluation��§5.1 & 5.2

SRSs, IRS

SSDD

SDP��§5.3 & 5.4

SDDs

IDD, STP,

CSC

CSU

SDF

STDs��§5.5

Source code

CSUs tests results

CSU tests procedures

CSC tests procedures

CSU, CSC, SDFs��§5.6 & 5.7

Updated source code

CSCs integration tests results

STDs format test procedures

Contents of updated SDFs

STR������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��§5.1 & 5.2

SRSs��§5.3 & 5.4

CSU, CSC, STDs��§5.5

CSUs tests procedures

CSU tests results

CSC tests procedures��§5.6 & 5.7

CSCs integration tests results

STDs formal tests procedures

STR������Penetration Testing��������������Risk Assessment�������������Risk Management�Risk Reduction��������������Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality Assurance

�������������Configuration Management

�������������Certification

�������������

Remarks

The DOD-STD-2167A document annexes adds requirements for software coding standards, and for a category and priority classifications scheme for problem reporting.

CSR : Computer Software Component

CSU : Computer Software Unit,

IDD : Interface Design Document

IRS : Interface Requirements Specification,

SDD : Software Design Document,

SDF : Software Development File,

SDP : Software Development Plan,

SRS : Software Requirements Specification,

SSDD :System/Segment Design Documentation,

STD : Software Test Description,

STP : Software Test Plan,

STR : Software Test Results.

�DOD-STD-498

Military Standard - Software development and documentation.

Summary

This document intends for replace the standard DOD-STD_2167A. It takes back for the most part the goals and the form of the DOD-STD-2167A, however it gives more importance for getting assurance that each activity is correctly describe and let it to the user choice.

It introduces the notion of version ‘build’ which translates the project progress, and for which activities are tailored from the version being developed.

Safety and security are treated by annexed documents. A specific document deals with safety and with particularities of software for nuclear weapons.

Finally, the programming language ADA is highly recommended, but others are not excluded.

Relevance for the Project

Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages�������������Fault prevention process�Project organisation���������������Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality Assurance

�������������Configuration Management

�������������Certification

�������������

Remarks

�AQAP-13

NATO's requirements relative to a control system for quality assurance of software.

Summary

This document addresses the software design and development and also the software not delivered but developed for the contract needs and influencing the quality of the product. The software term includes, the operating systems, control systems, compilers, and test methods likewise the application programs. It comprises documents used to describe, requirements, specifications, programs, plans, test data and results, user directives.

It takes in a formal manner the contract into account and references it permanently. In case of disagreement, contractual clauses prevail.

It defines a Quality Assurance Representative (RAQ : Représentant pour l’Assurance de la Quatilé) which is a authoritative representative of the national authority for quality assurance mentioned in the contract. All the development is focused on evidential demonstration of a good development to the RAQ and insists for the presence of witnesses during test phases and/or for the certification of the results reality and validity. Finally this document formalises systematic and periodic review feature.

This standard is usefully completed by the document AQAP-14 presenting directives and questions for conformance evaluation.

Relevance for the Project

Classification Scheme

This standard covers all the processes during the life cycle from the requirement and definition phase until End of service.

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages�������������Fault prevention process�Project organisation�§202 organisa-tion�������������Project planning�§204�������������verification�§213 tests

§203 system review

§206 Corrective actions

§207 reviews������������Fault removal process�Diagnosis�§206 Corrective actions

�������������Correction�§206 Corrective actions

�������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation�§213 tests

§203 system review

§206 Corrective actions

§207 reviews�������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�213 Tests������������Fault Detection�Normal Testing�213 Tests�������������Penetration Testing�213 Tests�������������Risk Assessment�§203 system review

§207 reviews������������Risk Manage-ment�Risk Reduction��������������Incident Reporting�§206 Corrective actions�������������Description formalism�������������Correctness�Analysis��������������Testing�§213 tests������������Functional Requirements

�������������Documentation

�������������Quality Assurance

�������������Configuration Management

�§205 Documentation

§208 Configuration management

§217 Software delivery preparation������������Certification

�������������

Remarks

§209, 215, 216 : not filled.

§210 : Sub contractors control : everywhere.

§211 : Software support tools : not included in the scheme.

§212 : Furnished materials by the Buyer : not included in the scheme.

§218 : Quality assurance buyer representative support : not included in the scheme.

�RG Aéro 00040

General recommendation for project management specification.

Summary

The document RG.Aero 00040 is a recommendation for writing management programme specification. A management programme specifications is a bounding document which exposes requirements which first level contractors have to conform for all activities relative to programme management.

Management specification aims to obtain a precise definition of roles and responsibilities for project actors and therefore :

a consistency between their services,

a communication capability between actors,

a stable and rigorous organisation between actors.

Each concerned actor has to describe in her management plan how he will meet the specification management plan set of requirements, according to her own organisation.

RG.Aero 00040 is a pragmatic document which concentrates a set of straightforward recommendations. It can be applied to any large enough project with actors acting at different levels (prime contractors, subcontractors, etc.). Therefore, RG. AERO 00040 is particularly well adapted to big aeronautic, and space projects.

RG. AERO 00040 is composed of ten chapters. Each chapter covers one major point to be considered writing management programme specification :

Management programme requirements,

Task organisation,

Programme organisation,

Programme scheme, control and management,

Cost and schedule control,

Configuration management,

Capacity and dependability management,

Integrated logistic support,

Quality assurance,

Documentation management.

Relevance for the Project

Classification Scheme

This standard covers all the processes during the life cycle from the requirement and definition phase until End of service.

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages�������������Fault prevention process�Project organisation�§3 program organisation

§8 Soutien logistique intégré��������������Project planning�§2 Work breakdown structure

§4 logique de déroulement de programme�������������verification�§8

SLI������������Fault removal process�Diagnosis�§8

SLI�������������Correction�§8

SLI�������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�§8

SLI������������Risk Manage-ment�Risk Reduction�§8

SLI�������������Incident Reporting�§8

SLI�������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality Assurance

�������������Configuration Management

�§10 documen-tation manage-ment

§6 Overall Configu-ration manage-ment������������Certification

�������������

Remarks

§5 : Cost and Delay Control : not in the security and safety sense but risks induced within the project.

§7 : Gestion des performances et sureté de fonctionnement : covers all areas except configuration management

§9 : Quality assurance : everywhere by definition.

�ESA software engineering standards (ESA PSS-05)

Summary

The ESA software engineering standards PSS-05 issue 2 (1991) is applicable to the development of all software implemented for the European Space Agency.

It is worth noting that the space domain covers a lot of applications very different from each other (ground segments, launchers, satellites, probes, with software dealing with data management, piloting, archiving, real-time activities, critical phases, etc.). Common features are mainly the global criticality and complexity of the software, and the management of complex industrial organisations. This document is therefore much more precise and detailed on the organisation and the process than on the product. It is supposed that at the beginning of each ESA project a set of documents are issued, compliant with PSS-05, describing more precisely the development plan and development standards applicable to that project, according to its particularities.

This document is composed of three parts. The first part deals with the product (standards, recommendations and guidelines, including the software life-cycle). The second part describes the procedures used to manage the life-cycle. The third part contains appendices on summaries, tables, forms and checklists of mandatory requirements.

The life-cycle is a classical V-cycle (though presented in the waterfall form) with two variants for large and complex projects:

incremental delivery approach: the architectural design phase leads to as many subsequent sub-cycles as needed, leading to the delivery of software releases, each with increased functionality and capabilities (but being usable and providing a subset of required capabilities),

evolutionary development approach: multiple releases of software are planned, each with its own and complete life-cycle

Focus is put on the articulation of phases, the contents of the outputs, the formal project reviews, as well as on quality assurance, configuration management, verification (testing) activities, and documentation. Focus is also put much more on fault-avoidance and fault-removal than on fault-tolerance and fault-forecasting, and also much more on accidental than intentional faults (i.e., safety, availability, ... than on security). Very few methods, techniques and tools are explicitly recommended but they are discussed. As mentioned above this document may be considered as a general framework intended to be further refined on a case by case basis through documents applicable to each specific project.

Relevance for the Project

The ESA PSS-05 is a standard applicable to the development of all software within ESA projects, and thus almost all space related software in Europe. Though this application domain is quite specific and the corresponding market not very large as compared to other ones, the overall relevance for this project is considered as high, because this document is quite general, and is considered by major companies in the area of safety-related or safety-critical systems.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Product�Process�Product�Process�Product�Process�Product������Formalism & languages�I.3.3.1

��I.4.3.1

�I.4.3.3�I.5.3.1

I.5.3.2

��������Fault prevention process�Project organisation�I.1.3

I.3.4

II.2

II.5��I.4.4

II.2

II.5��I.5.4

II.2

II.5��I.5.4

II.2

II.5��II.2

II.5�II.2

II.5����Project planning�I.1.3

I.3.4

II.2.2.5��I.4.4��I.5.4��I.5.4�������Static verification�II.4.2.1

II.4.2.3�I.2.3.4

I.3.3.1

I.3.3.3�II.4.2.1

II.4.2.3�I.4.3.4�II.4.2.1

II.4.2.3�I.5.3.3�II.4.2.3��II.4.2.3����Fault removal process�Normal testing�II.4.2.4��II.4.2.4��II.4.2.4�I.5.3.2.3�II.4.2.4�I.5.3.2.3�I.5.3.2.3

II.4.2.4�����Robustness testing���������I.5.3.2.3�����Dependa-bility objectives�I.3.3.2.1��I.4.3.1.2����������Fault fore-casting process�Allocation���I.4.3.1.2�����������Evaluation��������������System behaviour in presence of faults�I.3.3.2.1������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Risk Assessment�II.2.2.3��II.2.2.3��II.2.2.3��II.2.2.3��II.2.2.3�II.2.2.3�II.2.2.3��Risk Manage-ment�Risk Reduction�II.2.2.3��II.2.2.3��II.2.2.3��II.2.2.3��II.2.2.3�II.2.2.3�II.2.2.3���Incident Reporting�II.3.2.3.2.2��II.3.2.3.2.2��II.3.2.3.2.2��II.3.2.3.2.2��II.3.2.3.2.2�II.3.2.3.2.2�II.3.2.3.2.2��Functional requirements��������������Documentation��almost all

I.1.2

III.B,C,E��almost all

I.1.2

III.B,C,E��almost all

I.1.2

III.B,C,E��almost all

I.1.2

III.B,C,E��almost all

I.1.2

III.B,C,E�almost all

I.1.2

III.B,C,E�almost all

I.1.2

III.B,C,E��Quality assurance��II.5��II.5��II.5��II.5��II.5�II.5�II.5��Configuration management��II.3��II.3��II.3��II.3��II.3�II.3�II.3��Certification��NA��NA��NA��NA��NA�NA�NA��

Remarks

Though the first part of the document is supposed to deal with the product, and the second part with the process, it appears that what concerns the software life-cycle is discussed in the first part, along with the product and not the process, process being understood as the overall organisation and management activities. This is why in the above classification paragraphs belonging to the first part are often in a process column instead of a product column. Indeed as the document is quite general and process oriented, there are very few elements actually related to the product itself.

�Key practices of the Capability Maturity Model

Summary

The Capability Maturity Model (CMM) is a framework that describes the key elements of an effective software process and covers practices for planning, engineering and managing both software development and maintenance. The Capability Maturity Model defines no specific process model and does not refer to specific standards and methods, but addresses generic practices concerning management, measurement, and institutionalisation aspects. It describes an evolutionary path of improvements for software organisations that want to increase their process capability. The different maturity levels are a yardstick for the maturity of an organisation's software process. Five maturity levels are defined which describe the characteristics of an organisation at a certain maturity level starting from an immature level where no disciplines are defined to the highest level where the focus is on continuous improvements of processes and innovations in technology. Each level builds a foundation for the succeeding levels to leverage for implementing processes effectively and efficiently. Each maturity level (except level 1) is composed of several key process areas each of which defines a cluster of related activities or key practices which contribute to satisfy the goals of this key process area. The key practices describe what is to be done, but they don’t address how the goals should be achieved

Relevance for the Project

The Capability Maturity Model addresses the principles underlying software process maturity and helps to improve the maturity of any software processes. It has its strengths in process organisation and planning, risk assessment and management of software projects. It has major impacts on assurance as it contributes to evaluation of process and organisation prior to system or product development. It is therefore considered as high.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�������������Fault prevention process�Project organisation�L3: Organization Process Focus; Integrated SW Management;�����Project planning�L2: SW Project Planning; L3: Integrated SW Management;�����verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�L3: Peer Reviews����Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�Assessment of project risks at all levels����Risk Manage-ment�Risk Reduction�All levels address reduction of project risks, e.g.�L2:SW Project Tracking; Subcontract Mgmt; Confi Mgmt;�L3:Training Program; Integrated SW Management; Intergroup Coordination; �L5: Defect prevention; Process & Technology Change Mgmt;�����Incident Reporting��������������Description formalism�������������Correct-ness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality assurance��������������Configuration management��������������Certification��������������

Remarks

The key practices which make up the different maturity levels do not address special methods, process models or standards; they are defined on a meta-level.

�Systems Engineering Capability Maturity Model

Summary

The Systems Engineering Capability Maturity Model (SE-CMM) describes the essential elements of the system engineering process applied by an organisation to ensure good system engineering and provides a methodology to determine how well each characteristic is being practised. It encompasses all phases of the system life cycle, focusing on characteristics and requirements on systems engineering processes. It describes the essential elements of the systems engineering process of an organisation that must exist to ensure good systems engineering without specifying a particular process. SE-CMM defines a capability aspect which deals with process management and institutionalisation characteristics and a domain aspect which deals with the characteristics of the systems engineering process. It defines six capability levels starting from the Not Performed Level (Level 0) to the highest Continuously Improving Level. Process capability is grouped in three tiers: capability level, common features, and generic practices. The systems engineering domain is characterised by 18 process areas (PA) which are a set of related systems engineering process characteristics. Each process area is grouped into 3 process categories: engineering, project, and organisation. The different process areas describe the major topic areas essential to effective systems engineering within an organisation.

Relevance for the Project

Process and technology used to develop a system or product and the capability of people assigned to do the work have a significant influence on the quality of the system or product. The process is an integrating function for people and technology. The overall relevance for this project is considered as medium.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�PA02�PA03�����PA05������Fault prevention process�Project organisation�PA04; PA12; PA13; PA14; �����Project planning�PA11; PA12; PA13; PA14;�����verification�PA07����Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�PA01; PA10; PA12; ����Risk Manage-ment�Risk Reduction�PA06; PA08; PA09; PA10; PA11; PA12; PA16; PA17; PA18; �����Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality assurance��������������Configuration management��������������Certification��������������

Remarks

Evaluation of the system engineering process contributes to the assurance of SW produced and therefore the SE-CMM is considered as medium.

�SECMM

Systems Engineering Capability Maturity Model.

Summary

The Systems Engineering Capability Maturity Model extends the concepts of the SPICE Capability Maturity Model for Software Engineering to more general systems engineering. The model has two basic dimensions, domain process areas and capability levels. The process areas currently identified are :

Analyse Candidate Solutions,

Derive and Allocate Requirements,

Evolve System Architecture,

Integrate Disciplines,

Integrate System,

Understand Customer Needs and Expectations,

Verify and Validate System,

Ensure Quality,

Manage Configurations,

Manage Risk,

Monitor and Control Technical Effort,

Plan Technical Effort,

Define Organisation’s Systems Engineering Process,

Improve Organisation’s Systems Engineering Processes,

Manage Product Line Evolution,

Manage Systems Engineering Support Environment,

Provide Ongoing Skills and Knowledge,

Co-ordinate with Suppliers.

Capability levels may be assigned to an organisation for each of the process areas. These capability levels fall on a scale of 0-5 :

0	Not Performed,

1	Performed Informally,

2	Planned and Tracked,

3	Well Defined,

4	Quantitatively Controlled,

5	Continuously Improving.

The model is intended for use by organisations of self assessment such that they can determine ways of improving their company’s performance in terms of the delivery of services to their clients.

A separate appraisal method for judging the capability of an organisation against the model is available.

Relevance for the Project

The model does include issues relevant to Security and Safety and a very high level. For instance, it includes process areas addressing Risk Management, Verification and Validation and Quality. However, the model is aimed at an organisations general capability and not at particular systems or products that are developed. It does not include specific practices which are applicable to the development of security related or safety related systems. It would therefore need some interpretation if being applied to a developer of such systems.

�Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages�������������Fault prevention process�Project organisation�PA13��PA13��PA13��PA13�������Project planning�PA12��PA12��PA12��PA12�������verification�PA07��PA07��PA07��PA07������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�PA10��PA10��PA10��PA10��PA10�PA10�PA10��Risk Manage-ment�Risk Reduction�PA10��PA10��PA10��PA10��PA10�PA10�PA10���Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality assurance��������������Configuration management��������������Certification��������������

Remarks

The Capability Maturity Model includes some very important issues related to general systems engineering, albeit at a very high level. It is recommended that these are reviewed when generating the detailed criteria to ensure that they are addressed in some way.

�Documents analysis : Safety

DO-178B

Document DO-178 B (RTCA) / ED-12B (EUROCAE), December 1992

Software Considerations in Airborne Systems and Equipment Certification

Summary

This joint RTCA (Requirements and Technical Concepts for Aviation) and EUROCAE (European Organisation for Civil Aviation Equipment) document provides guidelines for the production of software for airborne systems and equipment that performs its intended function with a level of confidence in safety that complies with airworthiness requirements.

DO-178B is primarily a process-oriented document. For each process, objectives are defined and a means of satisfying these objectives are described. A description of the software life cycle data which shows that the objectives have been satisfied is provided. The objectives for each process are summarised in tables and the effect of software level on the applicability and independence of these objectives is specified in the tables. The variation by software level in configuration management rigor for the software life cycle data is also in the tables.

DO-178B recognises that many different software life cycles are acceptable for developing software for airborne systems and equipment. DO-178B emphasises that the chosen software life cycles) should be defined during the planning for a project. The processes which comprise a software development project, no matter which software life cycle was chosen, are described.

These processes fall into three categories :

Software development processes (Requirements, Design, Coding, Integration)

Integral processes that ensure the correctness, the control and confidence of the software life cycle processes and their outputs

Verification process (reviews, analyses and tests)

Configuration management process

Quality assurance process

Certification liaison process

Software planning process which defines and co-ordinates the activities of the SW development processes and the integral processes;

Integral processes are active throughout the software life cycle. DO-178B requires that criteria which control the transitions between software life cycle processes should be established during the software planning process.

The standard defines five software levels based upon the contribution of software to potential failure conditions as determined by the system safety assessment process. The software level implies that the level of effort required to show compliance with certification requirements varies with the failure condition category.

Five failure condition categories are defined :

catastrophic: failure conditions which would prevent continued safe flight and landing

hazardous/severe-major: failure conditions which would reduce the capability of the aircraft or the ability of the crew to cope with adverse operating conditions to the extent that there would be:

a large reduction in safety margins or functional capabilities,

physical distress or higher workload such that the flight crew could not be relied on to perform their tasks accurately or completely, or

adverse effects on occupants including serious or potentially fatal injuries to a small number of those occupants.

Major: failure conditions which would reduce the capability of the aircraft or the ability of the crew to cope with adverse operating conditions to the extent that there would be, for example, a significant reduction in safety margins or functional capabilities, a significant increase in crew workload or in conditions impairing crew efficiency, or discomfort to occupants, possibly including injuries.

Minor: failure conditions which would not significantly reduce aircraft safety, and which would involve crew actions that are well within their capabilities. Minor failure conditions may include, for example, a slight reduction in safety margins or functional capabilities, a slight increase in crew workload, such as, routine flight plan changes, or some inconvenience to occupants.

No Effect: failure conditions which do not affect the operational capability of the aircraft or increase crew workload.

The five software levels are defined as follows:

Level A: Software whose anomalous behaviour, as shown by the system safety assessment process, would cause or contribute to a failure of system function resulting in a catastrophic failure condition for the aircraft.

Level B: Software whose anomalous behaviour, as shown by the system safety assessment process, would cause or contribute to a failure of system function resulting in a hazardous/severe�major failure condition for the aircraft.

Level C: Software whose anomalous behaviour, as shown by the system safety assessment process, would cause or contribute to a failure of system function resulting in a major failure condition for the aircraft.

Level D: Software whose anomalous behaviour, as shown by the system safety assessment process, would cause or contribute to a failure of system function resulting in a minor failure condition for the aircraft.

Level E: Software whose anomalous behaviour, as shown by the system safety assessment process, would cause or contribute to a failure of system function with no effect on aircraft operational capability or pilot workload. Once software has been confirmed as level E by the certification authority, no further guidelines of this document apply.

For each software level, the activities to be carried out within each process are defined together with the outputs of each process.

Relevance for the Project

The Do178B is widely used throughout the world by the aircraft manufacturers, the avionics industry and the certification authorities to determine the acceptability of systems and equipment containing software.

The guidelines of this document were compared with international standards: ISO 9000-3 (1991), "Guidelines for the Application of ISO 9001 to the Development, Supply and Maintenance of Software," and IEC 65A (Secretariat)122 (Draft - November 1991), "Software for Computers in the Application of Industrial Safety-Related Systems." These guidelines are considered to generally satisfy the intent of those standards.

The overall relevance for this project is therefore considered as high.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�Planning process

(Sec 4.)� �� �� �������Fault prevention process�Project organisation

�indep. teams ���indep. teams ��indep. teams ��� ������Project planning�Planning process

(Sec 4.)�������������Reviews�

Sec. 6��

Sec. 6��

Sec. 6��

Sec. 6������Fault removal process�Analyses�

Sec. 6��

Sec. 6��

Sec. 6��

Sec. 6�������normal range and robustness Testing�

 � �

 ��

Sec. 6��

Sec. 6�������Dependa-bility objectives��Failure classifica-tion (2.2)

safety levels (2.2)��Failure classifica-tion (2.2)

safety levels (2.2)���������Fault fore-casting process�Allocation��safety levels (2.2)��safety levels (2.2)����������Evaluation��������������System behaviour in presence of faults��Failure classifica-tion (2.2)

safety levels (2.2)��Failure classifica-tion (2.2)

safety levels (2.2)���������Fault tolerance process�system partitioning��safety levels (2.2)��safety levels (2.2)����������Error & fault handling mechanisms��Partitio-ning

Multi-versions

safety monito-ring

(2.3)��Partitio-ning

Multi-versions

safety monito-ring

(2.3)����������Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting�7.2.3�7.2.3�7.2.3�7.2.3�7.2.3�7.2.3�7.2.3�7.2.3� ����Functional Requirements�������������Documentation

� � � � � � � ��� ���Quality Assurance

�Section 8��Section 8��Section 8��Section 8������Configuration management

 �Section 7��Section 7��Section 7��Section 7������Certification

�Section 9,10�Section 9,10�Section 9,10�Section 9,10�Section 9,10�Section 9,10�Section 9,10�Section 9,10�����

Remarks :

1-	The standard does not define the mechanisms that should be implemented in the software to ensure safety. Only guidance is provided on some architectural strategies that may limit the impact of errors, or detect errors and provide acceptable system responses to contain the errors. These architectural techniques are not intended to be interpreted as the preferred or required solutions:

Partitioning for providing isolation between functionally independent software components to contain and/or isolate faults and potentially reduce the effort of the software verification process. If protection by partitioning is provided, the software level for each partitioned component may be determined using the most severe failure condition category associated with that component.

Multiple�version dissimilar software which is a system design technique that involves producing two or more components of software that provide the same function in a way that may avoid some sources of common errors between the components. Multiple�version dissimilar software is also referred to as multi�version software, dissimilar software, N�version programming, or software diversity.

Safety monitoring which is a means of protecting against specific failure conditions by directly monitoring a function for failures which would contribute to the failure condition. Monitoring functions may be implemented in hardware, software, or a combination of hardware and software.

2-	Detailed failure and fault assumptions are not discussed in the standard. Only, a failure conditions categorisation scheme is proposed for software level determination.

3-	Verification activities including reviews, analysis and testing are very important in this standard. Verification is applied to the results of both the software development processes and the software verification process. Independence of software verification process activities is required for some software processes outputs (for levels A and B only).

4-	Quantitative evaluation activities are not required in the standard. The document does not provide probabilistic quantitative dependability objectives guidance for the software. It is mentioned that the currently available methods do not provide results in which confidence can be placed for highly critical software (see Section 12.3.4).

5-	Position about formal methods: these methods are classified as non mature techniques. However, the standard does not restrict their use. If they are used, it should be shown that they contribute to the satisfaction of the standard objectives (see Section 12.3.1).

�ARP 4754

SAE, Doc. ARP 4754, Systems Integration Requirements Task Group AS-1C, ASD, Society of Automotive Engineers, Inc., September 1995

Certification Considerations for Highly-Integrated or Complex Aircraft Systems

Summary

This document includes system-level guidelines that are intended to provide designers, manufacturers, installers and certification authorities a common international basis for demonstrating compliance with airworthiness requirements applicable to highly integrated or complex systems.

The term *highly-integrated* refers to systems that perform or contribute to *multiple* aircraftlevel functions. The term *complex* refers to systems whose safety cannot be shown solely by test and whose logic is difficult to comprehend without the aid of analytical tools.

This document has been prepared primarily for electronic systems which by their nature, may be complex and are readily adaptable to high levels of integration.

The document covers the following issues:

it outlines the significant characteristics of highly�integrated and complex systems and introduces the concept of system development assurance as a means of certification. Development assurance is a process involving specific planned and systematic actions that together provide confidence that errors and omissions in requirements or design have been identified and corrected to the degree that the system, as implemented, satisfies applicable certification requirements. Development assurance activities are included within supporting processes.

	Six supporting processes are identified:

Certification co-ordination

Safety assessment

Requirements validation

Implementation verification

Configuration management

Process assurance

Describes means used to determine and allocate system requirements, including those requirements derived from system architecture, with specific emphasis given to the identification of development assurance levels. The relationships among functions, related failure condition classifications, system and item requirements and the corresponding assignment of item development assurance levels is shown. Architectural alternatives (fault tolerant architectures) are examined and examples provided that illustrate the effect of architecture on the assignment of items development assurance level. Five levels of development assurance are defined based on the classification of failure condition from catastrophic to no effect as defined in the DO 178B document.

Describes safety assessment activities that support the design process and lead to development of the recommended certification substantiation information. The primary safety assessment processes are listed below:

Functional Hazard Assessment (FHA)

Preliminary System Safety Assessment (PSSA)

System Safety Assessment (SSA)

Common Cause Analysis (CCA)

Describes validation activities that substantiate the correctness and completeness of requirements and the correctness of design implementation. Emphasis is put on correctness checks, completeness check and the validation of assumptions (operational and environmental assumptions, design related assumptions, manufacturing and producibility assumptions, serviceability assumptions, installation assumptions). The validation methods include: traceability, analysis, modelling, test, comparison with similar-in-service certified systems, engineering judgement. A classification of the validation and verification methods to be used as a function of the development assurance level is provided.

Outlines the objectives and activities of configuration management and process assurance processes.

Explains the applicability of this ARP to modifications of existing aircraft or existing systems.

An appendix is included which describes a generic approach to aircraft systems development

Relevance for the Project

This ARP document gives insight into the approach that will be used in the future for development and certification of aircraft systems. It is complementary to the Do178B standard with focuses on airborne software. Another document dealing with the development and certification of airborne hardware systems is currently under preparation.

The overall relevance for this project is therefore considered as high.

�Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages� � �� �� �������Fault prevention process�Project organisation

� ��� �� ��� ������Project planning�Appendix A��Appendix A��Appendix A��Appendix A�������Reviews�

Sec. 7, 8��

Sec. 7, 8��

Sec. 6��

Sec. 7, 8������Fault removal process�Analyses�

Sec. 7, 8��

Sec. 7, 8��

Sec. 7, 8��

Sec. 7, 8�������Testing�

 � �

 ��

Sec. 7, 8��

Sec. 7, 8�������Dependa-bility objectives��Section 6��Section 6��Section 6��Section 6�����Fault fore-casting process�Allocation��Section 6��Section 6��Section 6��Section 6������Evaluation��Section 6��Section 6��Section 6��Section 6������System behaviour in presence of faults��Section 5��Section 5���������Fault tolerance process�system partitioning��Section 5��Section 5����������Error & fault handling mechanisms��Section 5��Section 5����������Risk Assessment��Sec. 6��Sec. 6��Sec. 6��Sec. 6�����Risk Manage-ment�Risk Reduction�� �� �� ��������Incident Reporting�9.2�9.2�9.2�9.2�9.2�9.2�9.2�9.2� ����Functional Requirements�������������Documentation

� � � � � � � ��� ���Quality Assurance

�Section 10��Section 10��Section 10��Section 10������Configuration management

 �Section 9��Section 9��Section 9��Section 9������Certification

�Section 4�Section 4�Section 4�Section 4�Section 4�Section 4�Section 4�Section 4�����

Remark:

Incident reporting is included in configuration management

Risk Assessment activities are included in the fault forecasting process

�IEC 880

Software for computer in the safety systems of nuclear power stations.

Summary

This standard covers the safety systems of nuclear power plants.

The design of the system must ensure its conformity to the single failure criteria.

This standard provides extensive guidance on the life-cycle phases and the related verification and validation. Each state of the life-cycle must be verified according to the documents produced during the previous step. This verification must be done by an independent team.

The standard goes through all the phases of the development. It describes the content of the software specification, on how to design the software, how to make it more reliable, how to improve the coding, and how to test the software.

specification :

description of system functions (aim of each function, the relevance to the system reliability, all input /output variables)

description of the constraints between hardware and software (the postulated failure causes of the hardware should be carefully examined to determine where the principle for diversity could be used effectively to avoid common-mode failure)

man machine dialogue (check of any manual input, no computer system failure shall inhibit appropriate human control action)

self-supervision (appropriate automated actions in case of failure, system self-checking)

testability (check basic system functions on-line)

item relating to interfaces (independency and decoupling, prevention of failure propagation).

design and coding :

self-supervision of control flow and data,

choice of the appropriate programming language,

recommendations on procedural and structural aspects.

verification :

verification after each phase of the development,

independence between the development and verification team,

various testing methods.

Other :

contents of the documentation. It also provides information about V&V tasks and support required for verification and validation : organisations, procedures, and configuration control.

Relevance for the Project

This standard is actually used in the development of the safety systems of the French nuclear power plants (protection system, instrumentation and control).

�Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages������Language �������Fault prevention process�Project organisation�Config. Control Ind. teams ��Config. control Ind. teams�Struct. constraint�Config. control Ind. teams�Struct. constraint�Config. control Ind. teams�������Project planning�Life Cycle��Life Cycle��Life Cycle��Life Cycle�������verification� 6.1��6.1 6.2.2��6.1 6.2.3��7.5 7.7������Fault removal process�Diagnosis��������������Correction� ��9.��9.��7.6 9.�������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults��Single failure criteria �������� X���Fault tolerance process�system partitioning��Single failure criteria������������Error & fault handling mechanisms��������������Design & Product Analysis��periodic test�self-checking automatic actions�������� X���Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting� 9.�� 9.�� 9.����� X����Description formalism�������������Correctness�Analysis� �� �� �� �������Testing�Self Checking��Self Checking��Self Checking��Self Checking��� X���Functional Requirements

�� A1�� A2�� A2�� �����Documentation

� 5.4 A 5� 5.4 A 5� 5.4 A 5� 5.4 A 5� 5.4 A 5� 5.4 A 5�5.4 A 5� 5.4 A 5 �����Quality assurance��������������Configuration management��������������Certification��������������

Remarks

The very conservative recommendations on procedural and structural aspects, put a high constraint on the architectural design of the systems.

�Analysis of IEC 1508

Summary

The draft IEC 1508 standard (Functional Safety for Programmable Electronic Systems) consists of seven distinct parts. The first four of these are normative and define requirements for the processes and deliverables for a safety critical system. The remaining four parts give guidance on techniques and methods which are used in the development of such systems.

The standard is built around the principle of a structured safety lifecycle. This includes activities such as Hazard and Risk Analysis, Verification and Validation, Safety Requirements, Allocation and so on. Functional Safety Assessment is also included alongside the safety lifecycle as an independent process. One of the key principles is that safety needs to be managed throughout the development process. This involves the production of a safety management plan which must guide the remainder of the safety-related activities. This should address competence of personnel, techniques to be employed, independence of verification, validation and functional safety assessment personnel.

The standard sets down requirements for the management of safety-related systems developments and the actions required at the various life-cycle stages. This includes a definition of the deliverables that need to be produced at each stage.

Four levels of safety integrity are defined and the standard defines variations in techniques to be used, levels of independence for assessors and verification teams according to the safety integrity level. The level of guidance regarding the selection of integrity levels is limited and needs strengthening.

Relevance for the Project

IEC 1508 is a generic safety standard which is to be interpreted in various industry sectors. It applies to a wide range of systems in various application areas and is becoming recognised as a key safety standard for the future. It’s principles are therefore very relevant to the project which is planning to use IEC 1508 alongside the ITSEC in order to produce a set of criteria for the assessment of systems with both safety and security requirements.

Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredita-tion/�Accep-tance�In use�End of service���Formalism & languages�Part 3��Part 3��Part 3��Part 2,3������Fault prevention process�Project organisation�Indepen-dence��Indepen-dence��Indepen-dence��Indepen-dence��Indepen-dence�Indepen-dence�Indepen-dence���Project planning�Part 1��Part 1��Part 1��Part 1��Part 1�Part 1�Part 1���verification�Yes�Yes�Yes�Yes�Yes�Yes�Yes�Yes��Yes�Yes��Fault removal process�Diagnosis��������������Correction�Part 1��Covered��Covered��Covered���Covered����Dependa-bility objectives�Part 1������������Fault fore-casting process�Allocation�Part 1�������������Evaluation�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment�Safety Assess-ment���System behaviour in presence of faults�Covered��Covered��Covered��Covered������Fault tolerance process�system partitioning�Required��Required��Required���������Error & fault handling mechanisms�Part 3��Part 3��Part 3��Part3�������Design & Product Analysis�������������Fault Detection�Normal Testing�����Parts 1,2,3��Parts 1,2,3���Parts 1,2,3����Penetration Testing��������������Risk Assessment�Part 1��Part 1��Part 1��Part 1���Part 1�Part 1��Risk Manage-ment�Risk Reduction�Part 1�������������Incident Reporting�Part 1���������Part 1����Description formalism�Part 3������������Correctness�Analysis��������������Testing�������������Functional Requirements

�Part 1������������Documentation

��Part 1,2,3��Parts 1,2,3��Parts 1,2,3��Parts 1,2,3��Parts 1,2,3�Parts 1,2,3��Quality assurance�������Part 1,2,3��Part 1,2,3�����Configuration management��������������Certification��������������

Remarks

Because of its generic nature, IEC 1508 does not focus on defining precise requirements for the conduct of safety analyses and so forth. Instead, it concentrates on defining a process for developing systems. It identifies the expected outputs of this process and defines some of the key concepts regarding risk management. Descriptions of the techniques which are referred to are given in the informative parts but the standard does not set down detailed prescriptive requirements for all the techniques. Instead, the standard relies on some performance justification being given to demonstrate that a particular system has met its safety objectives.

�Documents analysis : Security

ITSEC

Information Technology Security Evaluation Criteria

Summary

This document describes an approach for the security evaluation of IT-products and systems. It was derived as a harmonised approach from the schemes that had been defined in the UK, France, Germany and the Netherlands. The ITSEC were published in 1991 by the European Commission and are a major input document for the Common Criteria, where the IT Security Evaluation approaches of North America and Europe are harmonised.

The evaluation approach of the ITSEC can be summarised as follows :

For each product or system that is going to be evaluated, a Security Target document must be written, which contains :

a description of the security functionality of the product or system,

a description of the threats the product or system is going to counter,

a description of the environment (in case of a system) or the assumptions on the environment (in case of a product),

an (optional) high level description of the mechanisms that implement the security functions;

The ITSEC then define 6 evaluation assurance levels (E1 to E6) where E1 is the lowest and E6 the highest level. For each level the document describes:

The requirement for the sponsor of the evaluation

The requirements for evidence

The actions that the evaluators have to perform

The assurance levels define the inputs and actions needed to assess the correctness of the „Target of Evaluation“ with increasing rigour. In addition the ITSEC define actions to assess the „Effectiveness“ of the Target of Evaluation. The following areas are covered by those Effectiveness criteria :

Suitability

Ease of Use

Strength of Mechanism

Binding

Construction Vulnerabilities

Operational Vulnerabilities

The ITSEC are accompanied by the IT Security Evaluation Manual (ITSEM) which describe the evaluation methodology in detail. In addition, country specific schemes define the process how to get an ITSEC certificate.

Relevance for the Project

The ITSEC are the IT-Security evaluation standard applied in Europe and several non-European countries (e. g. Australia). As such they are highly important in the area of Assurance for IT-Security functions. The overall relevance for this project is therefore considered as high.

Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages��2.81�E1 - E6��2.65�E1 - E6��E1 - E6��������Fault prevention process�Project organisation���������E1 - E6������Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives��Effectiveness�����������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis��E1 - E6�Security Target��E1 - E6���E1 - E 6�������Fault Detection�Normal Testing������E1 - E6��������Penetration Testing������E4 - E6��������Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting��������������Description formalism��E1 - E6�Security Target��E1 - E6��E1 - E6�������Correct-ness�Analysis��E1 - E6�Security Target��E1 - E6��E1 - E6��������Testing������E1 - E6�������Functional Requirements

��*)�����������Documentation

��E1 - E6��E1 - E6��E3 - E6����E1 - E6���Quality assurance��������������Configuration management��������������Certification��������������

*) The ITSEC don’t prescribe specific functional requirements but define generic headings that should be used to describe functional requirements in the Security Target document.

Remarks

The ITSEC deal mainly with the assessment of products and system prior to their use. They don’t deal much with the development process or the system operation.

�Information Technology Security Evaluation Manual (ITSEM)

Summary

This document builds on the ITSEC, describing how a Target of Evaluation should be evaluated according to these criteria. It is therefore aimed predominantly at partners in evaluation. The ITSEM is published in September 1993 by the EU.

Part 2 gives basic information on the establishment and running of an evaluation and certification scheme, describing the general features of the certification process and the organisation of it.

Part 3 explains the evaluation philosophy that underlies the ITSEC, and introduces basic principles of the evaluation work. It gives further explanation and clarification of the ITSEC concepts to provide a better basis for understanding the technical issues underlying evaluation.

Part 4 describes the methods used in evaluation (organisational framework and techniques used to evaluate the target). The phases of an evaluation are Preparation, Conduct and Conclusion. Figure 4.5.1 on page 99 shows which techniques have to be applied for the deliverables depending on the evaluation level. Chapter 4.6 explains how to reuse evaluation results. Chapter 4.7 describes the contents of the output of the evaluation (see Figure 4.7.1 on page 115).

Part 5 gives examples of the application of the ITSEC, demonstrating how the ITSEC can be applied to the evaluation of systems and products. The examples concern E2 (for example for the Detailed Design and Implementation actions) until E4 (for example for the Requirement and Architectural Design actions).

Part 6 gives guidance on evaluation to sponsors, vendors, developers, system accreditors and users. This chapter is concerned with preparing the inputs and using the outputs from evaluation.

Relevance for the Project

The ITSEM accompanies the ITSEC, which explains the IT-Security evaluation standard applied in Europe and several non-European countries (e. g. Australia). As such they are highly important in the area of Assurance for IT-Security functions. The overall relevance for this project is therefore considered as high.

�Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages��4, 5��4, 5��4, 5���4, 5����Fault prevention process�Project organisation��������4, 5�4, 5�����Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives��4, 5 (Effec-tiveness)�������4, 5����Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis��4, 5�Security Target��4, 5��4, 5���4, 5����Fault Detection�Normal Testing������4, 5���4, 5�����Penetration Testing������4, 5���4, 5�����Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting��������������Description formalism��4, 5�Security Target��4, 5��4, 5���4, 5����Correctness�Analysis��4, 5�Security Target��4, 5��4, 5���4, 5�����Testing������4, 5�������Functional Requirements

�������������Documentation

��4, 5��4, 5��4, 5���4, 5�4, 5���Quality assurance��������������Configuration management��������������Certification��������������

Remarks

The ITSEC and therefore the ITSEM too deal mainly with the assessment of products and system prior to their use. They don’t deal much with the development process or the system operation.

�Common Criteria

Summary

The Common Criteria have been developed to harmonise the IT-Security Evaluation Criteria of North America and Europe and present an approach that can be used as a basis for the mutual recognition of IT-Security Evaluations. The main input documents for the Common Criteria were:

The draft Federal Criteria developed in the U.S. to overcome the limitations of the TCSEC

The Canadian Trusted Computer Product Evaluation Criteria

The ITSEC

The current version (Version 1.0) of the Common Criteria consist of 4 parts:

Part 1: Introduction and general model

Part 2: Security functional requirements

Part 3: Security assurance requirements

Part 4: Predefined Protection Profiles

A fifth part is planned which describes the registration process for new Protection Profiles

The Common Criteria follow mainly the same approach as the ITSEC. They also demand that for each system or product that is going to be evaluated a Security Target document has to be provided, which describes the overall Security Policy of the Target of Evaluation as well as an overview on the (assumed or existing) environment, the threats that the TOE should counter and a top level view of the security functions and mechanisms implemented in the TOE. Compared with the ITSEC the structure of the Security Target document is prescribed in more detail.

Part 2 of the Common Criteria is dedicated to security functions that may be implemented in an IT product or system. This part describes possible functional components using a prescribed format. Those functional components are structured into families, which themselves are structured into classes. Classes correspond mainly to the generic headings as defined by the ITSEC, while families describe a specific aspect within a class that may be addressed differently. The components then describe the ways, how this aspect may be covered.

Part 3 of the Common Criteria describes security assurance requirements. These requirements are also structured into classes, families and components. The classes defined in this part are:

Configuration management

Delivery and operation

Development

Guidance documents

Life cycle support

Tests

Vulnerability assessment

In addition seven assurance levels (EAL 1 to EAL 7) are defined as suitable combinations of components from each class of assurance requirements. Those levels are constructed as a hierarchy with EAL 1 being the lowest and EAL 7 being the highest level. EAL 2 to EAL 7 roughly correspond to the ITSEC assurance levels E1 to E6.

In part 4 the Common Criteria define some Protection Profiles. A Protection Profile is a collection of functional building blocks taken from part 2 that have been found suitable to address a common security need (e. g. the security functions needed in a commercial general purpose operating system type product) together with an assurance level as defined in part 3. The current version (Version 1.0) of the Common Criteria contains just 3 Protection Profiles but the authors assume that a lot more useful Protection Profiles will be developed in the near future by vendors or users of IT systems and products.

To be generally applicable the Common Criteria allow also evaluations where the security functionality of the TOE is not totally covered by the functional components listed in part 2. In this case the Security Target document has to describe those functions to a level of detail suitable for an evaluation.

Relevance for the Project

The Common Criteria are at the moment the most elaborated document for IT Security Evaluation available. They have been submitted to ISO/IEC SC27 as basis for an international standard in this sector and a request to the member states is on the way to promote them to the CD status. Therefore the Common Criteria are considered to get a major influence on the IT security evaluations throughout the world.

The Common Criteria focus solely on the security aspects and don't take any other dependability aspect into account. It is therefore very hard to apply them for the evaluation of products or systems that cover more dependability aspects.

�Classification Scheme

��Reqrmt & definition

Process Result�Design

Process Result�Realisation

Process Result�Integration

Process Result�Accredi-tation/�Accep-tance�In use�End of service���Formalism & languages��Part 1: Security Target

Part 2: Functional Require-ments

Part 3: Class ADV, Family: Functional Sepecifi-cation ���Part 3: Class ADV, Family: High Level Design���Part 3:�Class ADV�������Fault prevention process�Project organisation���������������Project planning��Part 1: Chapter 3������������verification��Part 3: Class ADV��Part 3: Class ADV��Part 3: Class ADV��Part 3: Class ATE�����Fault removal process�Diagnosis��Part 3: Class AVA��Part 3: Class AVA��Part 3: Class AVA��������Correction����������Part 3: Class ALC����Dependa-bility objectives��Part 3: Class AVA��Part 3: Class AVA��Part 3: Class AVA��Part 3: Class AVA�����Fault fore-casting process�Allocation��������������Evaluation��Part 1: Security Target Evalua-tion �Part 3: Class AVA��Part 3: Class AVA��Part 3: Class AVA��Part 3: Class AVA������System behaviour in presence of faults�������������Fault tolerance process�system partitioning����Part 3: Class ADV��Part 3: Class ADV��������Error & fault handling mechanisms��������������Design & Product Analysis��Part 1:�Security Target Evalua-tion��Part 3: Class ADV, Class AVA���Part 3: Class ADV, Class AVA��Part 3: Class ADV, Class AVA�����Fault Detection�Normal Testing��Part 3: Class ATE��Part 3: Class ATE��Part 3: Class ATE��������Penetration Testing����Part 3: Class AVA��Part 3: Class AVA��������Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting����������Part 3: Class ALC����Description formalism��Part 1��Part 3: Class ADV��Part 3: Class ADV�������Correctness�Analysis��Part 1, Part 3: Class ADV��Part 3: Class ADV��Part 3: Class ADV��������Testing��Part 1��Part 3: Class ATE��Part 3: Class ATE�������Functional Requirements

�Part 1�Part 2, Part 4�����������Documentation

��Part 1��Part 3: Class ADV��Part 3: Class ADV����Part 3: Class ADG���Quality assurance��������������Configuration management��������������Certification��������������Remarks

The Common Criteria focus highly on the requirements definition, design and realisation process. Integration as well as accreditation aspects are missing. It is intended to develop an evaluation methodology handbook comparable to the ITSEM. At the moment work on this methodology has just started and it is not clear if those missing aspects will be addressed in the result of this work.

�INFOSEC '92: Task 12: Commercial Accreditation of IT Systems

Summary

Within the INFOSEC programme of the Commission of the European Union this task addressed the question, if the commercial world had an interest in a commercially oriented accreditation scheme for security critical IT systems and how such a scheme may look like. To perform this task, a world wide survey was conducted to determine the demands and acceptance for such a scheme and a generic accreditation process model was developed.

The main results of the survey were:

There is a clear demand for a commercial accreditation scheme. Most organisations already perform part of the activities as described in the generic accreditation model but mainly without a clear process description.

The generic process model was widely accepted and it was well accepted that the model is flexible concerning specific techniques for specific aspects (e. g. risk analysis methods).

IT security evaluations can provide useful input for an accreditation process provided the evaluation reports focus on remaining vulnerabilities and give guidance how their effects may be eliminated or decreased by specific measures in the environment of the IT system.

It was not the aim of the project to develop a detailed accreditation scheme but to provide a framework for an accreditation process that could be easily adapted to the specific needs of an individual system or organisation.

Relevance for the Project

The main result of the INFOSEC '92 Task 12 project for SQUALE is the accreditation process model. The importance of this model is that it describes the accreditation and acceptance process neglected in most other standards in security.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�������������Fault prevention process�Project organisation���������Accredi-tation process model: Phase 1�����Project planning���������Accredi-tation process model: Phase 1�����verification�������������Fault removal process�Diagnosis���������Accredi-tation process model: Phase 3�����Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis���������Accredi-tation process model: Phase 2 & Phase 3����Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

���������Accredi-tation process model: Phase 2 & Phase 4����Quality assurance��������������Configuration management��������������Certification��������������Remarks

�IT-Sicherheitshandbuch

Summary

This document describes a method for a threat and risk analysis published by the German BSI in March 1992. It addresses specially the official agencies, but can be used by every IT-user.

The method described consists of the following steps:

Sensitivity

Registration of the IT-applications and information processed by them

Determination of the sensitivity of these IT-applications and information

Threat analysis

Registration of all assets that encounter threats

Determination if confidentiality, integrity or availability of the assets are exposed to threats

Investigation of all possible threats for these assets

Risk analysis

Loss and damage caused by threats (derived of the sensitivity of the threatened assets)

Determination of the likelihood of the threats

Summary of the threats divided in acceptable and non acceptable threats.

IT-Security concept

Selection of safeguards to counter the non acceptable risks

Assessment of the safeguards

Relation between cost and benefit

Residual risk analysis

Relevance for the Project

The IT-Sicherheitshandbuch describes a method to reduce the risks. It concerns primarily security. The overall relevance for this project is therefore considered as medium.

�Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�������������Fault prevention process�Project organisation��������������Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�all steps

�����Risk Manage-ment�Risk Reduction�all steps

������Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality assurance��������������Configuration management��������������Certification��������������Remarks

Navy Handbook for the Computer Security Certification of Trusted Systems

Summary

This document describes many aspects of the development and evaluation of trusted systems. The focus is on the B3 and A1 level of assurance according the TCSEC (Trusted Computer Security Evaluation Criteria) and on systems as opposed to products. It is published by the Naval Research Laboratory. The last update is from March 1996. This document consists of the following chapters:

Overview,

Development Plan,

Security Policy Model,

Descriptive Top-Level Specification,

Design,

Assurance Mappings,

Implementation,

Covert Channel Analysis,

Security Features Testing,

Penetration Testing,

whereby only the chapters 3, 6, 7, 8 and 10 are available.

Chapter 3 describes what is meant with security policy and security policy model (SPM) and describes the elements of a SPM. Paragraph 5 of this chapter considers the requirements that are enforced in a trusted component that sits „on top of“ a trusted product. Paragraph 6 gives some motivating questions for the evaluator to evaluate the SPM, consisting of an informal description, formal description and the validity argument.

Chapter 6 describes the aspects (especially that are necessary for B3 or A1 systems) for the mapping between

security policy model and security policy,

descriptive top level specification and security policy model,

TCB (software) and descriptive top level specification.

Chapter 7 describes the security evaluation of software results of trusted systems. Paragraph 2 shows the differences between untrusted and trusted implementations. The next two paragraphs explain what is a good implementation respectively implementation process. Paragraph 5 introduces an assessment method to evaluate the code and implementation phase with an example given in paragraph 6.

Chapter 8 handles covert channel analysis, which is required for the B2 and higher levels. This chapter describes also different methods of the covert channel analysis and gives in the Annex A a list of tools.

Chapter 10 is a statement of what constitutes good penetration testing, where it fits in the DOD Standard Software Engineering and TCSEC life cycles, and how it is done according to the best available practice, the Flow Hypothesis Methodology (FHM).

Relevance for the Project

This document describes the requirements for trusted products enforced by the TCSEC. As such this document is highly important in the area of Assurance for IT-Security functions. The overall relevance for this project is therefore considered as high.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages��3��6�7�7���3, 6, 7����Fault prevention process�Project organisation�������7�7�7�����Project planning�����7.4�7.4���7�����verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�3�3��6�7�7�7�7�3, 6, 7����Fault Detection�Normal Testing�����7�7�7�7�7�����Penetration Testing�����10�10�10�10�10�����Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting��������������Description formalism��3��6�7�7���3, 6, 7����Correctness�Analysis��3��6, 8�7�7, 8�7�7�3, 6, 7, 8�����Testing������7, 10��7, 10�7, 10����Functional Requirements

�������������Documentation

��3��6��7���3, 6, 7�7.4.6���Quality assurance��������������Configuration management��������������Certification��������������

Remarks

This document deals mainly with trusted systems evaluated to B3 or higher according TCSEC. Because B3 is nearly equivalent to E5 in respect to the assurance aspects, the statements in this document are valid for the ITSEC too.

�A Guide to Security Risk Management for Information Technology Systems

Summary

This document provides guidance for the management of security risks throughout the life cycle of information technology systems. It is published by the Government of Canada in August 1995. The first part describes a general framework for security risk management, including a security risk management model process (see figure 2 on page 5). The second presents guidance for risk management through a six stage life cycle (planning, requirement, architectural design, detailed design, implementation, operation). Figure 5 on page 14 shows the relation between the life cycle stage and the risk management steps. Chapter 3.8 summarises which documents have to be generated in which stage.

Relevance for the Project

This document gives a model for security risk management. The overall relevance for this project is therefore considered as high.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�������������Fault prevention process�Project organisation��������������Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�2, 3�3.8�2, 3�3.8�2, 3�3.8���2, 3�2, 3���Risk Manage-ment�Risk Reduction�2, 3�3.8�2, 3�3.8�2, 3�3.8���2, 3�2, 3����Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality assurance��������������Configuration management��������������Certification��������������

Remarks

The documents „A Guide to Risk Assessment and Safeguard Selection for Information Technology Systems“ and „A Guide to certification and Accreditation of Information Technology Systems“ describe the aspects of this document in more detail.

�A Guide to Risk Assessment and Safeguard Selection for Information Technology Systems

Summary

This document provides guidance for security risk assessment and safeguard selection for IT-systems. It provides additional guidance to the document „A Guide to Security Risk Assessment for Information Technology Systems“ for system designers on the technical factors associated with performing risk assessment and selecting appropriate safeguards.

Relevance for the Project

This document is a guide for risk assessment and safeguard selection. The overall relevance for this project is therefore considered as high.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�������������Fault prevention process�Project organisation��������������Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment�all; esp. 4.2, 4.3�all; esp. 4.2, 4.3�all; esp. 4.4, 4.5�all; esp. 4.4, 4.5�all; esp. 4.6�all; esp. 4.6�all; esp. 4.6�all; esp. 4.6�����Risk Manage-ment�Risk Reduction�all�all�all�all�all�all�all�all������Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality assurance��������������Configuration management��������������Certification��������������

Remarks

This document should be considered together with the document „A Guide to Security Risk Management for Information Technology Systems“.

�A Guide to Certification and Accreditation of Information Technology Systems

Summary

This document provides guidance for certification and accreditation of IT systems. It provides additional guidance to the document „A Guide to Security Risk Assessment for Information Technology systems“ on the types of certification documentation required to accredit the IT-system.

Relevance for the Project

This document explains the certification and accreditation process. The overall relevance for this project is therefore considered as high.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�������������Fault prevention process�Project organisation��������������Project planning��������������verification�������������Fault removal process�Diagnosis��������������Correction��������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing��������������Penetration Testing��������������Risk Assessment���������all����Risk Manage-ment�Risk Reduction���������all�����Incident Reporting��������������Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

�������������Documentation

�������������Quality assurance��������������Configuration management��������������Certification��������������

Remarks

This document should be considered together with the document „A Guide to Security Risk Management for Information Technology Systems“.

�An Introduction to Computer Security: The Nist Handbook (Special Pub 800-12, 06.02.1996)

Summary

This Handbook provides assistance in securing computer-based resources by explaining important concepts, cost considerations, and interrelationships of security controls: Management Controls, Operational Controls, and Technical Controls.

The Management Controls section addresses security topics that can be characterized as managerial. They are techniques and concerns that are normally addressed by management in the organization's computer security program.

The Operational Controls section addresses security controls that focus on controls that are, broadly speaking, implemented and executed by people (as opposed to systems). These controls are put in place to improve the security of a particular system (or group of systems).

The Technical Controls section focuses on security controls that the computer system executes. These controls are dependent upon the proper functioning of the system for their effectiveness. The implementation of technical controls always requires significant operational considerations -- and should be consistent with the management of security within the organization.

The Handbook provides a broad overview of computer security to help managers understand their computer security needs and develop a sound approach to the selection of appropriate security controls. It does not describe detailed steps necessary to implement a computer security program, provide detailed implementation procedures for security controls, or give guidance for auditing the security of specific systems. The purpose of this Handbook is not to specify requirements but, rather, to discuss the benefits of various computer security controls and situations in which their application may be appropriate.

The Handbook was written primarily for those who have computer security responsibilities and need assistance understanding basic concepts and techniques. In the Computer Security Act of 1987, Congress assigned responsibility to NIST for the preparation of standards and guidelines for the security of sensitive federal systems, excluding classified and "Warner Amendment" systems.

Relevance for the Project

The intention of the NIST-Handbook is not to secure the development process of a system, its intention is to help the managers of existing systems to find the risks in their systems and to give them a broad overview of security functions, with stress on management and operational functions. The overall relevance for the project is therefore considered as medium.

Classification Scheme

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�� �� �� �������Fault prevention process�Project organisation�������� �8, 9�����Project planning���������8, 9�����verification�������������Fault removal process�Diagnosis������11����11����Correction����������12����Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Design & Product Analysis�������������Fault Detection�Normal Testing�8.2������8.3��9.2�����Penetration Testing����������9.2����Risk Assessment�8.5���������7.1-7.3���Risk Manage-ment�Risk Reduction���������8.5�11����Incident Reporting����������7.3, 11, 12����Description formalism�������������Correctness�Analysis��������������Testing�������������Functional Requirements

����������15.2, 17: access Control�16: identifi-cation & authenti-cation�18: audit���Documentation

����������14.8���Quality assurance��������������Configuration management��������������Certification��������������

Remarks

To address changes and new issues, NIST's Computer Systems Laboratory publishes the CSL Bulletin series. Those bulletins which deal with security issues can be thought of as supplements to this publication.

�ANNEX A : Dependable Computing: Concepts, Limits, Challenges

Jean-Claude Laprie��LAAS-CNRS

7, Avenue du Colonel Roche

31077 Toulouse, France��

Invited paper to FTCS-25, the 25th IEEE International Symposium on Fault-Tolerant Computing,

Pasadena, California, USA, June 27-30, 1995

Abstract

Our society is faced with an ever increasing dependence on computing systems, which lead to question ourselves about the limits of their dependability, and about the challenges raised by those limits. In order to respond these questions, a global conceptual and terminological framework is needed, which is first given. The limits and challenges in dependability are then addressed, from technical and financial viewpoints. The recognition that design faults are the major limiting factor leads to recommending the extension of fault tolerance from products to their production process.

Introduction

Our society has become increasingly dependent on computing systems and this dependency is especially felt upon the occurrence of failures. Recent examples of nation-wide computer-caused or -related failures are the 15 January 1990 telephone outage in the USA, or the 26-27 June 1993 credit card denial of authorization in France. The consequences of such events relate primarily to economics ; however, some outages can lead to endangering human lives as second order effects, or even directly as in the London Ambulance Service failure of 26-27 November 1992. As a consequence of such events, which can only be termed as disasters, the consciousness of our vulnerability to computer failures is developing, as witnessed by the following quotation from the report Computing the Future: A Broader Agenda for Computer Science and Engineering [COM 92]: ÒFinally, computing has resulted in costs to society as well as benefits. Amidst growing concerns in some sectors of society with respect to issues such as unemployment, invasions of privacy, and reliance on fallible computer systems, the computer is no longer seen as an unalloyed positive force in the societyÓ.

Faced with this situation, a natural question is then "To which extent can we rely on computers?", or, more precisely, "What are the limits of computing systems dependability?". The question which comes next is ÒWhat are the challenges which we are faced with, as a result of these limits, and in order to overcome them?Ó. Responses to these questions need to be formulated within a conceptual and terminological framework, which in turns is influenced by the analysis of the limits in dependability, and by the challenges raised by dependability. Such a framework can hardly be found in the many standardization efforts: as a consequence of their specialization (telecommunications, avionics, rail transportation, nuclear plant control, etc.), they usually do not consider all possible sources of failures which can affect computing systems, nor do they consider all attributes of dependability.

The considerations expressed in the above two paragraphs have guided the contents of the paper, which is composed of three sections. The first section is devoted to the main definitions relating to the dependability concept. The second section addresses the limits of dependability, and the third section discusses some challenges which the computer science and industry are likely to be faced in a near future.

1	The Dependability Concept

In this section, condensed definitions for dependability are first given, which are then put into perspective with respect to their evolution over time, and other existing definitions. The definitions given in the first paragraph are commented, and supplemented, in an Annex.

1.1	Basic definitions

Dependability is defined as that property of a computer system such that reliance can justifiably be placed on the service it delivers. The service delivered by a system is its behaviour as it is perceptible by its user(s); a user is another system (human or physical) which interacts with the former.

Depending on the application(s) intended for the system, different emphasis may be put on different facets of dependability, i.e. dependability may be viewed according to different, but complementary, properties, which enable the attributes of dependability to be defined :

the readiness for usage leads to availability,

the continuity of service leads to reliability,

the non-occurrence of catastrophic consequences on the environment leads to safety,

the non-occurrence of unauthorized disclosure of information leads to confidentiality,

the non-occurrence of improper alterations of information leads to integrity,

the ability to undergo repairs and evolutions leads to maintainability.

Associating integrity and availability with respect to authorized actions, together with confidentiality, leads to security.

A system failure occurs when the delivered service deviates from fulfilling the system function, the latter being what the system is aimed at. An error is that part of the system state which is liable to lead to subsequent failure: an error affecting the service is an indication that a failure occurs or has occurred. The adjudged or hypothesized cause of an error is a fault.

The development of a dependable computing system calls for the combined utilization of a set of methods and techniques which can be classed into :

fault prevention: how to prevent fault occurrence or introduction,

fault tolerance: how to ensure a service up to fulfilling the system's function in the presence of faults,

fault removal: how to reduce the presence (number, seriousness) of faults,

fault forecasting: how to estimate the present number, the future incidence, and the consequences of faults.

The notions introduced up to now can be grouped into three classes and are summarized by figure 1 :

the impairments to dependability: faults, errors, failures; they are undesired Ñ but not in principle unexpected Ñ circumstances causing or resulting from un-dependability (whose definition is very simply derived from the definition of dependability: reliance cannot, or will not any longer, be placed on the service);

the means for dependability: fault prevention, fault tolerance, fault removal, fault forecasting; these are the methods and techniques enabling one a) to provide the ability to deliver a service on which reliance can be placed, and b) to reach confidence in this ability;

the attributes of dependability: availability, reliability, safety, confidentiality, integrity, maintainability; these a) enable the properties which are expected from the system to be expressed, and b) allow the system quality resulting from the impairments and the means opposing to them to be assessed.

�

Figure 1 - The dependability tree

1.2	Evolution and situation with respect to definitions given in standards

The definitions given in section 1.1 result from gradual evolutions within the Fault-Tolerant Computing community, and especially the IFIP Working Group 10.4.. These evolutions took place from the mid-seventies to the early nineties [Carter 1982, Laprie & Costes 1982, Laprie 1985, Avizienis & Laprie 1986, Laprie 1992a, Laprie 1995].

A major strength of the dependability concept, as it is formulated in this paper, is its integrative nature, which enables to put into perspective the more classical notions of reliability, availability, safety, security, maintainability, which are then seen as attributes of dependability. The fault-error-failure model is central to the understanding and mastering of the various impairments which may affect a system, and it enables a unified presentation of these impairments, though preserving their specificities via the various fault classes which can be defined (see Annex). The model provided for the means for dependability is extremely useful, as those means are much more orthogonal to each other than the usual classification according to the attributes of dependability, with respect to which the design of any real system has to perform trade-offs, due to the fact that these attributes tend to be in conflict with each other.

The definitions of dependability which exist in current standards differ from the definition we have given. Two such differing definitions are :

ÒThe collective term used to describe the availability performance and its influencing factors: reliability performance, maintainability performance and maintenance support performanceÓ [ISO 91].

ÒThe extent to which the system can be relied upon to perform exclusively and correctly the system task(s) under defined operational and environmental conditions over a defined period of time, or at a given instant of timeÓ [CEI 92].

The ISO definition is clearly centered upon availability. This is no surprise as this definition can be traced back to the definition given by the international organization for telephony, the CCITT [CCITT 84], although it could be argued that it seems strange to take a definition formulated in a given context, and to use it as it is in a broader context. However, the willingness to grant dependability with a generic character is noteworthy, so going beyond availability as it was usually defined, and thus restituting the role of reliability and maintainability. In this respect, the ISO/CCITT definition is consistent with the definition given in [Hosford 60] for dependability: Òthe probability that a system will operate when neededÓ.

The second definition, from [CEI 92], introduces the notion of reliance, and as such is much closer to our definition. This CEI definition stays however fundamentally in the spirit of the extension of availability.

2	Limits in Dependability

This section is aimed at identifying and discussing the limits in the dependability of computer systems in terms of fault classes. Three major classes of faults are considered: physical faults, design faults, interaction faults (see the Annex, ¤ A.1, for precise definitions of these fault classes).

2.1- Limits in terms of fault classes

Software, and thus design faults, are generally recognized as being the current bottleneck for dependability in critical applications, be they money- or life-critical. A simple reason is that the computer systems involved in such applications are tolerant to physical faults.

An examination of statistics for largely deployed systems confirm this state of affairs, as examplified by figure 2 which compares failure data for non-fault-tolerant and fault-tolerant traditional systems, i.e. whose architecture is typically a central computing system, which is accessed through a network of terminals. A close examination of those statistics show that fault-tolerance provides an improvement of two orders of magnitudes in terms of time to failure, and that, on the average, fault-tolerant computing systems become obsolete before system failure.

The importance of design faults is confirmed when considering figure 3, which gives the results of a comprehensive survey about large scale client-server networks (several thousands of workstations), that is a type of architecture which tends to replace the traditional architectures. Although the data displayed on figure 3 relate to non-fault-tolerant systems, the dominance of design faults come from the fact that, in such architectures, a user usually exploits a large number of various software, located on a similarly large number of servers.

Non-fault-tolerant systems

(Japan, 1383 organizations [Watanabe 86];

USA, 450 companies [FIND/SVPÊ93])�Fault-tolerant systems

(Tandem Computers [Gray 90];

Bell Northern Research [Cramp et al. 92])��Mean Time To Failure: 6 to 12 weeks

Average outage duration after failure: 1 to 4 hours�Mean Time To Failure: 21 years [Tandem]��Failure sources

	Hardware	50%

	Software	25%

	Communications- �	Environment	15%

	Operations - �	Procedures	10%�Failure sources

	Software	65%

	Operations - �	Procedures	10%

	Hardware	8%

	Environment	7%��

Figure 2 - Failure sources and frequencies for computing systems

�

Figure 3 - User outage in non-fault-tolerant client-server networks [Wood 94]

A further examination of the data of figure 2 and 3 shows that fault-tolerant traditional systems and client-server networks exhibit the same ordering of fault classes in terms of their contribution to system failure: 1) design faults, 2) operations (i.e. interaction) faults, 3) physical faults, 4) environment. In addition, figure 3 shows that configuration changes resulting from adaptive or perfective maintenance (upgrades, new version install) become a major source of concern.

Interaction faults becoming the second source of system failure is not due to the fact that human operators become more error-prone, but is simply due to our progressive mastering of physical faults, and to the permutation among failure sources which ensue. This permutation effect has been noticeable for a long time in fault-tolerant systems [Toy 78, Davis & Giloth 81], and is supported by the statistics of figure 4 which show that, in commercial flights, human errors have become the first source of accidents, in spite of having significantly decreased in absolute terms over the years.

	Accidents per million takeoffs

	1970-1978	1979-1986

Technical defects	1.49	(45%)	0.43	(33%)

Weather	0.82	(25%)	0.33	(26%)

Human error	1.03	(30%)	0.53	(41%)

Total	3.34		1.29��

Figure 4 - Primary cause of accident of domestic commercial flights in the US [Ruegger 90]

In addition, a significant proportion of interaction faults can actually be traced to design faults [Norman 83], be they due to either a) a poor design of the man-machine interface or interaction procedures, or b) to a lack of assistance from the system to its human operators in tasks where human reasoning and judgement is ultimately necessary, such as facing situations of multiple system faults.

Coming back to fault-tolerant systems, design faults can affect a) software in the classical sense, i.e. both application and executive software, and b) fault tolerance mechanisms, which are usually at least partially software-implemented. Although design faults can clearly affect hardware as well (as examplified by the recent infamous Pentium problem), such a discussion is out of the scope of the paper. As other papers in this volume address the design aspects of both dependable software and fault-tolerant systems, we focus in the following two paragraphs on the evaluation side.

2.2	Software reliability

The domain of software reliability evaluation is in a paradoxical situation: although we have seen that software is the current bottleneck of computing systems dependability, current practice does not generally (with a few exceptions such as [Donnelly et al. 92]) involve evaluation of software reliability, in spite of a huge amount of literature on the topic. In fact, reliability evaluation is simply ignored in the vast majority of software developments, and most of published work on evaluations based on experimental data relating to real systems are indeed post mortem studies, performed a posteriori, without direct influence on the development process. Such a state-of-practice is supported by the current standards for the development of software, which usually simply ignore reliability evaluation.

An initial cause to this paradoxical situation has been, during many years, the belief that methods and techniques for developing software would ultimately enable the production of fault-free software. This belief, which has now been widely realized as being undue, has indeed been detrimental to software reliability evaluation, which is nevertheless facing practical difficulties.

The vast majority of the published literature on the evaluation of software reliability is based on failure data exploited via reliability growth models [Xie 91]. Such studies, when conducted during development, are relevant to operational life only if the software execution profile is representative of operational life, and thus that such studies are conducted during the final phases of development, i.e. validation and qualification tests. A problem is then that the times to failure may simply be large enough in order to make the application of reliability growth models impractical, due to the (hoped for) scarcity of failure data. Stated in equivalent terms, predictions based on failure data are of interest only if enough data are available in order to be statistically representative, that is if there are "enough" faults, or if the data come from a large enough base of software copies whose input data can reasonably be considered as stochastically independent, or both. Such situations are encountered during the initial phases of testing, or for large bases of deployed software in the field. In the former situation (initial phases of testing), reliability estimations can hardly be predictive of the operational reliability because the execution profiles, aimed at finding faults, are different from operational profiles; however, processing failure data in order to determine whether the software reliability is growing or decreasing, i.e. performing trend analysis [Ascher & Feingold 84, Kanoun & Laprie 94], can be extremely helpful in judging of the efficacy of the tests conducted. In the latter situation (large bases of deployed software in the field), the reliability estimations cannot obviously be used for guiding the development process. However, they provide information which can be exploited for posterior products, and they can be extremely useful for maintenance planning purposes.

Another class of models estimate reliability from the explicit consideration of non-failed executions, possibly together with failures [Nelson 73, Parnas et al. 90]. Such models assume than no correction is performed should a failure occur, and are thus can be termed as stable reliability models. The problem which then arises, besides the representativity of the execution profile according to which the tests are conducted, is the number of executions necessary for estimating reliability levels which are commensurate with reasonable expectations.

It is generally agreed that a practical current limit in the assessment of a failure rate before operational use lies in the range 10-2/h - 10-4/h, be the corresponding evaluations conducted using reliability growth models or stable reliability models [Parnas et al. 90, Thevenod & Waeselynck 91]. On the other hand, measured failure rates in operation range from 10-3/h [Chillarege et al. 95] to a few 10-6/h [Kanoun & Sabourin 87, Gray 90], or even down to 5. 10-8/h [Laryd 94].

It appears from the above discussion that the current approaches cannot generally satisfy the need of performing, prior to deployment, reliability evaluations of software systems in order to forecast their (future) reliability in operation. A common cause to the limitations of the various approaches is that they consider products in isolation from the process which produced them. Considering that software written from scratch are exceptions, and that the current usual approach is rather to make evolutions from existing software, a logical consequence is to enhance the predictions performed for a given product with field data relative to previous, similar, software products. We have conducted preliminary studies on this idea, using a Bayesian approach, as what is looked for is the incorporation of prior knowledge Ñ deduced from past experience Ñ in order to deduce posterior confidence Ñ the reliability of the software under consideration viewed as the new generation of a software family [Laprie 1992b]. The corner stone of the approach is clearly the notion of similarity between the various generations of a software family. From the viewpoint of reliability prediction, and in a Bayesian context, dissimilarities due to more failure sources will impact the prior distribution in the reduction of its ability to accommodate strong beliefs in its representativeness. On the other hand, instead, or in conjunction with, such "negative" dissimilarities, we can expect "positive" dissimilarities to exist, resulting for instance from advances in the development and validation methods and techniques. In order to explore this notion of similarity, experimental data relative to families of products have been processed [Ka‰niche et al. 1994]. However, those studies, which we term as "product-in-a-process" are still in a preliminary stage, and need to be refined in order to be directly applicable.

Let us conclude this section by considering two broad classes of critical software systems: money-critical software (e.g. telecommunications, transaction-processing), and life-critical software (e.g. flight control, nuclear plant monitoring, railway signalling). Current figures of residual fault densities for operational software fall in the range 0.01 - 10 faults per thousand lines of code (comments excluded), or kSLOC. Published data show that money-critical software systems lie in the upper end, say from 1 to 10 faults/kSLOC [Levendel 95], and life-critical software in the lower end, say from 0.01 to 1 fault/kSLOC [Bush 90]. Money-critical software systems are very large, and their size usually fall in the range of millions, or tens of millions lines of code. The (large) number of residual faults in operation make clearly reliability evaluation relevant from a statistical viewpoint. Current life-critical software are much smaller, falling in the range of a few thousand to a few tens of thousands of lines of code. The (hoped for) vanishingly small number of residual faults in operation clearly demonstrates the irrelevance of attempting to perform reliability predictions for such software because of their irrelevance from a statistical viewpoint. However, the rapid growth in the size of life-critical software may make reliability evaluations relevant on the principle; in such an event, the stringent reliability objectives requested for life-critical computing systems will necessitate approaches similar to what we have described as Òproduct-in-a-processÓ to be employed, in order to overcome the practical difficulties suffered by the traditional approaches, considering products in isolation [Butler & Finelli 93].

2.3	Fault tolerance effectiveness

The imperfections of fault tolerance, i.e. the lack of fault tolerance coverage, constitute a severe limitation to the increase in dependability which can be obtained. Such imperfections of fault tolerance are due either a) to design faults affecting the fault tolerance mechanisms with respect to the fault assumptions stated during the design, the consequence of which is a lack of error and fault handling coverage, or b) to fault assumptions which differ from the faults really occurring in operation, resulting in a lack of fault assumption coverage, which can be in turn due to either i) failed component(s) not behaving as assumed, that is a lack of failure mode coverage, or ii) the occurrence of correlated failures, that is a lack of failure independence coverage. The influence of a lack of error and fault handling coverage [Bouricius et al. 69, Arnold 73] has been shown to be such that it not only drastically limits the dependability improvement, but that in some cases adding further redundancies can result in lowering dependability [Dugan & Trivedi 89]. Similar effects can result from the lack of failure mode coverage: conservative fault assumptions (e.g., Byzantine faults) will result in a higher failure mode coverage, at the expense of necessitating an increase in the redundancy and more complex fault tolerance mechanisms, which can lead to an overall decrease in the system dependability [Powell 92].

The evaluation of the error and fault handling coverage has been recently devoted a large attention, leading to a number of studies on fault-injection (see e.g. [Arlat et al. 90, Iyer & Tang 94, Karlsson et al. 94]): the intricacy of the fault tolerance mechanisms severely limits approaches relying purely on modeling [Dugan & Trivedi 89].

Let us finally mention that, if on one hand deficiencies of fault tolerance coverage are unavoidable, on the other a fault-tolerant system usually tolerates in some situations more faults than expected, and thus exhibits an extra-coverage. For instance, a system designed for tolerating single faults will usually not tolerate all single faults because of the coverage deficiencies, and will however tolerate some combinations of multiple faults. Such a result, which is classical in error correcting codes (see e.g. [Siewiorek & Swarz 92,]) applies to systems as well: it is reported in [Gray 90] that 20% of the fault chains had a length (i.e. the number of successive faults leading to failure) larger than 2. This notion of extra-coverage can be generalized in the light of the (unavoidable) robustness any system exhibits due to unintentional redundancies; as an example, figure 5 gives the results of fault-injection experiments conducted on the Delta-4 system (more than 20000 faults injected), which show that 12% of the errors were tolerated although not having been detected by the error detection mechanisms.

�

Figure 5 - Results of fault-injection experiments in Delta-4 [Arlat et al.Ê91]

3	Challenges raised by dependability

We have so far focused on technical issues, which we now complement by financial considerations in order to better appraise the challenges we are faced with.

Figure 6 gathers two types of statistical data relating to informatics in France: the cost of computer failures as evaluated by the insurersÕ association, and the computer industry revenue and results. This figure shows the high cost of computer failures, both in absolute value and in relative value, as it amounts to about 5% of the total revenue of the computer industry. Such figures are likely to apply comparatively in other industrialized countries; for instance, a recent survey conducted in the USA [FIND/SVP 93] has estimated the activity of large companies in industry and services to suffer an annual loss of 4 Billions of Dollars, as a consequence of accidental faults only.

�

Figure 6 - Cost of computer failures in France as compared to the revenue and results of the computer industry

If the correlation between the computer industry revenue and the cost of computer failures exhibited by figure 6 is not interrupted, then the dramatic development of computer applications currently promised by multi-media applications and the transformation of computer networks into the so-called information highways, will be accompanied by equally dramatic increase of the cost of their failures, which may ultimately impede their very development.

Let us now turn to life-critical software. What has been exposed in the previous section, i.e. the statistical evidence of software being the current bottleneck of dependability, together with the recognition that probabilistic assessment of software reliability to levels commensurate with safety requirements (e.g. 10-9/h or 10-5 per demand) is currently out of reach, has led to highly labor intensive approaches for the development and validation of operational life-critical software. Be they undertaken via traditional software engineering approaches or via mathematically formal approaches, orders of magnitudes of effort dedicated to the development and validation of such software are in the range of 10 man.years per 1000 lines of code, for software ranging from a few thousands to a few tens of thousands lines of code [Craigen et al. 1993, OFTA 1994]. Clearly, such development efforts are hardly sustainable for software which would be one or several orders of magnitude larger. In addition, typically, verification and validation activities amount to 75% of the total development costs for such critical software, and the real benefit in terms of reliability improvement to be gained from any increase in those costs is doubtful.

A clear consequence of what precedes is that there is a urgent need for the computer industry to adopt fault tolerance on a much broader scale than at present. Such a reommendation applies obviously to all classes of faults we have considered, i.e. physical faults, design faults, interaction faults. The recommendation applies equally to intentionally malicious faults: coming back to figure 6, the high cost of those faults clearly shows that the current approaches, dominated by fault avoidance, are unsatisfactory, and the promising initial results for tolerating such faults [Joseph & Avizienis 1988, Rabin 1989, Deswarte et al. 1991] deserve being pursued and broadened.

As, ultimately, any fault affecting human artefacts, as are computer systems, can be traced to a design fault, then a natural recursion leads to the fault tolerance of not only the products, but also of the production process. Such is the challenge for the era which opens for the Silver Jubilee of the Fault-Tolerant Computing Symposia: extending fault tolerance from products to their production processes.

Acknowledgements. I dedicate this paper to all my colleagues and friends with whom I have had the pleasure to share many ideas and (hard) work over the years. Special mentions go to the members of the LAAS Research Group on Dependable Computing and Fault Tolerance, Alain Costes, Jean Arlat, Yves Crouzet, Yves Deswarte, Jean-Charles Fabre, Mohamed Kaaniche, Karama Kanoun, David Powell, Pascale ThŽvenod, with thoughts to the memory of Christian BŽounes, to Jean-Paul Blanquart from LIS (the Laboratory for Dependability Engineering), and to all the members of IFIP WG 10.4, especially Al Avizienis, Bill Carter, John Meyer, Brian Randell and Yoshi Tohma.

�Annex

A.1	The impairments to dependability

Of primary importance are the impairments to dependability, as we have to know what we are faced with.

Failure occurrence has been defined with respect to the function of as system, not with respect to its specification. Indeed, if an unacceptable behavior is generally identified as a failure due to a deviation from the compliance with the specification, it may happen that such a behavior complies with the specification, and be however unacceptable for the system user(s), thus uncovering a specification fault. In the latter, recognizing that the event is undesired (and is in fact a failure) can only be performed after its occurrence, for instance via its consequences.

A system may not, and generally does not, always fail in the same way. The ways a system can fail are its failure modes, which may be characterized according to three viewpoints: domain, perception by the system users, and consequences on the environment, as indicated by figure A1.

�

Figure A1 - The failure modes

A class of failures relating to both value and timing are the halting failures: system activity, if any, is no longer perceptible to the users. According to how the system interacts with its user(s), such an absence of activity may take the form of a) frozen outputs (a constant value service is delivered; the constant value delivered may vary according to the application, e.g. last correct value, some prede�termined value, etc.), or of b) a silence (no message sent in a distributed system). A system whose failures can be Ñ or more generally are to an acceptable extent Ñ only halting failures, is a fail-halt system; the situations of frozen outputs and of silence lead respectively to fail-passive systems and to fail-silent systems [Powell et al. 88].

A system whose failures can only be Ñ or more generally are to an accept�able extent Ñ benign failures is a fail-safe system. The notion of failure severity, resulting from grading the consequences of failures upon the system environment, enables the notion of criticality to be defined: the criticality of a system is the highest severity of its (possible) failure modes. The relation between failure modes and failure severities is highly application-dependent. However, there exist a broad class of applications where inoperation is consid�ered as being a naturally safe position (e.g. ground transportation, energy pro�duction), whence the direct correspondence which is often made between fail-halt and fail-safe [Mine & Koga 67, Nicolaidis et al. 89]. Fail-halt systems (either fail-passive or fail-silent) and fail-safe systems are however examples of fail-controlled systems, i.e. systems which are designed and realized in order that they may only fail Ñ or may fail to an accept�able extent Ñ according to restrictive modes of failure, e.g. frozen output as opposed to delivering erratic values, silence as opposed to babbling, consistent failures as opposed to inconsistent ones; fail-controlled systems may in addition be defined via imposing some internal state condition or accessibility, as in the so-called fail-stop systems [Schlichting & Schneider 83].

Our classification of faults is performed in two steps: a) elementary fault classes are first defined, according to various viewponits, as indicated in figure A2; b) the combination of these elementary faults leads to the combined fault classes given by figure A3. The labels associated to those combined fault classes are consistent with the labels commonly used in order to point in a condensed manner at one or several fault classes.

�

Figure A2 - The elementary fault classes

�

Figure A3 - The combined fault classes

Two comments regarding the human-made fault classes :

1) Intentional, non-malicious, design faults result generally from tradeoffs, either a) aimed at preserving acceptable performances, at facilitating the system utilization, or b) induced by economic considerations. Intentional, non-malicious interaction faults may result from the action of an operator either aimed at overcoming an unforeseen situation, or deliberately violating an operating procedure without having developed the consciousness of the possibly damaging consequences of his or her action. These classes of intentional non-malicious faults share the characteristic that, often, it is realized they were faults only after an unacceptable system behavior, thus a failure, has occurred.

2) Malicious logics encompass development faults such as Trojan horses, logic or timing bombs, trapdoors, as well as operational faults (for the considered system) such as viruses or worms [Landwehr et al. 93].

The creation and manifestation mechanisms of faults, errors, and failures may be summarized as follows :

1) A fault is active when it produces an error. An active fault is either a) an internal fault which was previously dormant and which has been activated by the computation process, or b) an external fault. Most internal faults cycle between their dormant and active states. Physical faults can directly affect the hardware components only, whereas human-made faults may affect any component.

2) An error may be latent or detected. An error is latent when it has not been recognized as such; an error is detected by a detection algo�rithm or mechanism. An error may disappear before being detected. An error may, and in general does, propagate; by propagating, an error creates other Ñ new Ñ error(s). During operation, the pres�ence of active faults is determined only by the detection of errors.

3) A failure occurs when an error "passes through" the system-user inter�face and affects the service delivered by the system. A component failure results in a fault a) for the system which contains the compo�nent, and b) as viewed by the other component(s) with which it inter�acts; the failure modes of the failed component then become fault types for the components interacting with it.

These mechanisms enable the "fundamental chain" to be completed:

¥ ¥ ¥ (failure (fault (error (failure (fault (¥ ¥ ¥

The arrows in this chain express the causality relationship between faults, errors and failures. They should not be interpreted in a restrictive manner: a) by propagation, several errors can be generated before a failure occurs, and b) an error can lead to a fault without a failure to be observed, if the observation is not performed, as a failure is an event occurring at the interface between two components.

The complexity of the creation, activation and manifestation of faults leads to a multiplicity of possible causes of failures. This complexity leads to the definition of fault classes which are more abstract than the classes which have bee considered so far, be it

a) for classifying faults uncovered during operation, or

b) for stating fault assumptions during when designing a system.

Two such fault classes are :

¥ configuration change faults [Wood 94]: the service delivered by the system is affected, subsequently to a maintenance action, either evolutive or perfective (e.g. introduction of a new software version on a network server,

¥ timing faults, leading to timing failures, and omission faults, such that the system does not respond to a request, thus leading to halting failures [Cristian et al. 85].

A.2	The means for dependability

In this section, we briefly examine in turns those means for dependability which explicitely consider the notion of fault, i.e. fault tolerance, fault removal and fault forecasting.

Fault tolerance. Fault tolerance [Avizienis 67] is carried out by error processing and by fault treatment [Anderson & Lee 81]. Error processing is aimed at removing errors from the computational state, if possible before failure occurrence; fault treatment is aimed at preventing faults from being activated Ñ again.

Error processing can be carried out via three primitives:

¥ error detection, which enables an erroneous state to be identified as such;

¥ error diagnosis, which enables to assess the damages caused by the detected error, or by errors propagated before detection;

¥ error recovery, where an error-free state is substituted for the erro�neous state; this substitution may take on three forms :

- backward recovery, where the erroneous state transformation consists of bringing the system back to a state already occupied prior to error occurrence; this involves the establishment of recovery points, which are points in time during the execution of a process for which the then current state may subsequently need to be restored;

- forward recovery, where the erroneous state transformation consists of finding a new state, from which the system can operate (frequently in a degraded mode);

- compensation, where the erroneous state contains enough redundancy to enable its transformation into an error-free state.

When backward or forward recovery are utilized, it is necessary that error detection precedes error recovery. Backward and forward recovery are not exclusive: backward recov�ery may be attempted first; if the error persists, forward recovery may then be attempted. In forward recovery, it is necessary to assess the damage caused by the detected error, or by errors propagated before detection; damage assessment can Ñ in principle Ñ be ignored in the case of backward recovery, provided that the mechanisms enabling the transformation of the erroneous state into an error-free state have not been affected [Anderson & Lee 81].

The association into a component of its functional processing capability together with error detection mechanisms leads to the notion of self-checking component, either in hardware [Carter & Schneider 68, Wakerly 78, Nicolaidis et al. 89] or in software [Yau & Cheung 75, Laprie et al. 90a]; one of the important benefits of the self-checking component approach is the ability to give a clear definition of error confinement areas [Siewiorek & JohnsonÊ82]. When error compensation is performed in a system made up of self-checking components partitioned into classes executing the same tasks, then state transformation is nothing else than switching within a class from a failed component to a non-failed one. On the other hand, compensation may be applied systematically, even in the absence of errors, then providing fault masking (e.g. in majority vote). However, this can at the same time correspond to a redundancy decrease which is not known. So, practical implementations of masking generally involve error detection, which may then be performed after the state transformation. As opposed to fault-masking, implementing error processing via error recovery after error detection has taken place, is generally referred to as error detection and recovery.

The first step in fault treatment is fault diagnosis, which consists of deter�mining the cause(s) of error(s), in terms of both location and nature. Then come the actions aimed at fulfilling the main purpose of fault treatment: pre�venting the fault(s) from being activated again, thus aimed at making it(them) passive, i.e. fault passivation. This is carried out by preventing the compo�nent(s) identified as being faulty from being invoked in further executions. If the system is no longer capable of delivering the same service as before, then a reconfiguration may take place, which consists in modifying the system structure in order that the non-failed components enable the delivery of an acceptable service, although degraded; a reconfiguration may involve some tasks to be given up, or re-assigning tasks among non-failed components.

The preceding definitions apply to physical faults as well as to design faults: the class(es) of faults which can actually be tolerated depend(s) on the fault hypothesis which is being considered in the design process, and thus relies on the independence of redundancies with respect to the process of fault creation and activation. An example is provided by considering tolerance of physical faults and tolerance of design faults. A (widely-used) method to attain fault tolerance is to perform multiple computations through multiple channels. When tolerance of physical faults is foreseen, the channels may be identical, based on the assumption that hardware components fail independently; such an approach is not suitable for the tolerance to design faults where the channels have to provide identical services through separate designs and implementa�tions [Elmendorf 72, RandellÊ75, AvizienisÊ78], i.e. through design diversity [Avizienis & Kelly 84].

An important aspect in the coordination of the activity of multiple compo�nents is that of preventing error propagation from affecting the operation of non-failed components. This aspect becomes particularly important when a given component needs to communicate some information to other components that is private to that component. Typical examples of such single-source information are local sensor data, the value of a local clock, the local view of the status of other components, etc. The consequence of this need to communi�cate single-source information from one component to other components is that non-failed components must reach an agreement as to how the information they obtain should be employed in a mutually consistent way. Specific attention has been devoted to this problem in the field of distributed systems (see e.g. atomic broad�cast [Cristian et al. 85a], clock synchronization [Lamport & Melliar-Smith 85, Kopetz & Ochsenreiter 87] or mem�bership protocols [Cristian 88]). It is important to realize, however, that the inevitable pres�ence of structural redundancy in any fault-tolerant system implies distribution at one level or another, and that the agreement problem therefore remains in existence. Geographically localized fault-tolerant systems may employ solutions to the agreement problem that would be deemed too costly in a "classical" distributed system of components communicating by messages (e.g. inter-stages [Lala 86], multiple stages for interactive consistency [Frison & Wensley 82]).

Fault removal. Fault removal is composed of three steps: verification, diagnosis, correc�tion. Verification is the process of checking whether the system adheres to proper�ties, termed the verification conditions [Cheheyl et al.Ê81]. The verification techniques can be classed according to whether or not they involve exercising the system.

Verifying a system without actual execution is static verification. The verification can be conducted:

¥ on the system itself, in the form of a) static analysis (e.g. inspec�tions or walk-through [Myers 79], data flow analysis [Osterweil et al. 76], complexity analysis [McCabe 76], compiler checks, etc.) or b) proof-of-correctness (inductive assertions [Hoare 69]);

¥ on a model of the system behavior (e.g. Petri nets, finite state automata), leading to behavior analysis [Diaz 82].

Verifying a system through exercising it constitutes dynamic verification; the inputs supplied to the system can be either symbolic in the case of symbolic execution, or valued in the case of verification testing, usually simply termed testing.

Testing exhaustively a system with respect to all its possible inputs is gen�erally impractical. The methods for the determination of the test patterns can be classed according to two viewpoints: criteria for selecting the test inputs, and generation of the test inputs.

The techniques for selecting the test inputs may in turn be classed according to three viewpoints:

¥ the purpose of the testing: checking whether the system satisfies its specification is conformance testing, whereas testing aimed at revealing faults is fault-finding testing;

¥ the system model: depending on whether the system model relates to the function or the structure of the system, leads respectively to functional testing and structural testing;

¥ fault model: the existence of a fault model leads to fault-based testing [Morell 90], aimed at revealing specific classes of faults (e.g. stuck-at-faults in hardware production [Roth et al.Ê67], physical faults affecting the instruction set of a microprocessor [Thatte & AbrahamÊ78], design faults in software [Goodenough & Gerhart 75, DeMillo et al. 78, Howden 87]); if there is no fault model, one is then led to criteria-based testing, where the criteria may relate, for software, to path sensitization [Howden 76], to utilization of the program variables [Rapps & Weyuker 85], to input boundary values [Myers 79], etc.

Combining the various viewpoints leads to the testing approaches, where the distinction between hardware and software is important since hardware testing is mainly aimed at removing production faults, whereas software testing is concerned only with design faults:

¥ structural testing when applied to hardware generally means fault-find�ing, fault-based, whereas it generally means fault-finding, non-fault-based testing when applied to software;

¥ functional testing when applied to hardware generally means fault-finding, fault-based, whereas it generally means either conformance or fault-finding, criteria-based when applied to software;

¥ mutation testing of software [DeMillo et al. 78] is fault-finding, structural, fault-based, testing.

The generation of the test inputs may be deterministic or probabilistic:

¥ in deterministic testing, test patterns are predetermined by a selec�tive choice according to the adopted criteria,

¥ in random, or statistical, testing, test patterns are selected accord�ing to a defined probability distribution on the input domain; the distri�bution and the number of input data are determined according to the adopted criteria [David & Thevenod-Fosse 81, Duran & Ntafos 84, Thevenod-Fosse & Waeselynck 91].

Fault forecasting. Fault forecasting is conducted by performing an evaluation of the system behavior with respect to fault occurrence or activation. Evaluation has two aspects:

¥ ordinal evaluation, aimed at identifying, classifying and ordering the failure modes, or the methods and techniques aimed at avoiding them;

¥ probablistic evaluation, aimed at evaluating in terms of probabilities some of the attributes of dependability.

The methods and tools enabling ordinal and probabilistic evaluations are either specific (e.g., failure mode and effect analysis for qualitative evaluation, or Markov chains for quantitative evaluation), or can be used for performing both forms of evaluation (e.g. reliability block diagrams, fault-trees).

The definition of the measures of dependability necessitates first the notions of proper and improper services to be defined:

¥ proper service, where the delivered service fulfills the system function;

¥ improper service, where the delivered service does not fulfill the system function.

A failure is thus a transition from proper to improper service, and the transi�tion from improper to proper service is a restoration. Quantifying the alterna�tion of proper-improper service delivery enables then reliability and avail�ability to be defined as measures of dependability:

¥ reliability: a measure of the continuous delivery of proper service Ñ or, equivalently, of the time to failure;

¥ availability: a measure of the delivery of proper service with respect to the alternation of proper and improper service.

A third measure, maintainability, is usually considered, which may be defined as a measure of the time to restoration from the last experienced fail�ure, or equivalently, of the continuous delivery of improper service.

As a measure, safety can be seen as an extension of reliability. Let us group the state of proper service together with the state of improper service subse�quent to benign failures into a safe state (in the sense of being free from catas�trophic dam�age, not from danger); safety is then a measure of continuous safeness, or equivalently, of the time to catastrophic failure. Safety can thus be considered as reliability with respect to the catastrophic failures.

In the case of multi-performing systems, several services can be distin�guished, as well as several modes of service delivery, ranging from full capac�ity to com�plete disruption, which can be seen as distinguishing less and less proper service deliveries. Performance-related measures of dependability for such systems are usually grouped under the notion of performability [Meyer 78, Smith & Trivedi 88].

When performing an evaluation, the approaches differ significantly according to whether the system is considered as being in stable reliability or in reliability growth, which may be defined as follows [Laprie et al. 90b] :

¥ stable reliability: the system's ability to deliver proper service is preserved (stochastic identity of the successive times to failure);

¥ reliability growth: the system's ability to deliver proper service is improved (stochastic increase of the successive times to failure).

When evaluating fault-tolerant systems, the coverage of error processing and fault treatment mechanisms has a very significant influence [Bouricius et al. 69, Arnold 73]; its evaluation can be performed either through modeling [Dugan & Trivedi 89] or through testing, then called fault-injection [Arlat et al. 90, Gunneflo et al. 89].

A.3	The Attributes of Dependability

The attributes of dependability have been defined in section 1.1 according to different proper�ties, which may be more or less emphasized depending on the application intended for the computer system under consideration. Especially, reliability, safety, confidentiality may or may not be required according to the application.

Integrity is a pre-requisite for availability, reliability and safety, but may not be so for confidentiality (for instance when considering attacks via covert channels or passive listening). The definition given for integrity Ñ absence of improper alterations of information Ñ generalizes the usual definitions, which relate to the notion of authorized actions only (e.g., prevention of the unau�thorized amendment or deletion of information [CEC 91], assurance of approved data alterations [Jacob 91]; naturally, when a system implements an authorization policy, "improper" encompasses "unauthorized".

Whether a system holds the properties which have enabled the attributes of dependability to be defined should be interpreted in a relative, probabilistic, sense, and not in an absolute, deterministic sense: due to the unavoidable presence or occurrence of faults, systems are never one hundred percent available, reliable, safe, or secure.

The definition given for maintainability goes deliberately beyond corrective maintenance, aimed at preserving or improving the system's ability to deliver a service fulfilling its function (relating to reparability only), and encompasses via evolvability the other forms of maintenance: adaptive maintenance, which adjusts the system to environmental changes (e.g. change of operating systems or system data-bases), and perfective maintenance, which improves the system's function by responding to customer Ñ and designer Ñ defined changes, which may involve removal of specification faults [Ramamoorthy 84].

Security has not been introduced as a single attribute of dependability, in agreement with the usual definitions of security, which view it as a composite notion, namely Çthe combination of confidentiality, the prevention of the unauthorized disclosure of information, integrity, the prevention of the unau�thorized amendment or deletion of information, and availability, the prevention of the unauthorized withholding of informationÈ [CEC 91].

The variations in the emphasis to be put on the attributes of dependability have a direct influence on the appropriate balance of the techniques addressed in the previous section to be employed in order that the resulting system be dependable. This is an all the more difficult problem as some of the attributes are antagonistic (e.g. availability and safety, availability and security), necessi�tating that trade-offs be performed. Considering the three main design dimen�sions of a computer system, i.e. cost, performance and dependability, the problem is further exacer�bated by the fact that the dependability dimension is less understood than the cost-performance design space [Siewiorek & Johnson 82].

�References

Arlat et al. 90

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins and D. Powell, ÒFault Injection for Dependability Validation Ñ A Methodology and Some ApplicationsÓ, IEEE Trans. on Software Engineering, 16 (2), pp.166-182, February 1990.

Arlat et al 91

J. Arlat, Y. Crouzet, E. Martins, D. Powell, ÒDependability testing report LA3 - Fault injection on the extended self-checking NACÓ, LAAS Report 91.396, Delta-4 ref. R91.119/I1/P, Dec. 1991.

Anderson & Lee 81

T. Anderson, P.A. Lee, Fault Tolerance Ñ Principles and Practice, Prentice Hall, 1981.

Arnold 73

T.F. Arnold, "The concept of coverage and its effect on the reliability model of repairable systems", IEEE Trans. on Computers, vol. C-22, June 1973, pp. 251-254.

Ascher & Feingold 84

H. Ascher, H. Feingold, Repairable Systems Reliability, vol. 7, Lectures Notes in Statistics, New York, USA, Dekker, 1984.

Avizienis 67

A. Avizienis, "Design of fault-tolerant computers", in Proc. Fall Joint Computer Conf., 1967, pp. 733-743.

Avizienis 78

A. Avizienis, "Fault tolerance, the survival attribute of digital systems", Proceedings of the IEEE, vol. 66, no. 10, Oct. 1978, pp. 1109-1125.

Avizienis & Kelly 84

A. Avizienis, J.P.J. Kelly, "Fault tolerance by design diversity: concepts and experiments", Computer, vol. 17, no. 8, Aug. 1984, pp. 67-80.

Avizienis & Laprie 86

A. Avizienis, J.C. Laprie, "Dependable computing: from concepts to design diversity", Proceedings of the IEEE, vol. 74, no. 5, May 1986, pp. 629-638.

Bouricius et al. 69

W.G. Bouricius, W.C. Carter, P.R. Schneider, "Reliability modeling techniques for self-repairing computer systems", in Proc. 24th ACM National Conf., 1969, pp. 295-309.

Bush 90

M.W. Bush, ÒGetting started on metrics - Jet Propulsion Laboratory productivity and qualityÓ, Proc. 12th IEEE Int. Conf. on Software Engineering, Nice, France, March 1990, pp. 133-1242.

Butler & Finelli 93

R.W. Butler, G.B. Finelli, "The infeasibility of quantiying the reliability of life-critical real-time software", IEEE Trans. on Software Engineering, vol. 19, no. 1, Jan. 1993, pp. 3-12.

Carter 82

W.C. Carter, "A time for reflection", in Proc. 12th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-12), Santa Monica, California, June 1982, p. 41.

Carter & Schneider 68

W.C. Carter, P.R. Schneider, "Design of dynamically checked computers", in Proc. IFIP'68 Cong., Amsterdam, 1968, pp. 878-883.

CCITT 84

Termes et dŽfinitions concernant la qualitŽ de service, la disponibilitŽ et la fiabilitŽ, Recommandation G 106, CCITT, 1984; in French.

CEC 91

Information Technology Security Evaluation Criteria, Harmonized criteria of France, Germany, the Netherlands, the United Kingdom, Commission of the European Communities, 1991.

CEI 92	

Industrial-process measurement and control Ñ Evaluation of system properties for the purpose of system assessment. Part 5: Assessment of system dependability, Draft, Publication 1069-5, CEI Secretariat, Feb. 1992.

Cheheyl et al. 81

M.H. Cheheyl, M. Gasser, G.A. Huff, J.K. Miller, "Verifying security", Computing Surveys, vol. 13, no. 3, Sep. 1981, pp. 279-339.

Chillarege et al. 95

R. Chillarege, S. Biyani, J. Rosenthal, ÒMeasurement of failure rate in widely distributed softwareÓ, in Proc. 25th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-12), Pasadena, California, June 1995.

COM 92

"Computing the Future", Report of the Committee to Asses the Scope and Direction of Computer Science and Technology of the National Research Council, Communications of ACM, vol. 35, no. 11, Nov. 1992, pp. 30-40.

Craigen et al. 93

D. Craigen, S. Gehrart, T. Ralston, "An international survey of industrial applications of formal methods", report NIST GCR 93/626, National Institute of Standards and Technology, March 1993.

Cramp et al. 92

R. Cramp, M.A. Vouk, W. Jones, "On operational availability of a large software-based telecommunications system", Proc. 3rd Int. Symp. on Software Reliability Engineering, Research Triangle Park, North Carolina, Oct. 1992, pp. 358-366.

Cristian et al. 85

F. Cristian, H. Aghili, R. Strong, D. Dolev, "Atomic broadcast: from simple message diffusion to Byzantine agreement", in Proc. 15th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-15), Ann Arbor, Michigan, June 1985, pp. 200-206.

Cristian 88

F. Cristian, "Agreeing on who is present and who is absent in a synchronous distributed system", in Proc. 18th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-18), Tokyo, June 1988, pp.Ê206-211.

David & Thevenod-Fosse 81

R. David, P. ThŽvenod-Fosse, "Random testing of integrated circuits", IEEE Trans. on Instrumentation and Measurement, vol. IM-30, no. 1, March 1981, pp. 20-25.

Davis & Giloth 81

E.A. Davis, P.K. Giloth, "No 4 ESS: performance objectives and service experience", The Bell System Technical Journal, vol. 60, no. 6, July-Aug. 1981, pp. 1203-1224.

DeMillo et al. 78

R.A. DeMillo, R.J. Lipton, F.G. Sayward, "Hints on test data selection: help for the practicing programmer", Computer, April 1978, pp. 34-41.

Deswarte et al. 91

Y. Deswarte, L. Blain, J.C. Fabre, ÒIntrusion tolerance in distributed computing systemsÓ, Proc. 1991 IEEE Symposium on Research in Security and Privacy, Oakland (USA), 20-22 Mai 1991, pp.110-121

Diaz 82

M. Diaz, "Modeling and analysis of communication and cooperation protocols using Petri net based models", Computer Networks, vol. 6, no. 6, Dec. 1982, pp. 419-441.

Donnelly et al. 92

M.M. Donnelly, W.W. Everett, J.D. Musa, G. Wilson, ÒSoftware reliability engineering - Best current PracticeÓ, AT&T Document 45370B-930326-01TM, Oct. 1992.

Dugan & Trivedi 89

J.B. Dugan, K.S. Trivedi, "Coverage modeling for dependability analysis of fault-tolerant systems", IEEE Trans. on Computers, vol. 38, no. 6, June 1989, pp. 775-787.

Duran & Ntafos 84

J.W. Duran, S.C. Ntafos, "An evaluation of random testing", IEEE Trans. on Software Engineering, vol. SE-10, no. 4, July 1984, pp. 438-444.

Elmendorf 72 W.R. Elmendorf, "Fault-tolerant progtamming", in Proc. 2nd IEEE Int. Symp. on Fault Tolerant Computing (FTCS-2), Newton, Massachusetts, June 1972, pp. 79-83.

FIND/SVP 93 ÒThe Impact of Online Computer Systems Downtime on American BusinessesÓ, FIND/SVP Survey, 1993.

Goodenough & Gerhart 75

J.B. Goodenough, S.L. Gerhart, "Toward a theory of test data selection", IEEE Trans. on Software Engineering, vol. SE-1, no. 2, June 1975, pp. 156-173.

Gray 90

J. Gray, "A census of Tandem system availability between 1985 and 1990", IEEE Trans. on Reliability, vol. 39, no. 4, Oct. 1990, pp. 409-418.

Gunneflo et al. 89

U. Gunneflo, J. Karlsson, J. Torin, "Evaluation of error detection schemes using fault injection by heavy-ion radiation", in Proc. 19th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-19), Chicago, June 1989, pp. 340-347.

Hoare 69

C.A.R. Hoare, "An axiomatic basis for computer programming", Communications of the ACM, vol. 12, no. 10, Oct. 1969, pp. 576-583.

Hosford 60

J.E. Hosford, "Measures of dependability", Operations Research, vol. 8, no. 1, 1960, pp. 204-206.

Howden 76

W.E. Howden, "Reliability of the path analysis testing strategy", IEEE Trans. on Software Engineering, vol. SE-2, no. 3, Sep. 1976, pp. 208-215.

Howden 87

W.E. Howden, Functional Program Testing and Ananlysis, McGraw-Hill, 1987.

Iyer & Tang 94

R. K. Iyer and D. Tang, ÒExperimental analysis of computer system dependabilityÓ, UIUC Report, 1994.

ISO 91

Quality Concepts and Terminology, Part one: Geberic Terms and Definitions, Document ISO/TC 176/SC 1 N 93, Feb. 1992.

Jacob 1991

J. Jacob. ÒThe Basic Integrity Theorem,Ó Proc. Int. Symp. on Security and Privacy, pp. 89-97, Oakland, CA, USA, 1991.

Joseph & Avizienis 88

M.K. Joseph, A. Avizienis, "A fault tolerance approach to computer viruses", in Proc. 1988 Symp. on Security and Privacy, Oakland, April 1988, pp. 52-58.

Ka‰niche et al. 94

K. Ka‰niche, K. Kanoun, M. Cukier and M. Bastos Martini, ÒSoftware Reliability Analysis of Three Successive Generations of a Switching SystemÓ, in First European Conference on Dependable Computing (EDCC-1), (Berlin, Germany), 1994.

Kanoun & Laprie 1994

K. Kanoun, J.-C. Laprie, ÒSoftware Reliability Trend Analyses: From Theoretical to Practical ConsiderationsÓ, IEEE Trans. on Software Engineering, vol.Ê20, no.Ê9, pp.Ê740-747, 1994.

Kanoun & Sabourin 87

K. Kanoun and T. Sabourin, ÒSoftware Dependability of a Telephone Switching SystemÓ, Proc. 17th IEEE Int Symp. on Fault-Tolerant Computing (FTCS-17), Pittsburgh, PA, USA, pp.236-41, June 1987.

Karlsson et al 94

J. Karlsson, P. LidŽn, P. Dahlgren and R. Johansson, ÒUsing Heavy-Ion Radiation to Validate Fault-Handling MechanismsÓ, IEEE Micro, 14 (1), pp.8-23, February 1994.

Kopetz & Ochsenreiter 87

H. Kopetz, W. Ochsenreiter, "Clock synchronization in distributed real-time systems, IEEE Trans. on Computers, vol. C-36, no. 8, Aug. 1987, pp. 933-940.

Lamport & Melliar-Smith 85

L. Lamport, P.M. Melliar-Smith, "Synchronizing clocks in the presence of faults", Journal of the ACM, vol. 32, no.1, Jan. 1985, pp. 52-78.

Landwehr et al. 93

C.E. Landwehr, A.R. Bull, J.P. McDermott, W.S. Choi, "A taxonomy of computer security flaws, with examples", Naval Research Laboratory, Report no. NRL/FR/5542-93-9591, Nov. 1991.

Laprie & Costes 82

J.C. Laprie, A. Costes, "Dependability: a unifying concept for reliable computing", Proc. 12th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-12), Santa Monica, California, June 1982, pp. 18-21.

Laprie 85

J.C. Laprie, "Dependable computing and fault tolerance: concepts and terminology", in Proc. 15th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-15), Ann Arbor, Michigan, June 1985, pp. 2-11.

Laprie et al. 90a

J.C. Laprie, J. Arlat, C. BŽounes, K. Kanoun, "Definition and analysis of hardware- and software-fault-tolerant architectures", IEEE Computer, vol. 23, no. 7, July 1990, pp. 39- 51.

Laprie et al. 90b

J.C. Laprie, C. BŽounes, M. Ka‰niche, K. Kanoun, "The KAT (knowledge-action-transformation) approach to the modeling and evaluation of reliability and availability growth", IEEE Trans. on Software Engineering, vol. 17, no. 4, April 1991, pp. 370-382.

Laprie 92a

J.C. Laprie (Ed.), Dependability: Basic Concepts and Terminology, Springer-Verlag, Vienna, 1992.

Laprie 92b

J.C. Laprie, "For a product-in-a-process approach to software reliability evaluation", Proc. 3rd Int. Symp. on Software Reliability Engineering, Research Triangle Park, NC, Oct. 1992, pp. 134-139.

Laprie 95

J.C. Laprie, "Dependability - Its attributes, impairments, and meansÓ, in Predicably Dependable Computing Systems, B.Randell, J.C. Laprie, H. Kopetz, B. Littlewood, eds, Springer-Verlag, 1995, pp. 3-18.

Laryd 94

A. Laryd, ÒOperating experioence of software in programmable equipment used in ABB atom nuclear I&C applicationsÓ, IAEA TCM, Helsinki, Finland, June 1994.

Levendel 95

Y. Levendel, ÒThe cost effectiveness of telecommunication service dependabilityÓ, in Software Fault Tolerance, M. R. Lyu, ed., Wiley, 1995, pp. 279-314.

McCabe 76

T.J. McCabe, "A complexity measure", IEEE Trans. on Software Engineering, vol. SE�2, no. 4, Dec. 1976, pp. 308-320.

Meyer 78

J.F. Meyer, "On evaluating the performability of degradable computing systems", in Proc. 8th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-8), Toulouse, France, June 1978, pp. 44-49.

Mine & Koga 67

H. Mine, Y. Koga, "Basic properties and a construction method for fail-safe logical systems", IEEE Trans. on Electron. Computers, vol. EC-16, no. 6, June 1967, pp. 282-289.

Morell 90

L.J. Morell, "A theory of fault-based testing", IEEE Trans. on Software Engineering, vol. 16, no. 8, Aug. 1990, pp. 844-857.

Myers 79

G.J. Myers, The Art of Software Testing, John Wiley & Sons, 1979

Nelson 1973

E.C. Nelson, A Statistical Basis for Software Reliability, no.ÊTRW-SS-73-02, TRW Software Series, 1973.

Nicolaidis et al. 89 M. Nicolaidis, S. Noraz, B. Courtois, "A generalized theory of fail-safe systems", in Proc. 19th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-19), Chicago, USA, June 1989, pp. 398-406.

Norman 83

D.A. Norman, "Design rules based on analyses of human error", Communications of the ACM, vol. 26, no. 4, April 1983, pp. 254-258.

OFTA 1994

French Observatory for Advanced Techniques, ARAGO 15, Fault-Tolerant Computing, Masson, Paris, 1994; in French: Observatoire Fran�ais des Techniques AvancŽes, Informatique TolŽrante aux Fautes.

Osterweil et al. 76

L.J. Osterweil, L.D. Fodsick, "DAVE Ñ A validation error detection and documentation system for Fortran programs", Software Practice and Experience, Oct.-Dec. 1976, pp. 473-486.

Parnas et al. 90

D.L. Parnas, A.J. van Schouwen, S.P. Kwan, "Evaluation of safety-critical software", Communications of the ACM, vol. 33, no. 4, June 1990, pp. 636-648.

Powell et al. 88

D. Powell, G. Bonn, D. Seaton, P. Verissimo, F. Waeselynck, "The Delta-4 approach to dependability in open distributed computing systems", in Proc. 18th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-18), Tokyo, Japan, June 1988, pp. 246-251.

Powell 92

D. Powell, ÒFailure Mode Assumptions and Assumption CoverageÓ, Proc. 22nd IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-22), Boston, July 1992, pp.386-395.

Rabin 89

M.O. Rabin, "Efficient dispersal of information for security, load balancing and fault tolerance", Jounal of the ACM, vol. 36, no. 2, April 1989, pp. 335-348.

Ramamoorthy 84

C.V. Ramamoorthy, A. Prakash, W.T. Tsai, Y. Usuda, "Software engineering: problems and perspectives", IEEE Computer, Oct. 1984, pp. 191-209.

Randell 75

B. Randell, "System structure for software fault tolerance", IEEE Trans. on Software Engineering, vol. SE-1, no. 2, June 1975, pp. 220-232.

Rapps & Weyuker 85

S. Rapps, E.J. Weyuker, "Selecting software test data using data flow information", IEEE Trans. on Software Engineering, vol. SE-11, no. 4, April 1985, pp. 367-375.

Roth et al. 67

J.P. Roth, W.G. Bourricius, P.R. Schneider, "Programmed algorithms to compute tests to detect and distinguish between failures in logic circuits", IEEE Trans. on Electronic Computers, vol. EC-16, Oct. 1967, pp. 567-579.

Ruegger 90

B. Ruegger, ÒHuman error in the cockpitÓ, Swiss Reinsurance Company, 1990.

Schlichting & Schneider 83

R.D. Schlichting, F.B. Schneider, "Fail-stop processors: an approach to designing fault-tolerant computing systems", ACM Trans. on Computing Systems, vol. 1, no. 3, Aug. 1983, pp. 222-238.

Siewiorek & Johnson 82

D.P. Siewiorek, D. Johnson, "A design methodology for high reliability systems: the Intel 432", in D.P. Siewiorek, R.S. Swarz, The Theory and Practice of Reliable System Design, Digital Press, 1982, pp. 737-767.

Siewiorek & Swarz 92

D.P. Siewiorek, R.S. Swarz, Reliable Computer Systems, Design and Evaluation, Digital Press, 1992, pp. 737-767.

Smith & Trivedi 88

R.M. Smith, K.S. Trivedi, A.V. Ramesh, "Performability analysis: measures, an algorithm, and a case study", IEEE Trans. on Computers, vol. 37, no. 4, April 1988, pp. 406-417.

Thatte & Abraham 78

 S.M. Thatte, J.A. Abraham, "A methodology for functional level testing of microprocessors", in Proc. 8th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-8), Toulouse, France, June 1978, pp. 90-95.

Thevenod & Waeselynck 91

P. ThŽvenod-Fosse, H. Waeselynck, "An investigation of statistical software testing", Journal of Software Testing, Verification and Reliability, vol. 1, no. 2, 1991, pp. 5-25.

Toy 78 W.N. Toy, "Fault-tolerant design of local ESS processors", Proceedings of the IEEE, vol. 66, no. 19, Oct. 1978, pp. 1126-1145.

Wakerly 78

J.F. Wakerly, Error-Detecing Codes, Self-Checking Circuits, and Applications, New York: Elsevier North-Holland, 1978

Watanabe 1986

E. Watanabe, ÒSurvey on Computer on SecurityÓ, Japan Info. Dev. Corp. 1986.

Wood 94

A. Wood, ÒNonStop availability in a client/server environmentÓ, Tandem Technical Report 94.1, March 1994.

Xie 91

M. Xie, Software Reliability Modeling, Singapour, World-Scientific, 1991.

Yau & Cheung 75

S.S. Yau, R.C. Cheung, "Design of self-checking software", in Proc. 1975 Int. Conf. on Reliable Software, Los Angeles, USA, April 1975, pp. 450-457.

�

ANNEX B : Generic Headings for the Description of Documents

Classification Scheme for Documents

This annex describes the proposed scheme for the classification of input documents for the SQUALE project. The intention of the classification scheme is to give a comprehensive overview of each document considered relevant for the SQUALE project and defines, which areas are covered by the document.

Therefore the following structure is defined for the document description :

Summary,

Relevance to the Project,

Classification Scheme,

Remarks.

Summary

Each document description starts with a short summary of the document . The summary should describe :

The purpose this document has been written for and the general area it covers,

The authors or the issuing standards body,

A summary of the content of the document,

A description of the importance of the document for its area.

Relevance for the Project

The summary is followed by a first assesment of the overall relevance of the document for this project. This chapter shall contain an initial assessment if and why this document is important for the SQUALE project and a short justification for this assessment.

�Classification Scheme

(Chapter and Section or Page Nr.)

��Reqrmt & definition�Design�Realisation�Integration�Accredi-tation/�Accep-tance�In use�End of service����Process�Result�Process�Result�Process�Result�Process�Result������Formalism & languages�� �� �� �������Fault prevention process�Project organisation�������� ������Project planning��������������Reviews�������������Fault removal process�Analyses��������������normal range and robustness Testing�� ������������Dependa-bility objectives�������������Fault fore-casting process�Allocation��������������Evaluation��������������System behaviour in presence of faults�������������Fault tolerance process�system partitioning��������������Error & fault handling mechanisms��������������Risk Assessment�������������Risk Manage-ment�Risk Reduction��������������Incident Reporting��������� ����Functional Requirements

�������������Documentation

�������������Quality Assurance

�������������Configuration Management

�������������Certification

��������������

Remarks

Additional information about details may be added as text after the Classification Scheme.

� Type : P-public, R-restricted, L limited, I-internal.

� Nature : P-Prototype, R-report, S-specification, R-tool, O-other.

 The work reported in this paper has been partially supported by the ESPRIT Basic Research Action PDCS-2 (Predictably Dependable Computing Systems, Action no. 6362).

�PAGE �142�

� PAGE �1�

� PAGE �1�

�

�PAGE �142�

� PAGE �3�

� INCORPORER Word.Picture.6 ���

�ACTS Programme�ACTS - AC097���SQUALE Project�Réf. SQUALE/ASSQS-1.0���Analysis of Security, Safety, Quality Standards and Codes of Practice�Date : � DATE \l �29/10/96���� PAGE �3�

��Page : � PAGE �3�/� NBPAGES * FUSIONFORMAT �142���

Members of the SQUALE Consortium are CR2A-DI (coordinator), IABG, CEA, Admiral, LAAS and Matra Transport.

SQUALE benefits from the financial support of the European Commission in the ACTS programme.

� INCORPORER Word.Picture.6 ���

�ACTS Programme�ACTS - AC097���SQUALE Project�Réf.: SQUALE/ASSQS-V1.0���Analysis of Security, Safety, Quality Standards and Codes of Practice�Date : � DATE \l �29/10/96�����Page : � PAGE �138�/� NBPAGES * FUSIONFORMAT �142���

� INCORPORER Word.Picture.6 ���

�ACTS Programme�ACTS - AC097���SQUALE Project�Réf.: SQUALE/ASSQS-V1.0���Analysis of Security, Safety, Quality Standards and Codes of Practice�Date : � DATE \l �29/10/96�����Page : � PAGE �139�/� NBPAGES * FUSIONFORMAT �142���

